人教版八年级数学 全等三角形之手拉手模型和半角模型 专题讲义

合集下载

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)本专题重点分析旋转中的三类全等模型(手拉手、半角、对角互补模型),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。

模型1.手拉手模型【模型解读】将两个三角形(或多边形)绕着公共顶点旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等。

其中:公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。

手拉模型解题思路:SAS型全等(核心在于导角,即等角加(减)公共角)。

1)双等边三角形型条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。

结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。

2)双等腰直角三角形型条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。

结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。

3)双等腰三角形型条件:△ABC 和△DCE 均为等腰三角形,C 为公共点;连接BE ,AD 交于点F 。

结论:①△ACD ≌△BCE ;②BE =AD ;③∠ACM =∠BFM ;④CF 平分∠AFD 。

4)双正方形形型条件:△ABCFD 和△CEFG 都是正方形,C 为公共点;连接BG ,ED 交于点N 。

结论:①△△BCG ≌△DCE ;②BG =DE ;③∠BCM =∠DNM=90°;④CN 平分∠BNE 。

例1.(2022·黑龙江·中考真题)ABC V 和ADE V 都是等边三角形.(1)将ADE V 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA PB PC +=(或PA PC PB +=)成立;请证明.(2)将ADE V 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将ADE V 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析 (2)图②结论:PB PA PC =+,证明见解析 (3)图③结论:PA PB PC+=【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明CAP BAF ≌△△(SAS ),得CAP BAF Ð=Ð,AF AP =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论;(3)在CP 上截取CF BP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明BAP CAF ≌△△(SAS ),得出CAF BAP Ð=Ð,AP AF =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论:PA PB PF CF PC +=+=.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,∴PA PB PC +=或PA PC PB +=;(2)解:图②结论:PB PA PC=+证明:在BP 上截取BF CP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC CAD DAE CAD Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AC =AB ,CP =BF , ∴CAP BAF ≌△△(SAS ),∴CAP BAF Ð=Ð,AF AP =,∴CAP CAF BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PC PF BF PB +=+=;(3)解:图③结论:PA PB PC +=,理由:在CP 上截取CF BP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC BAE DAE BAE Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP Ð=Ð,AP AF =,∴BAF BAP BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PB PF CF PC +=+=,即PA PB PC +=.【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.例2.(2023·湖南·长沙市八年级阶段练习)如图1,在Rt △ABC 中,∠B =90°,AB =BC =4,点D ,E 分别为边AB ,BC 上的中点,且BD =BE .(1)如图2,将△BDE 绕点B 逆时针旋转任意角度α,连接AD ,EC ,则线段EC 与AD 的关系是 ;(2)如图3,DE ∥BC ,连接AE ,判断△EAC 的形状,并求出EC 的长;(3)继续旋转△BDE ,当∠AEC =90°时,请直接写出EC 的长.例3.(2023·黑龙江·虎林市九年级期末)已知Rt △ABC 中,AC =BC ,∠ACB =90°,F 为AB 边的中点,且DF =EF ,∠DFE =90°,D 是BC 上一个动点.如图1,当D 与C 重合时,易证:CD 2+DB 2=2DF 2;(1)当D 不与C 、B 重合时,如图2,CD 、DB 、DF 有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当D 在BC 的延长线上时,如图3,CD 、DB 、DF 有怎样的数量关系,请写出你的猜想,并加以证明.【答案】(1)CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2,证明见解析【分析】(1)由已知得222DE DF =,连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论;(2)连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论.【详解】解:(1)CD 2+DB 2=2DF 2证明:∵DF =EF ,∠DFE =90°,∴222DF EF DE += ∴222DE DF = 连接CF ,BE ,如图∵△ABC 是等腰直角三角形,F 为斜边AB 的中点∴CF BF =,CF AB ^,即90CFB Ð=° ∴45FCB FBC Ð=Ð=°,90CFD DFB Ð+Ð=°又90DFB EFB Ð+Ð=° ∴CFD EFB Ð=Ð在CFD D 和BFE D 中CF BF CFD BFE DF EF =ìïÐ=Ðíï=î∴CFD D @BFED ∴CD BE =,45EBF FCB Ð=Ð=° ∴454590DBF EBF Ð+Ð=°+°=° ∴222DB BE DE +=∵CD BE =,222DE DF =∴CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2 证明:连接CF 、BE∵CF =BF ,DF =EF 又∵∠DFC +∠CFE =∠EFB +∠CFB=90°∴∠DFC =∠EFB ∴△DFC ≌△EFB ∴CD =BE ,∠DCF =∠EBF =135°∵∠EBD =∠EBF -∠FBD =135°-45°=90° 在Rt △DBE 中,BE 2+DB 2=DE 2∵ DE 2=2DF 2 ∴ CD 2+DB 2=2DF 2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.例4.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若ABC V 和ADE V 是顶角相等的等腰三角形,BC ,DE 分别是底边.求证:BD CE =;(2)解决问题:如图2,若ACB △和DCE V 均为等腰直角三角形,90ACB DCE Ð=Ð=°,点A ,D ,E 在同一条直线上,CM 为DCE V 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系并说明理由.图1 图2【答案】(1)见解析 (2)90DCE Ð=°;2AE AD DE BE CM=+=+【分析】(1)先判断出∠BAD =∠CAE ,进而利用SAS 判断出△BAD ≌△CAE ,即可得出结论;(2)同(1)的方法判断出△BAD ≌△CAE ,得出AD =BE ,∠ADC =∠BEC ,最后用角的差,即可得出结论.【解析】(1)证明:∵ABC V 和ADE V 是顶角相等的等腰三角形,∴AB AC =,AD AE =,BAC DAE Ð=Ð,∴BAC CAD DAE CAD Ð-Ð=Ð-Ð,∴BAD CAE Ð=Ð.在BAD V 和CAE V 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,∴()BAD CAE SAS ≌△△,∴BD CE =.(2)解:90AEB =°∠,2AE BE CM =+,理由如下:由(1)的方法得,≌ACD BCE V V ,∴AD BE =,ADC BEC ÐÐ=,∵CDE △是等腰直角三角形,∴45CDE CED Ð=Ð=°,∴180135ADC CDE Ð=°-Ð=°,∴135BEC ADC Ð=Ð=°,∴1354590AEB BEC CED Ð=Ð-Ð=°-°=°.∵CD CE =,CM DE ^,∴DM ME =.∵90DCE Ð=°,∴DM ME CM ==,∴2DE CM =.∴2AE AD DE BE CM =+=+.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD ≌△BCE 是解本题的关键.3)15°模型2.半角模型【模型解读】半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半思想方法:通过旋转构造全等三角形,实现线段的转化1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④D AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。

人教版数学八年级上册 综合专题2—全等三角形手拉手模型

人教版数学八年级上册  综合专题2—全等三角形手拉手模型

长线交 CE 于 F 点.
证明重要结论:
C
① △ABD≌△ACE;
FD
② BD = CE;
③ BD 的延长线 BF⊥CE;
EA
B
解:∵△ABC、△ADE 都是等腰直角三角形, ∴ AB = AC,AD = AE. 在△ABD 和△ACE 中,
∴ △ABD≌△ACE(SAS). ∴ BD = CE. ∴ ∠ABD = ∠ACE. ∵ ∠BDC = ∠ABD + ∠BAC
E
① △ABD≌△ACE
② BD = CE
③ ∠BFC = ∠BAC = ∠DAE B
F D G
C
解:∵△ABC、△ADE 都是等腰三角形,
∴ AB = AC,AD = AE.
又∵∠BAC = ∠DAE,
A
∴∠BAC + ∠CAD =∠DAE +∠CAD,
即∠BAD = ∠CAE.
在△ABD 和△ACE 中
BE 交于点 O,AD 与 BC 交于点 P,BE 与 CD 交于点
Q,连接 PQ,则有以下五个结论: B ① AD = BE; ② PQ∥AE;
③ AP = BQ; ④ DE = DP;
⑤∠AOB = 60°.
P
OD Q
其中正确的结论有__①__②__③__⑤___.
A
C
E
=∠ACE + ∠BFC, ∴ ∠BFC = ∠BAC = 90°. ∴ BF⊥CE.
C FD
EA
B
练一练
2. 如图,△ABC、△ADE 都是等腰直角三角形,
∠BAC = ∠DAE = 90°,连接 BD、CE 交于点 F.
(1) 求证:BD = CE; (2) 求证:BD⊥CE. C

专题12.19 三角形全等几何模型-“手拉手”模型(知识讲解)

专题12.19 三角形全等几何模型-“手拉手”模型(知识讲解)

专题12.19 三角形全等几何模型-“手拉手”模型(知识讲解)图一图二图三图四图五图六图七手拉手模型的定义:定义:有两个顶角相等而且有公共顶点的等腰三角形开成的图形。

特别说明:其中图一、图二为两个基本图形----等腰三角形,图二至图七为手拉手的基本模型,(左手拉左手,右手拉右手)3、如右图:手拉手模型的重要结论:结论1:∆ABC≅∆A/B/C/(SAS)BC=B/C/(左手拉左手等于右手拉右手)结论2:∠BOB=∠BAB(利用三角形全等及顶角相等的等腰三角形底角相等)结论3:AO平分∠B O C/(利用三角形全等面积相等,再利用角平分线性质定理证明)典型例题讲练:在学习全等三角形知识时、教学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型” 兴趣小组进行了如下操究:(1)如图1、两个等腰三角形△ABC和△ADE中,AB=AC,AE=AD,△BAC=△DAE,连接BD、CE、如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是“手拉手模型”,在这个模型中,和△ADB 全等的三角形是,此线BD和CE的数量关系是(2)如图2、两个等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,△BAC=△DAE=90°,连接BD,CE,两线交于点P,请判断线段BD和CE的数量关系和位置关系,并说明理由:(3)如图3,已知△ABC、请完成作图:以AB、AC为边分别向△ABC外作等边△ABD和等边△ACE(等边三角形三条边相等,三个角都等于60°),连接BE,CD,两线交于点P,并直接写出线段BE和CD的数量关系及△PBC+△PCB的度数、【答案】(1)△AEC,BD=CE;(2)BD=CE且BD△CE,理由见解析;(3)作图见解析,BE=CD,△PBC+△PCB=60°.【分析】(1)根据SAS证明两个三角形全等即可证明;(2)通过条件证明△DAB△△EAC(SAS),得到△DBC+△ECB=90°,即可证明BD△CE,从而得到结果;≅即可得到证明;(3)根据已知条件证明DAC BAE解:(1)△AB=AC,AE=AD,△BAC=△DAE,∠+∠=∠+∠,△DAE EAB BAC EAB即DAB EAC ∠=∠,△()△△ADB AEC SAS ≅,△BD=CE ;(2)BD=CE 且BD△CE ;理由如下:因为△DAE=△BAC=90°,如图2.所以△DAE+△BAE=△BAC+△BAE .所以△DAB=△EAC .在△DAB 和△EAC 中,,,.AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩所以△DAB△△EAC (SAS ).所以BD=CE ,△DBA=△ECA .因为△ECA+△ECB+△ABC=90°,所以△DBA+△ECB+△ABC=90°.即△DBC+△ECB=90°.所以△BPC=180°-(△DBC+△ECB )=90°.所以BD△CE .综上所述:BD=CE 且BD△CE .(3)如图3所示,BE=CD ,△PBC+△PCB=60°.由图可知60DAB EAC ∠=∠=︒,AD=AB ,AE=AC ,△+DAB BAC EAC BAC ∠∠=∠+∠,即DAC BAE ∠=∠,△()△DAE △BAE SAS ≅,△BE=CD ,ABE ADC ∠=∠,又△60BDA ∠=︒,△60ADC BDC ABE BDC ∠+∠=∠+∠=︒,△120BPC ABP BDC BDA ∠=∠+∠+∠=︒,△△PBC+△PCB=60°.【点拨】本题主要考查了全等三角形的知识点应用,准确分析图形是解题的关键. 举一反三变式1:如图,AC △BC ,DC △EC ,AC =BC ,DC =EC ,AE 与BD 交于点F .(1)求证:AE =BD ;(2)求△AFD 的度数.【答案】(1)详情见解析;(2)90AFD ∠=︒【分析】(1)利用角的等量代换求出ACE BCD ∠=∠,再判断ACE ≌BCD △即可求解; (2)利用全等三角形的性质得到E D ∠=∠,再通过角的等量代换求解即可.解:(1)△AC BC ⊥,DC EC ⊥△90ACB ECD ∠=∠=︒△ACB BCE ECD BCE ∠+∠=∠+∠△ACE BCD ∠=∠在ACE 和BCD △中AC BC ACE BCD DC EC =⎧⎪∠=∠⎨⎪=⎩△ACE ≌BCD △(SAS)△AE BD =(2)设BD 与CE 的交点为G ,如图所示:△ACE ≌BCD △△E D ∠=∠△180EFG FGE E ++=︒∠∠∠,180GCD CGD D ++=︒∠∠∠,且BGE CGD ∠=∠△90EFG GCD ==︒∠∠△90AFD ∠=︒【点拨】本题主要考查了全等三角形的性质和判定,灵活运用角的等量代换是解题的关键.例题2.已如:如图1,B ,C ,D 三点在一条直线上,△ABC 和△ECD 均为等边三角形,连接BE ,AD 交于点F ,BE 交AC 于点M ,AD 交CE 于点N .(1)以下结论正确的有 ;△AD =BE △△EFD =60° △MC =NC △△AMB =△END(2)探究:将图1中的△ECD 绕点C 顺时针旋转一个角度(旋转角小于60°),如图2所示. △问:(1)中的正确结论哪些还成立?若成立,请说明理由;△连接FC ,如图3所示,求证:FC 平分△BFD【答案】(1)△△△;(2)△ △△;△见解析.【分析】(1)△根据等边三角形的性质得CA =CB ,CD =CE ,△ACB =60°,△DCE =60°,则△ACE =60°,利用“SAS ”可判断△ACD △△BCE ,则AD =BE ;△根据三角形外角关系得△EFD =△EBC +△ADC =△DAC +△ADC =△ACB =60°,从而可得结论; △连接MN ,证明△MCN 是等边三角形即可得出结论;△60,60AMB EBC END NDC ∠=︒+∠∠=︒+∠,而AC ≠CD 得CAD CDA ∠≠∠,从而可得出结论;(2)△方法同(1),逐个结论进行证明即可;△作,CG BE CH AD ⊥⊥于点G ,H ,证明△BGC △△AHC ,△CGF △△CHF 可得△CFG CFH =∠,从而可得结论.解:(1)△△ABC ,△ECD 是等边三角形,△AC=BC ,CE=CD ,△ACB=△ECD=60°△△ACD=△BCE=△120°△△ACD△△BCE△AD=BE ,故△正确;△△FEN=△NDC又△△ENF=△CND△△EFD=△ECD=60°,故△正确;又△△ACE=△NCD=60°△MEC=△NDCEC=CD△△EMC△△DNC△MC=NC ,故△正确;又△△AMB=△ACB+△ECB=60°+△ECB ,△END=△ECD+△NDC=60°+△NDC而AC CD ≠△CAD CDA ∠≠∠△MBC NDC ∠≠∠△MBC END ∠≠∠,故△错误;故答案为:△△△;(2)△△ACB=△ECD=60°△△BCE=△ACD又AC=BC ,CE=CD△△ACD△△BCE△AD=BE,故△正确;△△ADC=△BEC又△ENF=△CND△△EFD=△ECD=60°,故△正确△△ACE≠60°=△ECD△△EMC 不全等于△DNC ,△MC≠NC ,故△错误(3),CG BE CH AD ⊥⊥于点G ,H ,如图,由(2)△知,△CBG=△CAHAC=BC△BGC=△AHC=90°△△BGC△△AHC△CG=CH又CF=CF ,△CGF=△CHF=90°△△CGF△△CHF△△CFG=△CFH△FC 平分△BFD【点拨】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.举一反三变式:如图,在ABC∆中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD交于点O,则AOB∠的度数为()A.100︒B.120︒C.130︒D.150︒【答案】B【分析】先证明△DCB△△ACE,求出△CAE=△CDB,再利用“8字型”证明△AOH=△DCH =60°即可解决问题.解:如图:AC与BD交于点H,△△ACD,△BCE都是等边三角形,△CD=CA,CB=CE,△ACD=△BCE=60°,△△DCB=△ACE,在△DCB和△ACE中,CD CADCB ACECB CE⎧⎪∠∠⎨⎪⎩===,△△DCB△△ACE,△△CAE=△CDB,△△DCH+△CHD+△BDC=180°,△AOH+△AHO+△CAE=180°,△DHC=△OHA,△△AOH=△DCH=60°,△△AOB=180°−△AOH=120°.故选:B.【点拨】本题考查全等三角形的判定和性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形,学会利用“8字型”证明角相等,属于中考常考题型.例题3.(阅读材料)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若△BAC=△DAE,AB=AC,AD=AE,则△ABD△△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:△BD=EC;△△BOC=60°;△△AOE=60°;△EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,△ABC=△BDC=60°,试探究△A与△C的数量关系.【答案】(1)证明见解析;(2)△△△;(3)△A+△C=180°.【分析】(1)利用等式的性质得出△BAD=△CAE,即可得出结论;(2)同(1)的方法判断出△ABD△△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出△BOC=60°,再判断出△BCF△△ACO,得出△AOC=120°,进而得出△AOE=60°,再判断出BF<CF,进而判断出△OBC>30°,即可得出结论;(3)先判断出△BDP是等边三角形,得出BD=BP,△DBP=60°,进而判断出△ABD△△CBP(SAS ),即可得出结论.(1)证明:△△BAC=△DAE ,△△BAC+△CAD=△DAE+△CAD , △△BAD=△CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== ,△△ABD△△ACE ;(2)如图2,△△ABC 和△ADE 是等边三角形, △AB=AC ,AD=AE ,△BAC=△DAE=60°, △△BAD=△CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== ,△△ABD△△ACE ,△BD=CE ,△正确,△ADB=△AEC , 记AD 与CE 的交点为G ,△△AGE=△DGO ,△180°-△ADB -△DGO=180°-△AEC -△AGE , △△DOE=△DAE=60°,△△BOC=60°,△正确,在OB上取一点F,使OF=OC,△△OCF是等边三角形,△CF=OC,△OFC=△OCF=60°=△ACB,△△BCF=△ACO,△AB=AC,△△BCF△△ACO(SAS),△△AOC=△BFC=180°-△OFC=120°,△△AOE=180°-△AOC=60°,△正确,连接AF,要使OC=OE,则有OC=12 CE,△BD=CE,△CF=OF=12 BD,△OF=BF+OD,△BF<CF,△△OBC>△BCF,△△OBC+△BCF=△OFC=60°,△△OBC>30°,而没办法判断△OBC大于30度,所以,△不一定正确,即:正确的有△△△,故答案为△△△;(3)如图3,延长DC至P,使DP=DB,△△BDC=60°,△△BDP 是等边三角形,△BD=BP ,△DBP=60°,△△BAC=60°=△DBP ,△△ABD=△CBP ,△AB=CB ,△△ABD△△CBP (SAS ),△△BCP=△A ,△△BCD+△BCP=180°,△△A+△BCD=180°.【点拨】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.举一反三变式:如图,C 为线段AE 上一动点(不与点,A E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形,CDE AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下结论:①AD BE =;①//PQ AE ;①60AOB ∠=︒;①CPQ 是等边三角形,恒成立的是______.【答案】△△△△【分析】△由△ABC 和△CDE 都是等边三角形,可知AC=BC ,CD=CE ,△ACB=△DCE=60°,所以△ACD=△BCE=120°,所以△ACD△△BCE (SAS ),从而AD=BE ,故△正确;△△由△ACD△△BCE 得△CBE=△DAC ,加之AC=BC ,易得△ACB=△BCQ=60°,可证△CQB△△CPA (ASA ),从而CP=CQ ,再加之△PCQ=60°,可推出△PCQ 为等边三角形,易得△PQC=60°=△DCE ,根据内错角相等,两直线平行,可知△△正确;△结合△ACD△△BCE 和三角形的外角的性质,可得△AOB=60°,故△正确.解:△△等边△ABC 和等边△CDE ,△AC=BC ,CD=CE ,△ACB=△DCE=60°,△△ACB+△BCD=△DCE+△BCD ,即△ACD=△BCE ,△在△ACD 与△BCE 中,AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===△△ACD△△BCE (SAS ),△AD=BE ,故△正确;△△△△ACD△△BCE ,△△CBE=△DAC ,△由△ACB=△DCE=60°得△BCD=60°,△△ACP=△BCQ ,又△AC=BC ,△△CQB△△CPA (ASA ),△CP=CQ ,又△△PCQ=60°△△PCQ 为等边三角形,△△PQC=60°,△△PQC=60°=△DCE△PQ△AE故△△正确;△△△ACD△△BCE (SAS ),△△CAD=△CBE ,△△AOB=△CAD+△CEB=△CBE+△CEB ,又△△ACB=△CBE+△CEB=60°,△△AOB=△ACB=60°,故△正确.故答案为:△△△△.【点拨】本题考查了等边三角形的性质、全等三角形的判定与性质、三角形外角的性质,熟练应用三角形全等的判定是解题的关键.。

八年级数学多边形之手拉手模型和半角模型 专题讲义

八年级数学多边形之手拉手模型和半角模型 专题讲义

八年级数学多边形之手拉手模型和半角模
型专题讲义
一、手拉手模型
1. 理解手拉手模型
手拉手模型是多边形的一种折纸模型,常用于辅助理解和记忆多边形的性质。

通过将多边形沿一条边折叠后,将该边两端的顶点对齐,可以得到手拉手模型。

2. 制作手拉手模型
制作手拉手模型的具体步骤如下:
1. 将多边形沿一条边折叠。

2. 将该边两端的顶点对齐。

3. 将折线处剪开。

3. 应用手拉手模型
手拉手模型可用于辅助证明多边形的性质。

例如,证明凸多边
形的内角和公式,可以用手拉手模型将多边形分割成若干个三角形,再计算各个三角形的内角和。

二、半角模型
1. 理解半角模型
半角模型是多边形的一种立体模型,常用于辅助理解和记忆多
边形的性质。

通过将多边形沿一条边折叠后,将两条邻边上的点对齐,可以得到半角模型。

2. 制作半角模型
制作半角模型的具体步骤如下:
1. 将多边形沿一条边折叠。

2. 将两条邻边上的点对齐。

3. 将折线处剪开。

3. 应用半角模型
半角模型可用于辅助证明多边形的性质,特别是相邻内角互补
的性质。

例如,证明正多边形的内角和公式,可以用半角模型将正
多边形分割成若干个等腰三角形,再计算各个等腰三角形的内角和。

人教版八年级数学上册培优讲义 第二讲:全等三角形与轴对称

人教版八年级数学上册培优讲义  第二讲:全等三角形与轴对称

模型一:手拉手模型第二讲:全等三角形与轴对称特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点结论:(1)△ABD ≌△AEC (2)∠α+∠BOC =180°(3)OA 平分∠BOC例 1.如图在直线 ABC 的同一侧作两个等边三角形∆ABD 与∆BCE ,连结 AE 与CD ,求证: (1) ∆ABE ≅ ∆DBC (2) AE = DC (3) AE 与 DC 之间的夹角为60︒(4) ∆AGB ≅ ∆DFB (5) ∆EGB ≅ ∆CFB (6) BH 平分∠AHC (7) G F // AC变式精练1:两个等腰三角形∆ABD 与∆BCE ,其中AB =BD , CB =EB, ∠ABD =∠CBE =α,连结AE与CD,问:(1)∆ABE≅∆DBC是否成立?(2)AE是否与CD相等?(3)AE 与CD 之间的夹角为多少度?(4)HB 是否平分∠AHC ?变式精练2:如图,两个正方形ABCD 与DEFG ,连结AG, CE ,二者相交于点H问:(1)∆ADG≅∆CDE是否成立?(2)AG是否与CE相等?(3)AG 与CE 之间的夹角为多少度?(4)HD 是否平分∠AHE ?模型二:对角互补模型(1)全等型——90°条件:① ∠AOB =∠DCE = 90︒②OC 平分∠AOB结论:① CD =CE ;②OD +OE = 2OC ;③S四边形ODCE =S∆OCD+S∆OCE=1OC 22辅助线之一:作垂直,证明∆CDM ≌∆CEN辅助线之二:过点C 作CF⊥OC,证明∆ODC≌∆FEC结论:①CD =CE ;②OE -OD = 2OC ;③S∆OCE -S∆OCD=1OC 22条件:① ∠AOB =∠DCE = 90︒②CD =CE结论:①OC 平分∠AOB;②OD +OE = 2OC ;③S四边形ODCE =S∆OCD+S∆OCE=1OC 22(2)全等型——120°条件:① ∠AOB = 2∠DCE = 120︒②OC 平分∠AOB结论:① CD =CE ;②OD +OE =OC ;③ S四边形ODCE 模仿(全等型——90°)辅助线之一完成证明=S∆OCD+S∆OCE=3OC 24辅助线之二:在OB 上取一点F,使OF=OC,证明△OCF 为等边三角形(3)全等型——任意角α条件:① ∠AOB = 2α,∠DCE = 180︒- 2α结论:OC 平分∠AOB②C D =CE例:四边形ABCD 被对角线BD 分为等腰直角三角形ABD 和直角三角形CBD ,其中∠A 和∠C 都是直角,另一条对角线AC 的长度为2 ,求四边形ABCD 的面积.AB DC变式精练1:已知∠MAN ,AC 平分∠MAN .(1)在图 1 中,若∠MAN = 120︒,∠ABC =∠ADC = 90︒,求证:AB +AD =AC ;(2)在图2 中,若∠MAN = 120︒,∠ABC +∠ADC = 180︒,则⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;变式精练2:已知:如图所示,Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点,⑴写出点O 到△ABC 的三个顶点A、B、C 的距离的关系(不要求证明)⑵如果点M、N 分别在线段AC、AB 上移动,且在移动中保持AN=CM.试判断△OMN 的形状,并证明你的结论.⑶如果点M、N 分别在线段CA、AB 的延长线上移动,且在移动中保持AN=CM,试判断⑵中结论是否依然成立,如果是请给出证明.模型三:角含半角模型(1)角含半角模型90°-1条件:①正方形ABCD ②∠EAF = 45︒结论:① EF =DF +BE ;② ∆CEF 的周长为正方形ABCD 周长的一半;也可以这样:条件:①正方形ABCD ②EF =DF +BE结论:① ∠EAF = 45︒;口诀:角含半角要旋转(2)角含半角模型90°-2条件:①正方形ABCD ②∠EAF = 45︒结论:① EF =DF -BE ;辅助线:(2)角含半角模型90°-3条件:①等腰直角三角形ABC ②∠DAE = 45︒结论:① BD2+CE2=DE2;(勾股定理知识)辅助线:将△ACE 绕点 A 顺时针旋转90°得到△ABF,并连接DF.若∠DAE 旋转到△ABC 外部时,结论BD2 +CE 2 =DE 2 仍然成立。

人教版八年级政治 全等制度之手拉手模型和半角模型 专题讲义

人教版八年级政治 全等制度之手拉手模型和半角模型 专题讲义

人教版八年级政治全等制度之手拉手模型和半角模型专题讲义本文档是关于人教版八年级政治课程中的全等制度之手拉手模型和半角模型的专题讲义。

下面将介绍这两种模型的定义、特点以及在教学中的作用。

一、全等制度之手拉手模型全等制度之手拉手模型是指在全等制度下,各个机关、部门、群团、个人之间形成了紧密的联系,彼此合作、相互协调,形成了合力,实现了全等制度的良好运行。

特点:- 合作协调:各个机关、部门、群团、个人之间通过沟通和协作,形成了紧密的联系,在工作中相互支持、协同合作,实现了工作的高效执行。

- 信息共享:全等制度之手拉手模型强调信息的共享与流通,通过及时传递相关信息,各方能够更好地了解并适应全等制度下的要求。

- 监督自律:各个机关、部门、群团、个人相互监督,自觉遵守全等制度的规定和要求,确保全等制度的有效运行和实施。

作用:- 提升效率:全等制度之手拉手模型可以促进各个机关、部门、群团、个人之间的合作与沟通,提供了高效率的工作平台,有利于任务的完成和目标的实现。

- 加强协同:通过全等制度之手拉手模型,不同部门之间能够充分协调合作,形成合力,共同应对各种问题和挑战。

- 推动发展:全等制度之手拉手模型能够促进信息共享和资源整合,提高组织的综合竞争力,进一步推动社会的发展和进步。

二、半角模型半角模型是在全等制度下,各个机关、部门、群团、个人之间的权力关系是相对平衡的,没有出现明显的主次关系,相互之间的权限和地位相对平等。

特点:- 权力平衡:半角模型中,各个机关、部门、群团、个人的权力地位相对平衡,不存在绝对的统治和被统治关系。

- 互相制衡:各个机关、部门、群团、个人之间通过相互制衡来按照全等制度的要求进行工作,相互约束,避免权力过度集中和滥用。

- 团结合作:半角模型注重团结和合作,通过互相支持和协作,实现共同的目标和任务。

作用:- 保障权益:半角模型能够确保各个机关、部门、群团、个人的权益得到平等的保护和尊重,在合法权益方面起到保障作用。

全等三角形之手拉手模型与半角模型

全等三角形之手拉手模型与半角模型

全等三角形%之手拉手模型与半角模型1手拉手模型 (2)定义 (2)任意等腰三角形下的手拉手模型 (3)等边三角形下的手拉手模型 (5)等腰直角三角形下的手拉手模型 (5)例题 (7)2半角模型 (10)定义 (10)半角模型解题思路 (11)半角模型1 (等边三角形内含半角)解题方法 (11)半角模型2 (等腰直角三角形内含半角)解题方法 (13)半角模型3 (正方形内含半角)解题方法 (14)例题 (15)手拉手模型如上图所示,手拉手模型是指有公共顶点(月)、顶角相等(Z3AGZCAD 二a )的 两个等腰三角形(AABE, AB 二AE : AACD, AC=AD ),底边端点相互连接形成的全等三角 形模型(△月邂△宓)。

因为顶角相连的四条边(腰)可形象地看成两双手,所以通 常称为手拉手模型。

说明:左、右手的定义左手 右手拉手的方式:左手拉左手,右手拉右手。

构成手拉手模型的3个条件: 1. 两个等腰三角形 2. 有公共顶点 3. 顶角相等1手拉手模型 1.1定义将等腰三角形顶角顶点朝上,正对我们, 我们左边为左手,右边为右手。

右手左手 右手全等三角形的构成方式:由“顶点+双方各一只手”构成:“顶点+左手+左手”,“顶点+右手+右手”。

搞清这一点,有助于我们快速找到全等三角形。

等腰三角形的底边QBE、CD}不是必须的,可以不连接,所以图中用虚线表示。

这就是为什么做题时发现有时并不存在等腰三角形却仍然用手拉手模型的原因。

1.2任意等腰三角形下的手拉手模型下面,将给出一些重要结论,熟悉这些结论有助于我们快速解题。

需要强调的是, 这些结论不能直接用,需要证明,所以要记住以下每个结论的证明。

结论1: AABD^AAEC说明:这里的全等三角形的构成方式为“顶点+双方各一只手”构成。

D右手2证明.ZBAD = ZBAE + ZEAD•° ZEAC = ZCAD + ^EADZ.BAE=Z.CAD=a:・乙BAD = 4£AC(等角+公共角相等)•・•在△曲劝和△宓中AB = AE(已知)等腰< ZBAD = ZEAC(已证)等角+公共角AD = AC(已知)等腰:.iXABZ、AEC(SAS)结论2: BD=EC (左手拉左手等于右手拉右手)证明:•:'AEC结论3: a +Z磁=180°说明:Z万兀是手拉手形成的角,我们称0为“手拉手交点”。

全等三角形之手拉手模型与半角模型

全等三角形之手拉手模型与半角模型

全等三角形之手拉手模型与半角模型.docx全等三角形全等三角形是指两个三角形的所有对应边和对应角都相等。

在几何学中,我们可以通过手拉手模型和半角模型来证明两个三角形是否全等。

手拉手模型是一种直观的证明方法,它利用手指来模拟三角形的边和角度。

首先,我们将两个三角形的一个顶点对齐,然后将手指放在对应的边上,同时保持手指的角度相同。

如果我们可以通过这种方式将两个三角形完全重合,那么它们就是全等三角形。

半角模型则是一种更加精确的证明方法,它利用三角形的半角来判断它们是否全等。

在两个三角形的一个顶点处,我们将两个角度分别平分为两个半角,然后将半角对应的边对齐。

如果我们可以通过这种方式将两个三角形完全重合,那么它们就是全等三角形。

总之,全等三角形是几何学中非常重要的概念,它们具有相同的形状和大小。

通过手拉手模型和半角模型,我们可以轻松地判断两个三角形是否全等。

1.手拉手模型1.1 定义手拉手模型是一种解决三角形问题的方法,它利用三角形内部的相似三角形来求解。

1.2 任意等腰三角形下的手拉手模型在任意等腰三角形ABC中,连接AB和AC的中点D和E,连接BE和CD,交点为F。

则三角形DEF与三角形ABC 相似,且比例为1:4.1.3 等边三角形下的手拉手模型在等边三角形ABC中,连接AB和AC的中点D和E,连接BE和CD,交点为F。

则三角形DEF与三角形ABC相似,且比例为1:3.1.4 等腰直角三角形下的手拉手模型在等腰直角三角形ABC中,连接AB和AC的中点D和E,连接BE和CD,交点为F。

则三角形DEF与三角形ABC 相似,且比例为1:2.1.5 例题已知等腰直角三角形ABC中,AB=AC=4,BC=4√2,点D为BC的中点,连接AD和BD,交点为E。

求AE的长度。

解:连接BE和CD,交点为F。

由手拉手模型可知,三角形DEF与三角形ABC相似,且比例为1:2.因此,DE=2,EF=2√2,AF=2+2√2.又因为三角形ADE为直角三角形,所以AE=√(AD²+DE²)=2√5.答案为2√5.2.半角模型2.1 定义半角模型是一种解决三角形问题的方法,它利用三角形内部的半角来求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学全等三角形之手拉手模型和半角模型专题讲义一、什么叫半角模型
定义:我们习惯把过等腰三角形顶角的顶点引两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并形成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得出线段之间的数量关系,从而解决问题。

二、基本模型(1)——正方形内含半角
如图,在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°,求证:EF=BE+DF。

三、基本模型(2)——等边三角形内含半角
四、基本模型(3)——等腰直角三角形内含半角
手拉手模型。

相关文档
最新文档