1数学数模实验报告
数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学模拟课程实训报告范文

一、实训目的本次数学模拟课程实训旨在通过实际操作,加深对数学理论知识的理解,提高数学建模和解决实际问题的能力。
通过模拟实际情境,培养学生的创新思维和团队协作精神,为今后从事相关领域工作打下坚实基础。
二、实训环境实训环境为计算机实验室,配备了Windows操作系统和MATLAB、Mathematica等数学软件。
实验室环境稳定,能够满足实训需求。
三、实训原理数学模拟课程实训主要基于数学建模原理,通过对实际问题的数学描述,建立数学模型,并利用计算机软件进行求解。
实训过程中,学生需要掌握以下原理:1. 数学建模原理:了解数学建模的基本方法,包括建立模型、求解模型和验证模型等。
2. 数值计算原理:掌握数值计算的基本方法,如迭代法、插值法、数值微分和积分等。
3. 计算机软件应用:熟练使用MATLAB、Mathematica等数学软件进行数学建模和数值计算。
四、实训过程1. 实训准备阶段(1)分组:将学生分成若干小组,每组4-6人,确定小组长。
(2)选题:根据学生的兴趣和专业背景,选择合适的实训题目。
(3)查阅资料:小组共同查阅相关资料,了解实训题目的背景和需求。
2. 实训实施阶段(1)建立数学模型:根据实训题目要求,建立相应的数学模型。
(2)求解模型:利用MATLAB、Mathematica等数学软件求解模型,得到结果。
(3)验证模型:将求解结果与实际情况进行对比,验证模型的正确性。
(4)撰写实训报告:根据实训过程,撰写实训报告。
3. 实训总结阶段(1)小组讨论:对实训过程中遇到的问题和解决方法进行讨论。
(2)总结经验:总结实训过程中的经验教训,为今后类似实训提供借鉴。
(3)提交实训报告:将实训报告提交给指导教师。
五、实训结果本次实训共选取了5个实训题目,包括经济、工程、生态等领域。
各小组在实训过程中,均成功建立了数学模型,并利用计算机软件求解出结果。
实训结果如下:1. 实训题目1:某公司产品销售预测建立数学模型:利用时间序列分析方法,建立产品销售预测模型。
数学建模的实验报告

数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。
2.熟悉掌握matlab软件的文件操作和命令环境。
3.掌握数据可视化的基本操作步骤。
4.通过matlab绘制二维图形以及三维图形。
二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。
即要求出二次多项式: y=a+b x2的系数。
2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。
数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。
2.利用Matlab进行编程求近似解。
二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
数学建模实验报告

数学建模实验报告一、实验目的1.通过具体的题目实例, 使学生理解数学建模的基本思想和方法, 掌握数学建模分析和解决的基本过程。
2、培养学生主动探索、努力进取的的学风, 增强学生的应用意识和创新能力, 为今后从事科研工作打下初步的基础。
二、实验题目(一)题目一1.题目: 电梯问题有r个人在一楼进入电梯, 楼上有n层。
设每个乘客在任何一层楼出电梯的概率相同, 试建立一个概率模型, 求直到电梯中的乘客下完时, 电梯需停次数的数学期望。
2.问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同, 且各种可能的情况众多且复杂, 难于推导。
所以选择采用计算机模拟的方法, 求得近似结果。
(2)通过增加试验次数, 使近似解越来越接近真实情况。
3.模型建立建立一个n*r的二维随机矩阵, 该矩阵每列元素中只有一个为1, 其余都为0, 这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下, 故没列只有一个1)。
而每行中1的个数代表在该楼层下的乘客的人数。
再建立一个有n个元素的一位数组, 数组中只有0和1,其中1代表该层有人下, 0代表该层没人下。
例如:给定n=8;r=6(楼8层, 乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14.解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5.实验结果ans = 6.5150 那么, 当楼高11层, 乘坐10人时, 电梯需停次数的数学期望为6.5150。
数学建模实践实验报告

数学建模实践实验报告
数学建模实践实验报告
高一三班潘某某&胡某某&傅某某
一、标题
——使用数学建模的方法测量生活中的实际距离
二、实际情景
使用自制的简易量角仪测量学校中启智楼四楼饮水机处与图书馆楼楼顶之间的距离。
三、提出问题
要测量哪些数据?
如何建立模型来计算?
怎样建立模型才能使计算更简便?
四、建立模型
在计算中我们需要建立3个模型,分别是操场到图书馆楼楼顶,操场到启智楼四楼饮水机处,与启智楼四楼饮水机处到图书馆楼顶,相应地求出图书馆楼顶的高度,启智楼四楼饮水机处的高度,从而算得二者之间的平面距离。
五、求解模型
图书馆楼
AB:BE=tan16?,AB=BEtan16?
AB:BF=?,AB=?
可解得,AB=,AC=
启智楼四楼饮水机处
AB:BE=?,AB=?
AB:BF=?,AB=?
可解得,AB=,AC=
启智楼四楼饮水机处与图书馆楼楼顶
AB=CE=
DE=CD-CE=
DE:sin20?=AD:sin90?,解得AD=
六、反思与分析
由于器材精确度的限制与当天的风力,我们只能大致地测量了几个角度,有些可能误差较大,计算时也只精确到十分位,但仍有部分参考价值,在日常生活中可作近似值使用。
感谢观看!。
数模实验报告

数模实验报告摘要:本实验通过数学建模方法,对某个具体问题进行了建模与求解。
实验内容主要包括问题描述、问题分析、模型建立、模型求解及结果分析等几个部分。
通过本次实验,我们可以对数学建模的过程有较为全面的了解,同时也能够掌握一定的模型建立与求解的方法和技巧。
一、问题描述本次实验的问题是关于某个具体问题的建模与求解。
具体而言,问题是关于某个物理系统的数学描述。
物理系统的状态可以通过一组物理量来描述,而这组物理量的变化又可以通过一组数学方程来描述。
因此,问题的基本任务是找到这组数学方程,并通过求解这组方程,得到问题的解答。
二、问题分析在进行问题分析之前,我们需要对问题进行深入的了解和分析。
首先,我们需要对物理系统进行全面的观察和实验,以获得充分的数据和信息。
通过观察与实验,我们可以发现其中的一些规律和关系,这些规律和关系有助于我们建立数学模型并求解问题。
其次,我们需要通过对问题的分析,找出问题的关键要素和影响因素。
通过对关键要素和影响因素的分析,我们可以确定问题的数学描述方法,从而进一步进行模型建立与求解。
三、模型建立在进行模型建立之前,我们需要根据问题的要求和实际情况选择适当的数学工具和方法。
常用的数学工具和方法包括微积分、线性代数、概率论与数理统计等。
根据问题的特点和需求,我们可以选择适当的数学建模方法,如数值求解、最优化、动态系统等。
在模型建立过程中,我们需要明确问题的假设和约束条件,并据此构建数学模型。
模型的构建涉及到数学方程的建立和模型参数的确定等几个方面。
通过对方程和参数的合理选择和调整,我们可以使得模型能够真实地反映物理系统的行为和特性。
四、模型求解。
数学建模的实习报告

一、实习背景随着科技的飞速发展,数学建模作为一种解决实际问题的有效方法,已经在各个领域得到了广泛应用。
为了提高自己的实践能力和综合素质,我参加了数学建模实习,旨在通过实际操作,深入理解数学建模的原理和方法,提高自己的建模能力和解决实际问题的能力。
二、实习内容本次实习主要分为以下几个阶段:1. 理论学习在实习初期,我们学习了数学建模的基本概念、方法和应用领域。
通过学习,我对数学建模有了初步的认识,了解到数学建模是运用数学知识解决实际问题的过程,包括问题的提出、模型的建立、模型的求解和结果的分析等步骤。
2. 实践操作在理论学习的基础上,我们开始进行实际操作。
实习过程中,我们选取了以下三个实际问题进行建模:(1)优化设计:以一个工厂生产问题为例,通过建立线性规划模型,求解最小化生产成本和最大化产量的问题。
(2)物流配送:以一个城市物流配送问题为例,通过建立网络流模型,求解最小化配送成本和最大程度提高配送效率的问题。
(3)传染病传播:以一个地区传染病传播问题为例,通过建立微分方程模型,预测传染病的发展趋势和传播范围。
在实践操作过程中,我们按照以下步骤进行:(1)问题分析:明确问题的背景、目标和约束条件,分析问题所属的领域和适用的数学方法。
(2)模型建立:根据问题分析的结果,选择合适的数学模型,对问题进行抽象和简化。
(3)模型求解:运用数学软件对模型进行求解,得到问题的最优解或近似解。
(4)结果分析:对求解结果进行分析,评估模型的适用性和可靠性,并提出改进意见。
3. 总结与反思在实习过程中,我们对所学知识进行了总结和反思,发现以下问题:(1)数学建模需要较强的逻辑思维和抽象能力,对实际问题的分析能力要求较高。
(2)数学建模过程中,模型的选择和参数的确定对结果有较大影响,需要谨慎处理。
(3)数学建模软件在实际操作中存在一定的局限性,需要根据实际情况进行选择和使用。
三、实习收获通过本次数学建模实习,我收获颇丰:1. 提高了数学建模能力:在实习过程中,我学会了如何运用数学知识解决实际问题,提高了自己的建模能力和解决实际问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1数学数模实验报告福建农林大学计算机与信息学院(数学类课程)实验报告课程名称:数学模型姓名:苏志东系:数学专业:数学与应用数学年级:2014级学号:指导教师:姜永职称:副教授2016年6月12日实验项目列表福建农林大学计算机与信息学院数学类实验报告(一)系: 数学 专业: 数学与应用数学 年级: 2014级 姓名: 学号: 3 实验课程: 数学模型 实验室号: 明南附203 实验设备号: 实验时间: 2016/6/6 指导教师签字: 成绩: 1.实验项目名称:数学规划模型建立及其软件求解2.实验目的和要求:了解数学规划的的基本理论和方法,并用于建立实际问题的数学规划模型;会用LINGO 软件解数学规划问题并对结果加以分析应用。
3.实验使用的主要仪器设备和软件:联想启天M430E 电脑;LINGO12.0或以上版本。
4.实验的基本理论和方法:一般地,数学规划模型可表述成如下形式:)(in x f z M x=.,...,2,1,0)(s.t.m i x g i =≤其中)(x f 表示目标函数,),...,2,1(0)(m i x g i=≤为约束条件。
LINGO 用于解决二次规划、线性规划以及非线性规划问题,同时可以求解线性或非线性方程(组)。
LINGO 的最大特色在于通过高运行速度解决优化模型中的决策变量的整数取值问题。
线性优化求解程序通常使用单纯性算法,可以使用LINGO 的内点算法解决大规模规划问题。
非线性规划可通过迭代求解一系列线性规划求解。
5.实验内容与步骤:问题一:某公司将3种不同含硫量的液体原料(分别记为甲、乙、丙)混合生产两种产品(分别记为A,B),按照生产工艺的要求,原料甲、乙必须首先倒入混合池中混合,混合后的液体再分别与原料丙混合生产A,B.已知原料甲,乙,丙的含硫量分别是3%,1%,2%,进货价格分别为6千元/ t,16千元/ t ,10千元/t ,产品A,B的含硫量分别不能超过 2.5%,1.5%,售价分别为9千元/t,15千元/t,根据市场信息,原料甲、乙、丙的供应量都不能超过500t;产品A,B 的最大市场需求量分别为100t ,200t.(1) 应如何安排生产?(2) 如果产品A的最大市场需求量增长为600t,应如何安排生产?(3) 如果乙的进货价格下降为12千元/t,应如何安排生产?分别、对(1)、(2)两种情况进行讨论.解答:(1)问题分析根据题目要求,不难想到,这个问题的目标是使公司获利最大,要做的决策就是生产计划,即生产多少产品A和产品B ,限制条件有:原料供应、市场需求、不同含硫量生产不同的产品。
根据这些条件,利用lingo软件,求出最终决策。
基本模型决策变量:设用(i=甲,乙,丙;j=A,B )表示用第i 种原料用于生产产品j ,将i=甲,乙,丙转换为i=1,2,3,j=A,B 转换为j=1,2.目标函数:设公司获利为z 千元,则有:∑∑∑∑∑=====---+=21321221131231110166159j jj j j j i i i i x x x x x z约束条件原料供应:原料i(i=1,2,3)均不超过500t,则∑=≤21500j ijx(i=1,2,3)市场需求:产品A 、B 的需求量分别为100t 、200t ,则有:⎪⎪⎩⎪⎪⎨⎧≤≤∑∑==312311200100i i i i x x含硫量:根据甲乙混合比例,有:22122111::x x x x =, 由生产不同产品含硫量百分比,有:⎪⎪⎩⎪⎪⎨⎧≤++++<≤++++<%5.1x x x x %2x %13%x 1%%5.2x x x x %2x %13%x 1.5%322212322212312111312111终上所述,有:∑∑∑∑∑=====---+=21321221131231110166159max j jj j j j i i i i x x x x xz∑=≤21500j ijx(i=1,2,3)∑∑==≤≤312311200100i i i i xx%5.1x x x x %2x %13%x 1%%5.2x x x x %2x %13%x 1.5%322212322212312111312111≤++++<≤++++<对上述式子进行调整,并利用lingo 软件,可求解出最优解。
Lingo 程序为:max=9*(x11+x21+x31)+15*(x12+x22+x32)-6*(x11+x12)-16*(x21+x22)-10*(x31+x32); 0.5*x11-1.5*x21-0.5*x31<=0; 1.5*x11-0.5*x21+0.5*x31>0; 1.5*x12-0.5*x22+0.5*x32<=0; 2*x12+x32>0; x11*x22-x21*x12=0; x11+x12<=500; x21+x22<=500; x31+x32<=500; x11+x21+x31<=100; x12+x22+x32<=200;程序运行结果如下:Objective value: 400.0000VariableValueX110.000000X210.000000X310.000000X120.000000X22100.0000X32100.0000结果分析:根据结果显示,最优解为用100t的乙原料和100t的丙原料混合,生成200t产品B,所以目标函数最优解为40万元(400千元)。
(2)本小题的解法与(1)基本一致,只需要将约束条件改变为,相应的代码由x11+x21+x31<=100改为x11+x21+x31<=600,并代入程序计算,便可求解出结果。
程序运行结果如下:Objective value: 600.0000VariableValueX11300.0000X210.000000X31300.0000X120.000000X220.000000X320.000000结果分析:根据结果显示,最优解为用300t的甲原料和300t的丙原料混合,生成600t产品A所以目标函数最优解为60万元(600千元)。
(3)将乙的进货价格下降为12千元/t,只需修改一下目标函数值和约束条件即可。
针对问题(1)来说,只需将目标函数33222121231111191561610i i j j ji i j j j z xx x x x ======+---∑∑∑∑∑ 改为33222121231111191561210i i j j ji i j j j z x x x x x ======+---∑∑∑∑∑,对应的程序修改一下,即可得到新的求解结果。
程序运行结果如下:Objective value:900.0000Variable Value Reduced Cost X11 0.000000 0.000000X21 0.000000 0.000000X31 0.000000 0.000000X12 50.00000 0.000000X22 150.0000 0.000000X32 0.000000 1.000000结果分析:根据结果显示,最优解为用50t 的甲原料和150t 的乙原料混合,生成200t 产品B ,所以目标函数最优解为90万元(900千元)。
问题二:某造船厂需要决定下四个季度的帆船生产量。
下四个季度的帆船需求量分别是40条、60条、75条和25条,这些需求必须按时满足。
每个季度正常的生产能力是40条帆船,每条船的生产费用为40万元。
如果加班生产,每条船的生产费用为45万元。
每个季度末,每条船的库存为2万元。
假定生产提前期为0,初始库存为10条船。
如何安排生产可使总费用最小?(LINGO程序要求利用集合语言编写)解答:建立模型设四个季度轮船的需求量分别为4,3,2,1DEM;II),(=四个季度正常生产的产量分别为IIRP;),4,3,2,1(=四个季度加班生产的产量分别为IIOP;4,3,2,1),(=四个季度轮船的总量分别为IIALL),(=4,3,2,1根据题意和约束条件可以建立以下模型:目标函数:)))()((*2)(*45)(*40(41∑=-++I I DEM I ALL I OP I RP约束条件由题意依次为1、每季度正常生产能力是40条船,即4,3,2,1=I ,应有40)(<=I RP ;2、需求量限制:,应有)()(I DEM I ALL >=;模型求解利用题目所给数据,将所建立的目标函数以及限制条件输入LINGO:模型代码如下:sets:SIJI/1..4/:DEM,RP,OP,ALL;endsetsdata:DEM=40 60 75 25;enddataALL(1)=10+RP(1)+OP(1);ALL(2)=ALL(1)-DEM(1)+RP(2)+OP(2);ALL(3)=ALL(2)-DEM(2)+RP(3)+OP(3);ALL(4)=ALL(3)-DEM(3)+RP(4)+OP(4);min=@sum(SIJI(I):40*RP(I)+45*OP(I)+2*(ALL(I)-DEM(I)));4,3,2,1=I@for(SIJI(I):RP(I)<=40);@for(SIJI(I): ALL(I)>=DEM(I));end点击运行按钮得试验结果如下:Global optimal solution found.Objective value: 7845.000Variable Value Reduced CostDEM( 1) 40.00000 0.000000DEM( 2) 60.00000 0.000000DEM( 3) 75.00000 0.000000DEM( 4) 25.00000 0.000000RP( 1) 40.00000 0.000000RP( 2) 40.00000 0.000000RP( 3) 40.00000 0.000000RP( 4) 25.00000 0.000000OP( 1) 0.000000 2.000000OP( 2) 10.00000 0.000000OP( 3) 35.00000 0.000000OP( 4) 0.000000 5.000000ALL( 1) 50.00000 0.000000ALL( 2) 60.00000 0.000000ALL( 3) 75.00000 0.000000ALL( 4) 25.00000 0.000000结果分析:10)2(,35)4(,,0)3(=OPOP。
OP=OPRP;0=)1(=,)3(4040,25)4()2(,=RPRP==40)1(=RP所以须这样安排生产:第一季度需生产40条,无需加班;第二季度需生产出50条,其中有10条是加班生产的;第三季度需生产出75条,其中35条是加班生产的;第四季度需生产出25条,无需加班;最小总费用为7845万元。