基本均值不等式
基本不等式又叫均值不等式精品PPT课件

x
y
y 2x 3 x y 3 2 2
当且仅当
y 2 x 即: y 2 x 时取“=”号 x y
1 x 2 2 2 y 2 2
即此时
y 2x 而 2 x y 1
ymin 3 2 2
正解二: 2x y 1
A、40 B、10
D)
C、4 D、2
1、应用均值不等式须注意以下三点:
(1)各项或各因式为正 (2)和或积为定值 (3)各项或各因式能取得相等的值,必要时作适当变形, 以满足上述前提,即“一正二定三等” 2、二元均值不等式具有将“和式”转化为“积式”和将“积 式”转 化为“和式”的放缩功能; 创设应用均值不等式的条件,合理拆分项或配凑因式是常 用的解题技巧,而拆与凑的成因在于使等号能够成立;
综上所述:当 x 0时,y min 2 当x 0时,y max 2
2 引例2:已知x 1, 求y x 的最小值 x 1 解法一: x 1 2 x x 1
2 y x 2 x 1
积不是 定值
解法二:
x 1, x 1 0 2 当且仅当x 时,y有最小值 x 1 此时x 2 x 2 0, 解得x 2, x 1(舍去) 2 2 4 2 1
1 xy 即 2 2 xy 2 2 1
错因:
过程中两次运用了
1 1 1 2 2 2 2 4 2 x y xy
1 1 即 的最小值为 4 x y
均值不等式中取“=”
号过渡,而这两次取
2
“=”号的条件是不同的,
故结果错。
1 1 正解一: 2x y 2x y x y
看谁最快
第41讲--基本(均值)不等式

第41讲 基本(均值)不等式夯实基础 【p 87】【学习目标】1.了解基本(均值)不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.【基础检测】1.若函数f(x)=x +1x -2(x>2)在x =a 处取最小值,则a 等于( )A .1+ 2B .1+ 3C .3D .42.若a>0,b>0,且14a +4b =1,则ab 的最大值为______________.3.若a>0,则a +82a +1的最小值为__________.4.已知两正数x ,y 满足x +y =1,则z =⎝⎛⎭⎫x +1x ⎝⎛⎭⎫y +1y 的最小值为________.【知识要点】1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b .2.几个重要的不等式(1)a 2+b 2≥ __2ab__(a ,b ∈R );(2)b a +ab ≥__2__(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );(4)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ).3.算术平均数与几何平均数设a >0,b>0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x>0,y>0,(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p(简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).典 例 剖 析考点1 利用基本(均值)不等式求最值例1(1)已知xy =1,且0<y<22,则x 2+4y 2x -2y 的最小值为( )A .4 B.92C .2 2D .42(2)已知a>0,b>0,且a 2+b 22=1,则a 1+b 2的最大值为________.考点2 基本(均值)不等式与函数的综合问题例2已知a>b ,二次三项式ax 2+2x +b ≥0对于一切实数x 恒成立,又∃x 0∈R ,使ax 02+2x 0+b =0,则a 2+b 2a -b的最小值为__________.例3已知x>0,y>0,且3x +y =4,求1x +1y的最小值.考点3 基本(均值)不等式的实际应用例4桑基鱼塘是某地一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块1 800平方米的矩形地块,中间挖出三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,池塘周围的基围宽均为2米,如图,设池塘所占的总面积为S平方米.(1)试用x表示S;(2)当x取何值时,才能使得S最大?并求出S的最大值.方 法 总 结1.a 2+b 2≥2ab 成立的条件是a ,b ∈R ,而a +b2≥ab 成立,则要求a >0,b >0.2.利用基本不等式求最值,要注意使用条件:一正(各数为正),二定(和或积为定值),三相等(等号在允许取值范围内能取到),要熟悉均值不等式的各种变形⎝⎛⎭⎫如y =ax 2+bx +c x =ax +c x +b .3.连续使用以上公式中的任一个或两个,取等号的条件要在同一条件下取得,方可取到最值.走 进 高 考(2017·天津)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________.考 点 集 训 【p 231】A 组题1.下列函数中,最小值是2的是( )A .y =x +1xB .y =sin x +1sin x ⎝⎛⎭⎫0<x <π2 C .y =lg x +1lg x (1<x <10)D .y =x +2x-12.小王往返甲、乙两地的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <ab B .v =abC.ab <v <a +b 2 D .v =a +b23.设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q4.已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy ( )A .有最大值eB .有最大值 eC .有最小值eD .有最小值 e5.已知a 2+2a +2x ≤4x 2-x+1对于任意的x ∈()1,+∞恒成立,则( )A .a 的最小值为-3B .a 的最小值为-4C .a 的最大值为2D .a 的最大值为46.若关于x 的方程9x +(4+a )3x +4=0有解,则实数a 的取值范围是________.7.规定记号“⊗”表示一种运算,即a ⊗b =ab +a +b (a ,b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗xx的最小值为________.8.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时, 2x +1y -2z的最大值为 ________.9.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值;(2)求1x +1y的最小值.B 组题1.已知函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny+1=0上,其中mn >0,则1m +2n的最小值为( )A .3B .3+22C .4D .82.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b 、c ∈(0,1)),已知他投篮一次得分的均值为2,则2a +13b的最小值为( )A.323B.283C.143D.1633.设a >b >c >0,则2a 2+1ab +1a (a -b )-10ac +25c 2的最小值是( )A .2B .4C .2 5D .54.已知各项为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m ·a n=22a 1,则1m +4n的最小值为________.5.已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________. 6.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?第41讲 基本(均值)不等式夯实基础 【p 87】【学习目标】1.了解基本(均值)不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【基础检测】1.若函数f(x)=x +1x -2(x>2)在x =a 处取最小值,则a 等于( )A .1+ 2B .1+ 3C .3D .4【解析】当x>2时,x -2>0,f(x)=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x>2),即x =3时取等号,即当f(x)取得最小值时,x =3,即a =3,选C .【答案】C2.若a>0,b>0,且14a +4b =1,则ab 的最大值为________________________________________________________________________.【解析】由1=14a +4b ≥2()ab 14,可得ab ≤116,当且仅当14a =4b =12,即a =4,b=164时等号成立,因此ab 的最大值为116. 【答案】1163.若a>0,则a +82a +1的最小值为__________.【解析】由题意可知: a +82a +1=a +12+4a +12-12≥2⎝⎛⎭⎫a +12×4a +12-12=72,当且仅当a +12=4a +12,a =32时等号成立.综上可得:a +82a +1的最小值为72.【答案】724.已知两正数x ,y 满足x +y =1,则z =⎝⎛⎭⎫x +1x ⎝⎛⎭⎫y +1y 的最小值为________. 【解析】z =⎝⎛⎭⎫x +1x ⎝⎛⎭⎫y +1y =xy +1xy +y x +x y =xy +1xy +(x +y )2-2xy xy =2xy+xy -2,令t =xy ,则0<t =xy ≤⎝⎛⎭⎫x +y 22=14.由f(t)=t +2t 在⎝⎛⎦⎤0,14上单调递减,故当t =14时f(t)=t +2t 有最小值334,所以当x =y =12时,z 有最小值254.【答案】254【知识要点】1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式(1)a 2+b 2≥ __2ab__(a ,b ∈R ); (2)b a +ab≥__2__(a ,b 同号); (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ); (4)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b>0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x>0,y>0, (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p(简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q24(简记:和定积最大).典 例 剖 析 【p 87】考点1 利用基本(均值)不等式求最值例1(1)已知xy =1,且0<y<22,则x 2+4y 2x -2y的最小值为( )A .4 B.92C .2 2D .42【解析】xy =1且0<y<22,可知x>2,所以x -2y>0.x 2+4y 2x -2y =()x -2y 2+4xy x -2y=x -2y+4x -2y≥4,当且仅当x =3+1,y =3-12 时等号成立.故选A.【答案】A(2)已知a>0,b>0,且a 2+b 22=1,则a 1+b 2的最大值为________.【解析】因为a>0,所以a 1+b 2= 2 a 2⎝⎛⎭⎫12+b 22≤2⎣⎡⎦⎤a 2+⎝⎛⎭⎫12+b 222.又a 2+⎝⎛⎭⎫12+b 22=⎝⎛⎭⎫a 2+b 22+12=32,所以a 1+b 2≤2⎝⎛⎭⎫12×32=324,当且仅当a 2=12+b 22,即a =32,b =22时等号成立,即(a 1+b 2)max =324.【答案】324考点2 基本(均值)不等式与函数的综合问题例2已知a>b ,二次三项式ax 2+2x +b ≥0对于一切实数x 恒成立,又∃x 0∈R ,使ax 02+2x 0+b =0,则a 2+b 2a -b的最小值为__________.【解析】不等式恒成立,则a >0且Δ=4-4ab ≤0,即ab ≥1,又存在x 0∈R ,使ax 02+2x 0+b =0成立,可得Δ=0,所以ab =1, a >1.可得a 2+b 2a -b =a 2+1a 2a -1a>0,所以⎝ ⎛⎭⎪⎫a 2+b 2a -b 2=a 4+1a 4+2a 2+1a 2-2=⎝⎛⎭⎫a 2+1a 22⎝⎛⎭⎫a 2+1a 2-2=⎝⎛⎭⎫a 2+1a 2-22+4⎝⎛⎭⎫a 2+1a 2-4⎝⎛⎭⎫a 2+1a 2-2. 令a 2+1a 2=t >2,则⎝ ⎛⎭⎪⎫a 4+1a 3-a 2=()t -22+4()t -2+4t -2=()t -2+4+4t -2≥4+4=8. a 2+b 2a -b的最小值为8=2 2.故本题应填2 2. 【答案】2 2例3已知x>0,y>0,且3x +y =4,求1x +1y的最小值.【解析】解法一:(消元法)令t =1x +1y =1x +14-3x =4-2x x (4-3x ),得3tx 2-(4t +2)x +4=0,①由①式有解:∴Δ=(4t +2)2-4×4×3t ≥0, 即4t 2-8t +1≥0,∵t>0,∴t ≥8+64-168=1+32.即1x +1y 的最小值为1+32. 解法二:(“1”的代换):1x +1y =(3x +y )4⎝⎛⎭⎫1x +1y =34+14+y 4x +3x 4y ≥1+2y 4x ·3x 4y =1+32. 【点评】可利用基本不等式求形如y =ax 2+bx +cdx +e的值域,但在求解的过程中要注意运用基本不等式时,等号是否成立,若等号不成立,则可以利用函数的单调性求解.考点3 基本(均值)不等式的实际应用例4桑基鱼塘是某地一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块1 800平方米的矩形地块,中间挖出三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,池塘周围的基围宽均为2米,如图,设池塘所占的总面积为S 平方米.(1)试用x 表示S ;(2)当x 取何值时,才能使得S 最大?并求出S 的最大值.【解析】(1)由图形知,3a +6=x ,∴a =x -63.则总面积S =⎝⎛⎭⎫1 800x -4·a +2a ⎝⎛⎭⎫1 800x -6=a ⎝⎛⎭⎫5 400x -16=x -63⎝⎛⎭⎫5 400x-16=1 832-⎝⎛⎭⎫10 800x +16x 3,即S =1 832-⎝⎛⎭⎫10 800x +16x 3(x >6).(2)由S =1 832-⎝⎛⎭⎫10 800x +16x 3,得S ≤1 832-2 10 800x ·16x3=1 832-2×240=1 352.当且仅当10 800x =16x3,即x =45时取等号.即当x 为45米时,S 最大,且S 最大值为1 352平方米.【点评】(1)设变量时一般要把求最大值或最小值的变量定义为函数.(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.方 法 总 结 【p 87】 1.a 2+b 2≥2ab 成立的条件是a ,b ∈R ,而a +b2≥ab 成立,则要求a >0,b >0.2.利用基本不等式求最值,要注意使用条件:一正(各数为正),二定(和或积为定值),三相等(等号在允许取值范围内能取到),要熟悉均值不等式的各种变形⎝⎛⎭⎫如y =ax 2+bx +c x =ax +c x +b .3.连续使用以上公式中的任一个或两个,取等号的条件要在同一条件下取得,方可取到最值.走 进 高 考 【p 87】(2017·天津)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________.【解析】因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab 的最小值是4. 【答案】4【命题立意】本题考查基本不等式的应用,意在考查考生的运算求解能力.考 点 集 训 【p 231】A 组题1.下列函数中,最小值是2的是( )A .y =x +1xB .y =sin x +1sin x ⎝⎛⎭⎫0<x <π2C .y =lg x +1lg x (1<x <10)D .y =x +2x-1【解析】x <0时, x +1x <0,A 错; sin x =1时, y =sin x +1sin x =2才能成立,B 错;当x =10时, y =lg x +1lg x =2才能成立,C 错;y =x +2x -1=x +1x +1x -1≥33x ·1x ·1x-1=2,x =1x时取等号,D 正确.故选D.【答案】D2.小王往返甲、乙两地的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <ab B .v =abC.ab <v <a +b 2 D .v =a +b2【解析】设甲、乙两地之间的距离为s .∵a <b ,∴v =2s s a +s b=2ab a +b <2ab2ab =ab .又v -a =2aba +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a .【答案】A3.设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q【解析】∵0<a <b ,∴a +b 2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数,故f ⎝⎛⎭⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=12ln a +12ln b =ln(ab )12=f (ab )=p .故p=r <q .选C.【答案】C4.已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy ( )A .有最大值eB .有最大值 eC .有最小值eD .有最小值 e【解析】因为x >1,y >1,所以ln x >0,ln y >0.又14ln x ,14,ln y 成等比数列,所以14ln x ·ln y =⎝⎛⎭⎫142,即ln x ·ln y =14.由基本不等式,得14=ln x ·ln y ≤(ln x +ln y )24=(ln xy )24,当且仅当ln x =ln y ,即x=y 时取等号,所以ln xy ≥1,得xy ≥e ,故选C.【答案】C5.已知a 2+2a +2x ≤4x 2-x+1对于任意的x ∈()1,+∞恒成立,则( )A .a 的最小值为-3B .a 的最小值为-4C .a 的最大值为2D .a 的最大值为4【解析】因为x ∈()1,+∞,所以x -1>0,x >0. 不等式a 2+2a +2x ≤ 4x 2-x+1可化为a 2+2a +2≤x ⎝⎛⎭⎫4x 2-x +1 即a 2+2a +2≤4x -1+x -1+1,因为4x -1+x -1+1≥24x -1()x -1+1=5,当且仅当⎩⎪⎨⎪⎧x >14x -1=x -1,即x =3时,上式取“=”号.所以a 2+2a +2≤5,解得-3≤a ≤1. 故选A.【答案】A6.若关于x 的方程9x +(4+a )3x +4=0有解,则实数a 的取值范围是________.【解析】分离变量得-(4+a )=3x +43x ≥4,得a ≤-8.【答案】(-∞,-8]7.规定记号“⊗”表示一种运算,即a ⊗b =ab +a +b (a ,b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗xx的最小值为________.【解析】1⊗k =k +1+k =3,即k +k -2=0, ∴k =1或k =-2(舍),∴k =1.∴f (x )=1⊗x x =x +x +1x =1+x +1x≥1+2=3,当且仅当x =1x,即x =1时等号成立.∴f (x )的最小值为3. 【答案】1,38.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时, 2x +1y -2z的最大值为 ________.【解析】据已知不等式得z =x 2-3xy +4y 2,故xy z =xy x 2-3xy +4y 2=1x 2-3xy +4y 2xy=1x y +4y x -3,据均值不等式得xy z =1x y +4y x -3≤12x y ·4y x-3=1,当且仅当x y =4yx ,即x =2y 时取得最大值,此时z =2y 2且2x +1y -2z =2y -22y2=-⎝⎛⎭⎫1y -12+1≤1,当y =1时取得最大值1.【答案】19.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值;(2)求1x +1y的最小值.【解析】(1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy . ∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎨⎧2x +5y =20,2x =5y ,解得⎩⎨⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝⎛⎭⎫1x +1y ·2x +5y20=120⎝⎛⎭⎫7+5y x +2x y ≥120⎝⎛⎭⎫7+25y x ·2x y =7+21020,当且仅当5y x =2xy时,等号成立.由⎩⎪⎨⎪⎧2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. B 组题1.已知函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny+1=0上,其中mn >0,则1m +2n的最小值为( )A .3B .3+2 2C .4D .8【解析】由已知可得定点A (-2,-1)⇒2m +n =1⇒1m +2n =⎝⎛⎭⎫1m +2n (2m +n )=n m +4m n+4≥2n m ×4mn +4=8,故选D.【答案】D2.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b 、c ∈(0,1)),已知他投篮一次得分的均值为2,则2a +13b的最小值为( )A.323B.283C.143D.163【解析】由已知得,3a +2b +0×c =2,即3a +2b =2,其中0<a <23,0<b <1.又2a +13b =3a +2b 2⎝⎛⎭⎫2a +13b =3+13+2b a +a 2b ≥103+22b a ·a 2b =163,当且仅当2b a =a2b,即a =2b 时取“等号”.又3a +2b =2,即当a =12,b =14时,2a +13b 的最小值为163,故选D.【答案】D3.设a >b >c >0,则2a 2+1ab +1a (a -b )-10ac +25c 2的最小值是( )A .2B .4C .2 5D .5【解析】2a 2+1ab +1a (a -b )-10ac +25c 2=(a -5c )2+a 2-ab +ab +1ab +1a (a -b )=(a -5c )2+ab +1ab +a (a -b )+1a (a -b )≥0+2+2=4,当且仅当a -5c =0,ab =1,a (a -b )=1时,等号成立,即a =2,b =22,c =25时满足条件.【答案】B4.已知各项为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m ·a n=22a 1,则1m +4n的最小值为________.【解析】设公比为q ,由a 7=a 6+2a 5⇒a 5q 2=a 5q +2a 5⇒q 2-q -2=0(q >0)⇒q =2.a m ·a n =22a 1⇒a 12m -1·a 12n -1=8a 12⇒2m -1·2n -1=8⇒m +n -2=3⇒m +n =5, 则1m +4n =15⎝⎛⎭⎫1m +4n (m +n ) =15⎣⎡⎦⎤5+⎝⎛⎭⎫n m +4m n ≥15(5+24)=95, 当且仅当n =2m =103时等号成立,即1m +4n 的最小值为95.【答案】955.已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________.【解析】∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22,∴6-(x 2+4y 2)≤x 2+4y 22,∴x 2+4y 2≥4(当且仅当x =2y ,即x 2=2,y 2=12时取等号).又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6, ∴z =x 2+4y 2=6-2xy ≤12(当且仅当x =-2y ,即x 2=6,y 2=32时取等号).综上可知4≤x 2+4y 2≤12. 【答案】[4,12] 6.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【解析】(1)由题意可知,二氧化碳每吨的平均处理成本为 y x =12x +80 000x -200≥2 12x ·80 000x-200=200, 当且仅当12x =80 000x,即x =400时等号成立.故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元. (2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝⎛⎭⎫12x 2-200x +80 000 =-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.。
均值不等式的四个公式

均值不等式的四个公式
嘿,咱来说说均值不等式的四个公式哈!
第一个就是平方平均数大于等于算术平均数,那就是
$\sqrt{\frac{a^2+b^2}{2}} \geq \frac{a+b}{2}$。
比如说啊,小明和小红比赛跑步,小明速度是$a$,小红速度是$b$,那他俩速度的平方平均数就好像是他们整体表现的一个“厉害程度”,而算术平均数就是他们平均的速度,那肯定是整体表现的“厉害程度”不会比平均速度低呀!
第二个是算术平均数大于等于几何平均数,即$\frac{a+b}{2} \geq \sqrt{ab}$。
就好比你有两个篮子,一个篮子里有$a$个苹果,另一个篮子里有$b$个苹果,那把两个篮子混一起平均下来每个篮子的苹果数,肯定不会比这两个篮子苹果数相乘再开方要少呀,对不对?
第三个是几何平均数大于等于调和平均数,就是$\sqrt{ab} \geq
\frac{2}{\frac{1}{a}+\frac{1}{b}}$。
哎呀,这就好像你有两段路程,一段是$a$千米,一段是$b$千米,那整体路程的“平均效果”总不会比单独这么去算的调和平均数差嘛!
第四个是调和平均数小于等于平方平均数。
这就好像是一个团队比赛,调和平均数就像是最基本的要求,而平方平均数就是那种超级厉害的表现,那当然厉害的表现会比基本要求高啦!
怎么样,这四个公式是不是还挺好玩的?好好去体会体会吧!。
基本不等式(均值不等式)技巧

基本不等式(均值不等式)技巧基本知识】1.(1)若 $a,b\in \mathbb{R}$,则 $a+b\geq 2ab$。
(2)若 $a,b\in \mathbb{R}$,则 $ab\leq \frac{a^2+b^2}{2}$(当且仅当 $a=b$ 时取“=”)2.(1)若 $a,b\in \mathbb{R}$,则 $a+b\geq2\sqrt{ab}$(当且仅当 $a=b$ 时取“=”)。
(2)若 $a,b\in\mathbb{R}$,则 $ab\leq \left(\frac{a+b}{2}\right)^2$(当且仅当 $a=b$ 时取“=”)3.若 $a,b,c\in \mathbb{R}^+$,则 $\frac{a+b+c}{3}\geq \sqrt[3]{abc}$(当且仅当 $a=b=c$ 时取“=”)4.若 $a,b,c\in \mathbb{R}^+$,则 $a+b+c\geq3\sqrt[3]{abc}$(当且仅当 $a=b=c$ 时取“=”)5.若 $a,b\in \mathbb{R}$,则 $\frac{a^2+b^2}{2}\geq\left(\frac{a+b}{2}\right)^2$(当且仅当 $a=b$ 时取“=”)技巧讲解】技巧一:凑项(增减项)与凑系数做题时,条件不满足时关键在于构造条件。
通常要通过乘以或除以常数、拆因式、平方等方式进行构造。
1.已知 $x<5$,求函数 $y=4x-\frac{5}{2}+\frac{1}{4x-5}$ 的最大值。
解:因为 $x<5$,所以首先要“调整”符号,又 $4x-5<0$,要进行拆、凑项,得到:y=4x-\frac{5}{2}+\frac{1}{4x-5}=-\frac{1}{4}\left(5-4x+\frac{1}{4x-5}\right)+\frac{11}{4}由于 $\frac{1}{4x-5}\leq\frac{1}{2}\left(\frac{1}{x}+\frac{1}{4}\right)$(当且仅当$x=2$ 时取“=”),所以:y\leq -\frac{1}{4}\left(5-4x+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{4}\right)\right)+\frac{1 1}{4}=-\frac{1}{4}\left(4x^2-16x+9-\frac{1}{x}\right)+\frac{11}{4}对 $-\frac{1}{4}\left(4x^2-16x+9-\frac{1}{x}\right)$ 求导,得到$x=\frac{1}{2}$ 时取得最小值,代入得到$y_{\max}=3$。
基本不等式、均值不等式

基本不等式知识点:1.基本不等式:ab b a ≥+2,(▼使用条件:b a ,正数、当且仅当时取“=”)。
例题讲解:▼▼例1、(只含有一个字母):22)1(x x y +=的最小值为.练习1、当0<x 时,则x x y 1+=的最大值为.练习2、求函数的最小值是.例2、(有两个字母):若实数满足,则的最小值是.练习3、已知定义在),0(+∞上的函数x x f 3)(=,若9)(=+b a f ,则)(ab f 的最大值为.▼▼例3、(前后相乘):已知,且,则的最小值为.练习4、若且412=+y x ,则=+x y 3的最小值为.练习5、若,求的最小值.并求x,y 的值。
练习6、已知且,则使不等式恒成立的实数的取值范围为. b a =12sin ,(0,)sin y x x xπ=+∈2=+b a b a 33+0,0x y >>191x y+=x y ++∈R y x ,44log log 2x y +=11x y +0,0x y >>191x y+=x y m +≥m▼▼例4、求)0(452>++=x xx x y 的值域。
练习7、求函数的最小值,并求取得最小值时,x 的值.例5、(换元法): 求的值域。
例6、(凑常数):已知,则函数的最大值为.练习8、求函数的最小值,并求取得最小值时,x 的值.例7、(凑系数):当40<<x 时,求的最大值为.练习9、设,求函数的最大值为. 231,(0)x x y x x++=>2710(1)1x x y x x ++=>-+54x <14245y x x =-+-12,33y x x x =+>-(82)y x x =-230<<x )23(4x x y -=练习10、,求函数的最大值为.练习11、已知x ,y 为正实数,且x 2+y 22 =1,求x 1+y 2 的最大值为.课后作业:1、设y x ,满足,404=+y x 且,,+∈R y x 则y x lg lg +的最大值是.2、设函数x x x f -=2lg)(,若0)()(=+b f a f ,则b a 13+的最小值为.3、已知且3123=+y x ,则y x +6的最小值为.4、当1>x 时,不等式a x x ≥-+11恒成立,则实数a 的取值范围是.5、已知,求函数的最大值为.203x <<y +∈R y x b a ,,,01x <<y。
数学:《均值不等式》课件

练习:已知a,b为正数,且ab a b 3,则 a b的取值范围
二、均值不等式的应用---求最值
例、(1)一个矩形的面积为100m2,问这个矩形 的长、宽各为多少时,矩形的周长最短?最短周长 是多少? (2)已知矩形的周长为36m,问这个矩形的长宽 各是多少时,它的面积最大?最大面积是多少?
当且仅当
2b a 即: a 2b 时取“=”号 a b
即此时
1 a 2b b 而 2 2 a 2b 1 2 a 2 2
zmin 3 2 2
3 1.若x>0,当x= 时,函数 y x 的最小值是 x 4 2.若x>0,当x= 时,函数 y 9 x 有最 值 x 1 3.若x>4,函数 y x 当x= 时,函数有最
1 练习: (1)已知0 x , 求函数y x(1 3 x)的最大值; 3 1 (1)已知0 x , 求函数y x(1 3 x)的最大值. 3
均值不等式的推广
abc 3 推广 : abc 3
当a1,a2, … ,an是正数时 (当且仅当a=b=c时取“=”号)
两个正数的积为常数时,它们的和有最小值; 两个正数的和为常数时,它们的积有最大值。
利用均值不等式求函数最值的步骤:
12 12 此时x=_______. 2 3 x的最小值为_______; 练习1)若x>0,f(x)= x 12 -12 此时x=_______. -2 3 x的最大值为_______; 若x<0,f(x)= x
1 (x ≥ 0)的最小值为______,此时x=______. x 1
二不定, 需变形
例.a, b是正数且a b 4,求ab的最值
均值不等式6个基本公式推导
均值不等式6个基本公式推导
嘿,咱今天就来聊聊均值不等式的 6 个基本公式推导!
先来说说a²+b²≥2ab 这个公式。
比如说,你想想看哈,有两个人,一个人的能力值是 a,另一个人的能力值是 b,那么他们各自能力的平方和肯定不会小于他们能力乘积的 2 倍呀!就像你跑步的速度是 a,跳远距离是 b,那你速度的平方加跳远距离的平方肯定比你速度和跳远距离乘积的 2 倍要大呀!
还有(a+b)²≥4ab,这就好像你有一堆苹果和一堆橘子,苹果的数量是a,橘子的数量是 b,那么这两堆水果混合后的总数的平方会比它们各自数
量乘积的 4 倍还多呀!就像王大明有 3 个苹果,李小红有 2 个橘子,那他
们拥有水果总数的平方肯定比3×2 的 4 倍还大呢!
再说说a+b≥2√(ab),这就好比说你有两个宝藏箱子,一个里面的宝贝价值是 a,另一个里面的宝贝价值是 b,那么这两个箱子宝贝价值的和肯定不会小于 2 倍的它们价值乘积的平方根呀!就好像小张有一个箱子里有 5
块宝石,另一个箱子里有 3 块宝石,那他两个箱子宝石价值的和肯定比 2
倍的它们乘积的平方根大呀!
然后(a²+b²)/2≥[(a+b)/2]²,这个呀就如同你有两个成绩,一个是 a,一个是 b,那这两个成绩平方和的一半肯定比它们平均成绩平方要大呀!就像是你语文考了 80 分,数学考了 70 分,那这两科成绩平方和的一半肯定比两科平均成绩的平方大嘛!
还有a³+b³+c³≥3abc,这就像你有三块宝石,价值分别是 a,b,c,那么它们价值立方的和肯定不会小于它们乘积的 3 倍呀!比如说小红有三块宝石,价值分别是 2,3,。
基本(均值)不等式与其他知识相结合的9种方式(教师版)
基本(均值)不等式与其他知识相结合的9种方式基本(均值)不等式是解决函数、立体几何、三角函数、数列、向量、解三角形等知识领域重要的方法之一.本资料整理高一知识融合试题,试题偏难,仅供强基计划学生选用.一、不等式与三角函数1.已知α+β+γ=π,β为锐角,tan α=3tan β,则1tan γ+1tan α的最小值为()A.12B.43C.32 D.34解析:∵α+β+γ=π,∴tan γ=-tan (α+β)=-tan α+tan β1-tan αtan β=-4tan β1-3tan 2β,∴1tan γ+1tan α=3tan 2β-14tan β+13tan β=9tan 2β+112tan β=34tan β+19tan β≥34×23=12,当且仅当tan β=19tan β即tan β=13时取等号,所以1tan γ+1tan α的最小值为12.故选:A .二、不等式与数列2.阅读:已知a 、b ∈(0,+∞),a +b =1,求y =1a +2b的最小值.解法如下:y =1a +2b =(1a +2b )(a +b )=b a +2ab +3≥3+22,当且仅当b a =2a b ,即a =2-1,b =2-2时取到等号,则y =1a +2b的最小值为3+2 2.应用上述解法,求解下列问题:(1)已知a ,b ,c ∈(0,+∞),a +b +c =1,求y =1a +1b+1c 的最小值;(2)已知x ∈(0,12),求函数y =1x +81-2x的最小值;(3)已知正数a 1、a 2、a 3,⋯,a n ,a 1+a 2+a 3+⋯+a n =1,求证:S =a 21a 1+a 2+a 22a 2+a 3+a 23a 3+a 4+⋯+a 2na n +a 1≥12.解析:(1)∵a +b +c =1,∴y =1a +1b +1c =(a +b +c )(1a +1b +1c )=3+(b a +a b +c a +a c +c b+bc )≥3+2b a ⋅a b +2c a ⋅a c +2c b ⋅b c =9,当且仅当a =b =c =13时取等号.即y =1a +1b+1c 的最小值为9.(2)y =22x +81-2x =(22x +81-2x )(2x +1-2x )=10+2⋅1-2x 2x +8⋅2x1-2x,而x ∈(0,12),∴2⋅1-2x 2x +8⋅2x1-2x≥22(1-2x )2x ⋅8⋅2x 1-2x =8,当且仅当2(1-2x )2x =8⋅2x 1-2x ,即x =16∈(0,12)时取到等号,则y ≥18,∴函数y =1x +81-2x的最小值为18.(3)∵a 1+a 2+a 3+…+a n =1,∴2S =(a 12a 1+a 2+a 22a 2+a 3+a 32a 3+a 4+⋯+a n2a n +a 1)[(a 1+a 2)+(a 2+a 3)+…+(a n +a 1)]=(a 21+a 22+⋯+a 2n )+[a 21a 1+a 2(a 2+a 3)+a 22a 2+a 3(a 1+a 2)+⋯+a 2n a n +a 1(a 1+a 2)+a 21a 1+a 2(a 3+a 4)+⋯]≥(a 21+a 22+⋯+a 2n )+(2a 1a 2+2a 2a 3+⋯+2a n a 1)=(a 1+a 2+⋯+a n )2=1.当且仅当a 1=a 2=⋯=a n =1n 时取到等号,则S ≥12.三、不等式与立体几何3.已知三棱锥A -BCD 的所有顶点都在球O 的球面上,AD ⊥平面ABC ,∠BAC =120°,AD =2,若球O 的表面积为20π,则三棱锥A -BCD 的体积的最大值为()A.33B.233C.3D.23【解析】设球O 的半径为R ,AB =x ,AC =y ,由4πR 2=20π,得R 2=5.如图:设三角形ABC 的外心为G ,连接OG ,GA ,OA ,可得OG =12AD =1,则AG =R 2-1=2.在ΔABC 中,由正弦定理可得:BCsin120°=2AG =4,即BC =23,由余弦定理可得,BC 2=12=x 2+y 2-2xy ×(-12)=x 2+y 2+xy ≥3xy ,∴xy ≤4.则三棱锥A -BCD 的体积的最大值为13×12×4×sin120°×2=233.故选:B .4.如图,在三棱锥S -ABC 中,SA ⊥面ABC ,AB ⊥BC ,E 、F 是SC 上两个三等分点,记二面角E -AB -F 的平面角为α,则tan α()A.有最大值43B.有最大值34C.有最小值43D.有最小值34【解析】将三棱锥放入长方体中,设AB =a ,BC =b ,AS =c ,如图所示:过E 作EN ⊥平面ABC 与N ,NM ⊥AB 与M ,连接ME ,则∠EMN 为二面角E -AB -C 的平面角,设为α1,则NE =13c ,MN =23b ,故tan α1=c2b .同理可得:设二面角F -AB -S 的平面角为α2,tan α2=b 2c.tan α=tan π2-α1-α2 =1-tan α1tan α2tan α1+tan α2=34c 2b+b2c ≤34,当c 2b=b 2c ,即b =c 时等号成立.故选:B .5.如图,已知四面体ABCD 为正四面体,AB =22,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为()A.1B.2C.2D.22【解析】把正四面体补为正方体,如图,根据题意,KL //BC ,LM //GH ,KL BC =AL AB ,LM AD =BLAB ,所以KL =AL ,LM =BL ,故KL +LM =AL +BL =22,S 截面=KL ⋅LM ≤KL +LM 2 2=2,当且仅当KL =LM 时成立,故选:C .四、不等式证明6.设x ,y ,z >0,a =4x +1y ,b =4y +1z ,c =4z +1x,则a ,b ,c 三个数()A.都小于4B.至少有一个不大于4C.都大于4D.至少有一个不小于4【解析】假设三个数4x +1y <4且4y +1z <4且4z +1x<4,相加得:1x +4x +1y +4y +1z+4z <12,由基本不等式得:1x +4x ≥4;1y +4y ≥4;1z+4z ≥4;相加得:1x +4x +1y +4y +1z+4z ≥12,与假设矛盾;所以假设不成立,三个数4x +1y 、4y +1z 、4z +1x 至少有一个不小于4.故选:D .7.已知a ,b ,c ∈R ,a 2+b 2+c 2=1.1 证明:-12≤ab +bc +ca ≤1.2 证明:a 2b 2+c 2 +b 2c 2+a 2 +c 2a 2+b 2 ≤23.【解析】1 证明:由a +b +c 2=a 2+b 2+c 2+2ab +2bc +2ca =1+2ab +2bc +2ca ≥0,得ab +bc +ca ≥-12.另一方面,a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,所以2a 2+2b 2+2c 2≥2ab +2bc +2ca ,即ab +bc +ca ≤1.所以-12≤ab +bc +ca ≤1.2 证明:a 2b 2+c 2 +b 2c 2+a 2 +c 2a 2+b 2 =a 21-a 2 +b 21-b 2 +c 21-c 2 =1-a 4+b 4+c 4 ,因为a 4+b 4+c 4=a 2+b 2+c 2 2-2a 2b 2-2b 2c 2-2c 2a 2≥1-a 4+b 4+b 4+c 4+c 4+a 4 ,即3a 4+b 4+c 4 ≥1,则a 4+b 4+c 4≥13,所以a 2b 2+c 2 +b 2c 2+a 2 +c 2a 2+b 2 ≤23.8.已知a ,b ,c 为正数,且满足a +b +c =1. 证明:(1)1a +1b+1c ≥9;(2)ac +bc +ab -abc ≤827.【解析】(1)a +b +c =1,故1a +1b +1c =a +b +c a +a +b +c b+a +b +cc =3+b a +a b +c a +a c +c b+b c ≥3+2+2+2=9,当a =b =c =13时等号成立.(2)易知1-a >0,1-b >0,1-c >0.ac +bc +ab -abc =1-a +b +c +ac +bc +ab -abc =1-a 1-b 1-c≤1-a +1-b +1-c 3 3=827.当a =b =c =13时等号成立.9.设实数x ,y 满足2x +y =1.1 若2y -1 -2x <3,求x 的取值范围;2 若x >0,y >0,求证:1x +2y -2xy ≥152.【解析】1 由2x +y =1,得y =1-2x ,所以不等式2y -1 -2x <3,即为4x -1 -2x <3,所以有1-4x +2x <3x <0 或0≤x ≤141-4x -2x <3 或x >144x -1-2x <3解得-1<x <0或 0≤x ≤14 或14<x <2,所x 的取值范围为x ∈-1,2 .2 ∵x >0,y >0,2x +y =1所以1x +2y =1x +2y 2x +y =4+y x +4xy≥4+4=8当且仅当y x =4x y ,即2x =y =12时取等号.又-2xy ≥-2x +y 2=-12,当且仅当2x =y =12时取等号,所以1x +2y -2xy ≥152,当且仅当2x =y =12时取等号.10.1在锐角ΔABC 中,证明:(1)tan A +tan B +tan C =tan A tan B tan C ;(2)tan A ⋅tan B ⋅tan C ≥3 3.证明:(1)∵tan C =-tan (A +B )=tan A +tan Btan A tan B -1∴tan A +tan B +tan C =tan A tan B tan C ,(2)解法1:∵y =tan x ,x ∈(0,π2)是凸函数,∴tan A tan B tan C ≥3 3.解法2:∵tan A tan B tan C ≤(tan A +tan B +tan C 3)3,∴tan A tan B tan C ≥33五、最值问题11.设x>0,y>0且x+y=4,则x2x+1+y2y+2的最小值是A.167B.73C.2310D.94【解析】∵x+y=4,∴(x+1)+(y+2)=7∴x2x+1+y2y+2=x+12-2x+1+1x+1+y+22-4y+2+4y+2=1+1x+1+4y+2=1+1x+1+4 y+2x+17+y+27=1+17+47+y+27(x+1)+4(x+1)7y+2≥127+2×27= 16712.已知实数a>0,b>1满足a+b=5,则2a+1b-1的最小值为()A.3+224 B.3+424 C.3+226 D.3+426【解析】因为a>0,b>1满足a+b=5,则2a+1b-1=(2a+1b-1)a+b-1×14=143+2b-1a+ab-1≥14(3+22)当且仅当2b-1a=ab-1时取等号,故选:A.13.设a>b>0,则ab+4b2+1b a-b的最小值是()A.2B.3C.4D.6【解析】因为a>b>0⇒a-b>0;所以ab+4b2+1b(a-b)=ab-b2+1b(a-b)+b2+4b2=b(a-b)+1b(a-b)+b2+4b2≥2b(a-b)×1b(a-b)+2b2×4b2=2+4=6.当且仅当b(a-b)=1b(a-b),b2=4b2时取等号,∴ab+4b2+1b(a-b)的最小值为6.故选:D.六、不等式与函数14.已知f x =2x-2+x+1.(1)求不等式f x <6的解集;(2)设m,n,p为正实数,且m+n+p=f2 ,求证:mn+np+pm≤3.【解析】(1)不等式2x-2+x+1<6等价于不等式组x<-1-3x+3<6或-1≤x≤2-x+5<6或x>23x-3<6,所以不等式2x-2+x+1<6的解集为-1,3;(2)证明:因为m+n+p=3,所以m+n+p2=m2+n2+p2+2mn+2mp+2np=9,因为m,n,p为正实数,所以由基本不等式m2+n2≥2mn(当且仅当m=n时等号成立),同理m2+p2≥2mp,p2+n2≥2pn,所以m2+n2+p2≥mn+mp+np,所以m+n+p2=m2+n2+p2+2mn+2mp+2np=9≥3mn+3mp+3np,所以mn+mp+np≤3.15.已知函数f x =2x -3 -x -m -1的定义域为R .(1)求实数m 的取值范围;(2)设实数t 为m 的最大值,若实数a ,b ,c 满足a 2+b 2+c 2=t 2,求1a 2+1+1b 2+2+1c 2+3的最小值.【解析】(1)∵函数f x =2x -3 -x -m -1的定义域为R .∴2x -3 -x -1≥m 对任意的x ∈R 恒成立,令g x =2x -3 -x -1,则g x =x -7,x ≥3 5-3x ,0<x <3 5-x ,x ≤0,结合g x 的图像易知g x 的最小值为-4,所以实数m 的取值范围-∞,-4 .(2)由(1)得t =-4,则a 2+b 2+c 2=16,所以a 2+1 +b 2+2 +c 2+3 =22,1a 2+1+1b 2+2+1c 2+3=1a 2+1+1b 2+2+1c 2+3a 2+1 +b 2+2 +c 2+3 22=3+b 2+2a 2+1+a 2+1b 2+2+c 2+3a 2+1+a 2+1c 3+3+c 2+3b 2+2+b 2+2c 2+322≥3+2b 2+2a 2+1×a 2+1b 2+2+2c 2+3a 2+1×a 2+1c 2+3+2c 2+3b 2+2×b 2+2c 2+322=922,当且仅当a 2+1=b 2+2=c 2+3=223,即a 2=193,b 2=163,c 2=133时等号成立,∴1a 2+1+1b 2+2+1c 2+3的最小值为922.七、不等式与向量16.若非零向量m ,n 满足|m -e |-m ⋅e =|n -e |-n ⋅e =1(e 为单位向量),且m ⊥n ,则|m -n|的最小值是()A.1B.2C.4D.8【解析】由非零向量m ,n 满足m ⊥n ,可设m =(a ,0),n=(0,b ),其中a ,b 均不为0.因为e 为单位向量,可设e =(cos θ,sin θ),因为|m -e |-m ⋅e=(a -cos θ)2+sin 2θ-a cos θ=1,所以a 2-2a cos θ+cos 2θ+sin 2θ=1+2a cos θ+a 2cos 2θ,即a sin 2θ=4cos θ①,同理,由|n -e |-n ⋅e=1可得b cos 2θ=4sin θ②,由①②,可得a 2+b 2=16cos 2θsin 4θ+16sin 2θcos 4θ=16cos 4θ+sin 2θcos 2θsin 4θ+ sin 4θ+sin 2θcos 2θcos 4θ=161tan 4θ+1tan 2θ+tan 4θ+tan 2θ ≥16×(2+2)=64当且仅当tan 2θ=1时,等号成立,所以当tan 2θ=1时,|m -n |min =8,故选:D .17.已知平行四边形ABCD 的面积为93,∠BAD =2π3,E 为线段BC 的中点.若F 为线段DE 上的一点,且AF =λAB +56AD ,则AF 的最小值为___________.【解析】由题可知,平行四边形ABCD 的图象如下:设DF =kDE ,∴AF =AD +DF =AD +kDE =AD+k DC +CE ,∵DC =AB ,CE =12DA,则AF =AD +kAB +12kDA ,所以AF =kAB +AD -12kAD =kAB +1-12k AD ,又∵AF =λAB +56AD ,则有:k =λ1-12k =56,解得:k =λ=13,即AF =13AB +56AD ,∵平行四边形ABCD 的面积为93,即∵AB ⋅AD sin 2π3=93,∴AB ⋅AD =18,∴AF 2=13AB +56AD2=19AB 2+59AB ⋅AD +2536AD 2,即:∴AF 2=19AB 2+59AB ⋅AD cos ∠BAD +2536AD2,∴AF 2=19AB 2+59×18×-12 +2536AD 2=19AB2+2536AD 2-5,即:AF2=19AB2+2536AD 2-5,∵19AB 2+2536AD 2≥219AB 2×2536AD 2=2×518×18=10,即19AB 2+2536AD 2≥10,所以19AB 2+2536AD2-5≥5,∴AF 2≥5,∴AF ≥5,当且仅当:19AB 2=2536AD2时,取等号,∴AF 的最小值为 5.18.平面向量a ,b ,c 满足|a |≤1,|b |≤1,|2c -(a +b )|≤|a -b |,则|c |的最大值为_______.【解析】由绝对值不等式的性质可知,已知中|2c -(a +b )|≤|a -b |,可得|2c |-|a +b |≤|a -b |,即|2c |≤|a+b |+|a -b |,将a ,b 的起点移到同一点,以a ,b 为边构造平行四边形,则a +b ,a -b 为平行四边形的两条对角线,在平行四边形ABCD 中,|AC |2=|AB +AD |2=|AB |2+|AD |2+2|AB |⋅|AD|cos ∠BAD ,由余弦定理可知|BD |2=|AB |2+|AD |2-2|AB |⋅|AD |cos ∠BAD ,则|AC |2+|BD |2=2|AB |2+2|AD |2,显然|AC |+|BD |若取最大值,则|AB |,|AD |应为最大1,即|AC |2+|BD |2=4⇒|AC |+|BD | 2-2|AC ||BD |=4⇒|AC |+|BD | 22-2=|AC ||BD |由基本不等式可知|AC |+|BD | 22-2=|AC ||BD |≤|AC |+|BD |24⇒|AC |+|BD | 2≤8⇒|AC |+|BD |≤22当且仅当|AC |=|BD |时取等号,所以当|a |=1,|b |=1且|a +b |=|a -b |时,|a +b |+|a -b|取得最大值22,则|2c |≤|a +b |+|a -b |≤22,即|c |≤2,所以|c |的最大值为2.故答案为:2八、不等式与解三角形19.在锐角ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ΔABC 的面积为S ,若sin (A +C )=2Sb 2-c 2,则tan C +12tan (B -C )的最小值为()A.2B.2C.1D.22【解析】因为sin (A +C )=2S b 2-c 2,即sin B =2Sb 2-c 2,所以sin B =ac sin Bb 2-c 2,因为sin B ≠0,所以b 2=c 2+ac ,由余弦定理b 2=a 2+c 2-2ac cos B ,可得a -2c cos B =c ,再由正弦定理得sin A -2sin C cos B =sin C ,因为sin A -2sin C cos B =sin (B +C )-2sin C cos B =sin (B -C ),所以sin (B -C )=sin C ,所以B -C =C 或B -C +C =π,得B =2C 或B =π(舍去).因为ΔABC 是锐角三角形,所以0<C <π20<2C <π20<π-3C <π2,得π6<C <π4,即tan C ∈(33,1),所以tan C +12tan (B -C )=tan C +12tan C ≥2,当且仅当tan C =22,取等号.故选:A20.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =6,点O 为其外接圆的圆心.已知BO ·AC=15,则当角C 取到最大值时△ABC 的面积为()A.35B.25C.30D.56【解析】设AC 中点为D ,则BO ⋅AC =BD +DO ⋅AC =BD ⋅AC =12BC +BA⋅BC -BA=12BC 2-12BA 2 ,∴12a 2-12c 2=15,即c =6,由c <a 知角C 为锐角,故cos C =a 2+b 2-c 22ab =30+b 212b =112b +30b≥112×2b ⋅30b =306,当且仅当b =30b,即b =30时cos C 最小,又y =cos x 在0,π2 递减,故C 最大.此时,恰有a 2=b 2+c 2,即△ABC 为直角三角形,S △ABC =12bc =35,故选A .21.在△ABC 中,已知AB ·AC =9,sin B =cos A sin C ,S △ABC =6,P 为线段AB 上的点,且CP =x CA CA +y CBCB ,则xy 的最大值为________.【解析】由sin B =cos A sin C 得b =c b 2+c 2-a 22bc⇒a 2+b 2=c 2⇒S ΔABC =12ab =6所以由AB ·AC =9得AC 2=9,∴b =3,a =4又P 为线段AB 上的点,且CP =x CA CA +y CBCB ,所以x b+y a =1,∴x3+y 4=1,∴1≥2x 3⋅y 4∴xy ≤3,当且仅当x =32,y =2时,等号成立即xy 的最大值为3.22.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B -b cos A =35c ,则tan A -B 的最大值为A.32B.34C.32D.3【解析】∵a cos B -b cos A =35c ∴由正弦定理,得sin A cos B -sin B cos A =35sin C ,∵C =π-(A +B )⇒sin C =sin (A +B ),,∴sin A cos B -sin B cos A =35(sin A cos B +cos A sin B ),整理,得sin A cos B =4sin B cos A ,同除以cos A cos B ,得tan A =4tan B ,由此可得tan (A -B )=tan A -tan B 1+tan A tan B =3tan B 1+4tan 2B=31tan B+4tan B ,∵A 、B 是三角形内角,且tan A 与tan B 同号,∴A 、B 都是锐角,即tan A >0,tan B >0,∵1tan B+4tan B ≥21tan B ⋅4tan B =4tan (A -B )=31tan B+4tan B ≤34,当且仅当1tan B =4tan B ,即tan B =12时,tan (A -B )的最大值为34.故选B .23.已知△ABC 的三边分别为a ,b ,c ,若满足a 2+b 2+2c 2=8,则△ABC 面积的最大值为()A.55B.255C.355D.53【解析】因为a 2+b 2+2c 2=8,所以a 2+b 2=8-2c 2,由余弦定理得cos C =a 2+b 2-c 22ab =8-3c 22ab,即2ab cos C =8-3c 2①由正弦定理得S =12ab sin C ,即2ab sin C =4S ②由①,②平方相加得4ab 2=8-3c 2 2+4S 2≤a 2+b 2 2=8-2c 2 2,所以4S 2≤8-2c 2 2-8-3c 2 2=16-5c 2 c 2≤1516-5c 2+5c 222=645,即S 2≤45,所以S ≤255,当且仅当a 2=b 2且16-5c 2=5c 2即a 2=b 2=125,c 2=85时,取等号.故选:B24.已知G 是△ABC 的重心,过点G 作直线MN 与AB ,AC 交于点M ,N ,且AM =xAB ,AN =yAC,x ,y >0 ,则3x +y 的最小值是()A.83B.72C.52D.43+233【解析】因为M ,G ,N 三点共线,故AG =tAM +1-t AN ,因为AM =xAB ,AN =yAC ,所以AG =txAB+1-tyAC ,又G 为重心,故AG =13AB +13AC ,而AB ,AC 不共线,所以tx =13,1-t y =13,也即是1x +1y=3.3x +y =133x +y 1x +1y =134+y x +3x y,由基本不等式可以得到:y x +3x y ≥23,当且仅当x =3+39,y =33+13等号成立,故3x +y 的最小值为43+233,故选D .25.已知O 是△ABC 的外心,∠C =45°,OC =2mOA +nOB ,(m ,n ∈R ),则1m 2+4n2的最小值为____.【解析】OC =2mOA +nOB ∴OC 2=2mOA +nOB 2=4m 2OA 2+n 2OB 2+4mnOA ⋅OB∠C =45°∴∠AOB =90°∴OA ⋅OB=0故4m 2+n 2=11m 2+4n 2=1m 2+4n 2 4m 2+n 2=4+n 2m 2+16m 2n 2+4≥216+8=16当n 2m 2=16m 2n 2即n 2=12,m 2=18时等号成立,故答案为:1626.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b 2+c 2=4bc sin A +π6,则tan A +tan B +tan C 的最小值是______.【解析】由余弦定理,得b 2+c 2=a 2+2bc cos A ,则由b 2+c 2=4bc sin A +π6 ,得a 2+2bc cos A =4bc sin A +π6=2bc (3sin A +cos A ),所以a 2=23bc sin A ,由正弦定理,得sin 2A =23sin B ⋅sin C ⋅sin A ,所以sin A =23sin B sin C ,所以sin (B +C )=23sin B sin C ,sin B cos C +cos B sin C =23sin B sin C ,tan B +tan C =23tan B tan C .因为tan A =-tan (B +C )=tan B +tan Ctan B tan C -1,所以tan A +tan B +tan C =tan A ⋅tan B ⋅tan C ,则tan A +tan B +tan C =tan B +tan C tan B tan C -1⋅tan B ⋅tan C =23tan B tan Ctan B tan C -1⋅tan B ⋅tan C .令tan B ⋅tan C -1=m ,而tan B ⋅tan C -1=tan B tan A +tan Ctan A,∴m >0则tan B ⋅tan C =m +1,tan A +tan B +tan C =23(m +1)2m =23m 2+2m +1 m =23m +1m+2 ≥23(2m ⋅1m +2)=83,当且仅当m =1时,等号成立,故tan A +tan B +tan C 的最小值为83.27.已知ΔABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且a cos C -c cos A =35b ,则tan (A -C )的最大值为______.【解析】因为a cos C -c cos A =35b ,由正弦定理得sin A cos C -sin C cos A =35sin B ,又B =π-(A +C ),所以sin A cos C -sin C cos A =35sin [π-(A +C )],即sin A cos C -sin C cos A =35sin (A +C ),所以5sin A cos C -5sin C cos A =3sin A cos C +3cos A sin C ,所以2sin A cos C =8cos A sin C ,当cos C ≤0或cos A ≤0时,等式不成立,所以A ,C ∈(0,π2),所以tan A =4tan C ,所以tan (A -C )=tan A -tan C 1+tan A tan C =3tan C 1+4tan 2C =31tan C+4tan C 又tan C >0,所以1tan C +4tan C ≥21tan C ⋅4tan C =4,当且仅当1tan C =4tan C ,即tan C =12时,等号成立,所以tan (A -C )=31tan C +4tan C ≤34,所以tan (A -C )的最大值为34.28.已知ΔABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且满足a cos A+b +2c cos B =0,则sin2B ⋅tan 2C 的取值范围是__________.【解析】a cos A+b +2c cos B =0,即a cos B +b cos A +2c cos A =0,即sin A cos B +sin B cos A +2sin C cos A =0,sin C 1+2cos A =0,sin C ≠0,故1+2cos A =0,A =3π4,故B +C =π4.sin2B ⋅tan 2C =cos2C ⋅sin 2C cos 2C =2cos 2C -1 1-cos 2C cos 2C =3-2cos 2C +1cos 2C,C ∈0,π4 ,故t =cos 2C ∈12,1 ,故y =3-2t +1t,根据双勾函数性质知:函数在12,22上单调递增,在22,1 上单调递减.故y max =3-22,当t =1时,y =0,当t =12时,y =0,故sin2B ⋅tan 2C ∈0,3-22 .故答案为:0,3-22 .九、不等式与恒成立问题29.正数a,b满足1a+9b=1,若不等式a+b≥-x2+4x+18-m对任意实数x恒成立,则实数m的取值范围是()A.[3,+∞)B.(-∞,3]C.(-∞,6]D.[6,+∞)【解析】∵a>0,b>0,1a+9b=1,∴a+b=(a+b)1a+9b=10+b a+9a b≥10+2b a⋅9a b=16当且仅当3a=b,即a=4,b=12时,“=”成立,若不等式a+b≥-x2+4x+18-m对任意实数x恒成立,则-x2+4x+18-m≤16,即-x2+4x+2≤m对任意实数x恒成立,∵-x2+4x+2=-(x-2)2+6≤6∴m≥6实数m的取值范围是[6,+∞)30.数列a n中,a1=12,a n+1=na nn+1na n+1n∈N*,若不等式4n2+1n+-1nλa n≥0恒成立,则实数λ的取值范围为__________.【解析】由数列 a n满足a1=12,a n+1=na n(n+1)(na n+1)(n∈N x),两边取倒数可得:1(n+1)a n+1-1nan=1,∴数列1nan是等差数列, 公差为1, 首项为2∴1nan =2+(n-1)=n+1,∴a n=1n(n+1)由4n2+1n+(-1)nλa n≥0恒成立,得(-1)n⋅1n(n+1)λ≥-4n2-1n=-4-nn2,当n为偶数时,λ≥-(n+1)(n+4)n=-(n+4n+5), 则λ≥-9,当n为奇数时,λ≤n+4n+5,则λ≤283,∴实数λ的取值范围为-9,283。
基本不等式(均值不等式)技巧窍门
基本不等式习专题之基本不等式做题技巧【基本知识】1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当ba =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) (4),、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3) 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。
【技巧讲解】技巧一:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件。
通常要通过乘以或除以常数、拆因式、平方等方式进行构造)1:已知54x <,求函数14245y x x =-+-的最大值。
2. 当时,求(82)y x x =-的最大值。
3:设230<<x ,求函数)23(4x x y -=的最大值。
4、求函数21(1)2(1)y x x x =+>-的最小值。
5 已知,且满足,求的最大值. 6已知x ,y 为正实数,且x 2+y 22=1,求x 1+y 2 的最大值. 7 若且,求的最小值 .技巧一答案:1解:因450x -<,所以首先要“调整”符号,又1(42)45x x --g 不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->Q ,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
四个重要基本不等式
四个重要基本不等式在不等式的研究中,重要的基本不等式可以为我们提供有用的指导和帮助,它们在许多证明中都出现过。
下面将介绍四个基本不等式:谢尔宾斯基不等式、泰勒不等式、均值不等式和柯西-施瓦茨不等式。
一、谢尔宾斯基不等式谢尔宾斯基不等式是描述正实数的函数的重要不等式。
谢尔宾斯基不等式指出,对于任意的正实数 $a_1,a_2,\\cdots,a_n$ 和 $b_1,b_2,\\cdots,b_n$,有:$$(a_1^2+b_1^2)(a_2^2+b_2^2)\\cdots(a_n^2+b_n^2)\\geq(a_1b_1+a_2b_2+\\cdots+a_nb_n)^2$$这个不等式有很多证明方法,其中一种是使用归纳法。
我们可以将$n=2$ 的情况作为基础,然后假设不等式在 $n-1$ 个变量的情况下成立,证明它在 $n$ 个变量的情况下也成立。
谢尔宾斯基不等式在数学中有广泛的应用,它在统计物理中被用于描述碰撞的概率,也常常被用于证明其他不等式。
二、泰勒不等式泰勒不等式是在微积分中很常用的一个不等式。
它指出,如果一个函数$f(x)$ 在区间 $[a,b]$ 上可导,并且其第二个导数 $f''(x)$ 在该区间上连续,那么对于区间内任意两个点 $x_1$ 和 $x_2$,有:$$f(x_1)+f(x_2)\\leq \\frac{f(a)+f(b)}{2}+(x_1+x_2-\\frac{a+b}{2})f'(\\frac{x_1+x_2}{2})+\\frac{(x_1-x_2)^2}{4}f''(c)$$ 其中 $c$ 是 $x_1$ 和 $x_2$ 之间的一个点。
该不等式的证明可以使用拉格朗日中值定理和二次函数的几何特性。
泰勒不等式有很多应用,常常被用于数学分析、微积分和偏微分方程等领域。
三、均值不等式均值不等式是描述非负实数的函数的一个重要不等式。
它指出,对于任意的非负实数 $a_1,a_2,\\cdots,a_n$,有:$$\\sqrt[n]{a_1a_2\\cdots a_n}\\leq\\frac{a_1+a_2+\\cdots+a_n}{n}$$相等情况是当且仅当所有 $a_i$ 相等时成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国名校高中数学优质学案、专题汇编(附详解)
基本均值不等式2
b
a a
b +≤
(一) 学习目标:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理
中的不等号“≥”取等号的条件.
学习重点:基本不等式的证明,正确运用基本不等式.
你看到市场买鸡蛋,商贩用不等臂天平秤称量,先把鸡蛋放在左盘,砝码放在右盘,砝码质量为x ,然后把鸡蛋放在右盘,砝码放在左盘,此时,砝码质量为y ,最后商贩告诉你,鸡蛋质量为
2
y
x +,并让你付钱,请问你觉得公平吗? 学习任务:阅读课本第97页至第100页,完成下列问题:
1.对于基本不等式2
b
a a
b +≤
,你用能什么方法证明? 2.比较不等式ab b a 22
2≥+与2
b a ab +≤,它们有什么关系?有什么区别?它们
适用范围和等号成立的条件各是什么? 3.基本不等式2
b
a a
b +≤
有何结构特点?利用这个结构可以解决什么问题?应用时应注意什么?
4.精读课本P 97例1,思考:0,0>>y x
(1)如果y x ⋅是定值P ,和y x +有最值吗?若有,是多少?何时取得最值? (2)如果y x +是定值S ,积y x ⋅有最值吗?若有,是多少?何时取得最值? 5.动手做例2. 6.证明:0,0>>y x
(1)
2≥+x
y
y x (2)21≥+x x
(3)(y x +)(22y x +)(33y x +)≥83
3y x
必做题:
P 100练习2、3、4
基本不等式2
b
a a
b +≤
(二) 学习目标:会应用基本不等式求某些函数的最值,能够解决一些简单的实际问题. 学习重点:会恰当地运用基本不等式求数学问题中的最值. 学习任务:
1.(1)若0>x ,求x x x f 312
)(+=的最小值. (2)若0<x ,求x x x f 312
)(+=的最大值. (3)若0≠x ,求|312
|)(x x
x f +=的最小值. 2.(1)已知31
0<<x ,求函数)31(x x y -=的最大值.
(2)已知45<x ,求函数5
415
4-+=x x y 的最大值.
3.(1)已知:0,0>>y x ,且
19
1=+y
x ,求y x +的最小值. (2)已知:0,0>>y x ,且082=-+xy y x ,求y x +的最小值.
(3)已知:1->x ,求1
3
32+++=x x x y 的最小值.
4. 学校食堂定期从某粮店以每吨1500元的价格买大米,每次购进大米需支付运输劳务费100元. 已知食堂每天需要大米1吨,储存大米的费用为每吨每天2元,假如食堂每次均在用完大米的当天购买,问食堂多少天购买一次大米能使平均每天所支付的费用最少?
5. 经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量y (千辆/时)与汽车的平均速度V (千米/时)之间的函数关系为y =
1600
39202++V V V
(V > 0).
(1)在该段时间内,当汽车的平均速度V 为多少时,车流量最大?最大车流量是多少? (精确到0.1千辆/时).
(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内? 必做题
P 100 A 组3.4 B 组 1.2。