简明结构化学教程 第四章..
合集下载
结构化学第四章 分子轨道理论

久期行列式
其中H aa = H bb
H aa H aa − H ab E2 = 1 − S ab
E1,E2 代入久期方程,得
基态能量 第一激发态能量
1 ψ1 = (φa + φb ) 2 + 2 S ab 归一化→ 1 ψ2 = (φa − φb ) 2 − 2S ab
η2 2 e2 e2 e2 ˆ − + H =− ∇ − 2m 4πε0ra 4πε0rb 4πε0 R
ˆ Hψ = E ψ
5
原子单位制(Atomic Unit)
(1) 单位长度 (2) 单位质量 (3) 单位电荷 (4) 单位能量 (5) 单位角动量 1a.u.= a0 = 0.529177A=52.9177pm 1a.u.= me =9.1095 × 10-28g 1a.u.= e
η2 d 2 ˆ ψ * Hψdτ ∫0 x( x − l )(− 2m dx 2 ) x( x − l )dx 10 h 2 = 2⋅ = < E >= l π 8ml 2 ψ *ψdτ ∫ x( x − l ) ⋅ x( x − l )dx
∫
l
∫
0
与一维势箱解法相比
ΔE 10 / π 2 ⋅ h 2 / 8ml 2 − h 2 / 8ml 2 10 = = ( 2 − 1)% = 1.3% 2 2 E h / 8ml π
i=1
m
利用ψ求变分积分,可得
E=
ˆ (∑ ciφi )H (∑ ciφi )dτ ∫
i =1
m
m
∂<E> ∂<E> ∂<E> = ...... = =0 = ∂c2 ∂cm ∂c1
结构化学课件第四章第一节

分子结构模型
80%
原子模型
原子是化学元素的最小单位,由 原子核和绕核运动的电子构成。
100%
分子模型
分子由两个或更多原子通过化学 键连接而成,是物质的基本单位 。
80%
空间构型
分子中原子在空间的排列方式, 包括线性、平面、立体等构型。
化学键类型及特点
01
02
03
离子键
由正负离子间的静电引力 形成,具有高熔点、硬而 脆等特点。
波尔模型
电子只能在一些特定的轨道上运动,在这些轨道上 运动的电子既不吸收能量,也不放出能量。
原子核外电子排布
电子层
核外电子经常出现的区域称电 子层。电子层可用n(n=1、2、 3…)表示,n=1表明第一层电 子层(K层),n=2表明第二电 子层(L层),依次n=3、4、5 时表明第三(M层)、第四(N 层)、第五(O层)。
04
配合物结构与性质
配合物组成和命名
配合物组成
配合物由中心原子(或离子)和 配体组成,中心原子通常是金属 元素,配体可以是无机或有机分 子或离子。
配合物命名
配合物的命名遵循一定的规则, 包括中心原子、配体和配位数的 标识,以及配合物类型的区分。
配合物空间构型和异构现象
配合物空间构型
配合物的空间构型取决于中心原子和 配体的排列方式,常见的空间构型有 直线型、平面三角形、四面体型等。
金属晶体
由金属阳离子和自由电子通过 金属键结合形成的晶体,具有 良好的导电性、导热性和延展 性。
晶体中粒子间作用力
离子键
正负离子之间的静电吸引力,作用力强,无方向 性和饱和性。
分子间作用力
分子间的相互作用力,包括范德华力和氢键等, 作用力较弱。
结构化学《结构化学》第4章 第2讲(4.3)4.2 《结构化学》第4章第2讲

Ci_(CHClBr)2
C2i_C2h_C2H4Cl2
11
C3i_D3d_(CH3)2
S4_(OHe)4
12
S6_(OKr)6
13
6. Dn点群 在Cn点群加入一个垂直于Cn轴的C2轴,则在垂直
于Cn轴的平面内必有n个C2轴,得到Dn点群。
D2_C3H4
D3_CH3-CH3
14
D4_(IH5)2
D5_Fe(C5H5)2
15
D6_(C6I6)2
16
7. Dnh点群 Dn点群加入一垂直Cn轴的镜面σh,得Dnh点群。
D2h_C2H4
D3h_(CH2)3
17
D4h_Ni(CN)4
D5h_ C5H5
18
D6h_ C6H6
19
8. 在点群中没有Dnv点群。因为在Dnh点群中,C2 和σh组合即得σv。证明如下:
12. Ih点群 Ih_B12H12(2-)
26
Байду номын сангаасD2d_ C2H4
D3d_CH3-CH3
21
D4d_(PbI5)2I
D5d_Fe(C5H5)2
22
D6d_Au(C6I6)2
23
10. Td点群 正四面体构型的分子和离子都属于Td点群。
Td_CCl4
24
11. Oh点群 正八面体、立方体构型的分子属于Oh点群。
Oh_PbI6
Oh_C8H8
25
C1_CHFClCH3
C2_CHI=C=CHI
2
C3_CH3CCl3
C4_H5I-IHF4
3
C5_Fe(C5H5)(C5Cl5)
C6_(C6H6)(C6I6)
结构化学第4章

(2)BF3(平面三角形) (3)PtCl4(平面四方形) (4)苯(正六边形) (5)N2(直线形) 有i
有i
无i 有i (6)CO 无i (7)H2O 无i (8)乙炔 有i
有i
(5)
象转轴
( S n ) 和旋转反映操作 ( S n )
如果分子图形绕轴旋转一定角度后,再作垂直此轴的镜面反映, 可以产生分子的等价图形,则将该轴和镜面组合所得到的对称 元素称为象转轴(映轴) (improper rotation axis)。
(3)PtCl4(平面四方形) (4)苯(正六边形) (5)N2(直线形)
N N
∞个C2轴、1个C∞轴
(3)对称面 s 和反映操作ss
(mirror/reflection plane)
分子中若存在一个平面, 将分子两半部互相反映而能
使分子复原,则该平面就是
对称面(镜面)s,这种操作就 是反映.
的s也都独立存在;
之垂直的s并不独立存在.
环辛四烯衍生物中的 S4
分子中心是S4的图形符号
(6)
In反轴
反轴
( I n ) 和旋转反演操作 ( I n )
ˆ ˆ ˆ 旋转和反演的联合操作,先转动再反伸, I n= i C n
或先反伸再转动。
ˆ1 = i C1 ; I 2 = C 2 ; I 3 = i ; I 4 = C1 ; I 5 = i C 2 ; I 6 = E 例如,I 3 ˆ ˆ 3 ˆ3 ˆ3 ˆ3 ˆ ˆ3 ˆ3 ˆ3 ˆ ˆ 3 ˆ3 ˆ
cosp sin p 0
=
1 0 0 0 1 0 0 0 1
思考题
下列分子具有什么对称轴?
有i
无i 有i (6)CO 无i (7)H2O 无i (8)乙炔 有i
有i
(5)
象转轴
( S n ) 和旋转反映操作 ( S n )
如果分子图形绕轴旋转一定角度后,再作垂直此轴的镜面反映, 可以产生分子的等价图形,则将该轴和镜面组合所得到的对称 元素称为象转轴(映轴) (improper rotation axis)。
(3)PtCl4(平面四方形) (4)苯(正六边形) (5)N2(直线形)
N N
∞个C2轴、1个C∞轴
(3)对称面 s 和反映操作ss
(mirror/reflection plane)
分子中若存在一个平面, 将分子两半部互相反映而能
使分子复原,则该平面就是
对称面(镜面)s,这种操作就 是反映.
的s也都独立存在;
之垂直的s并不独立存在.
环辛四烯衍生物中的 S4
分子中心是S4的图形符号
(6)
In反轴
反轴
( I n ) 和旋转反演操作 ( I n )
ˆ ˆ ˆ 旋转和反演的联合操作,先转动再反伸, I n= i C n
或先反伸再转动。
ˆ1 = i C1 ; I 2 = C 2 ; I 3 = i ; I 4 = C1 ; I 5 = i C 2 ; I 6 = E 例如,I 3 ˆ ˆ 3 ˆ3 ˆ3 ˆ3 ˆ ˆ3 ˆ3 ˆ3 ˆ ˆ 3 ˆ3 ˆ
cosp sin p 0
=
1 0 0 0 1 0 0 0 1
思考题
下列分子具有什么对称轴?
914708-结构化学-第四章

(x‘, y’, z‘) 的变换, 可用下列矩阵方程表达:
x' a b c x
y'
d
e
f
y
z' g h i z
图形是几何形式 矩阵是代数形式
x ' ax by cz
y
'
dx
ey
fz
z ' gx hy iz
8
恒等元素 E 和恒等操作 Ê
此操作为不动动作,也称主操作或恒等操作。任何分 子都存在恒等元素。恒等操作对向量(x, y, z)不产生任何 影响。对应单位矩阵。
Cˆ64 Cˆ32
11
旋转操作是实动作,可以真实操作实现。 若将 z 轴选为旋转轴,旋转操作后新旧坐标间的关系为:
y
(x', y')
x'
x cos sin 0 x
α
(x, y)
y'
Cˆ
(
)
y
sin
z'
z 0
cos
0
0
y
1 z
x
x ' x cos y sin
3.存在一恒等元素 若AG, E G,则EA AE A E为恒等元素
4.每个存在逆元素 若AG,则必存在B G,且AB BA E B为A的逆元素,记作A1 B
37
4.2.2 群的乘法表
以NH3分子为例
c
b
y
x
a
1. 写出所有对称操作:表头,表列
C3v E C31 C32 a b c
一个Cn轴包含n个旋转操作 :
Cˆn
,
Cˆn2
,
Cˆn3
,
结构化学第四章分子对称性

X射线晶体学需要制备晶体样品,通过X射线照射晶 体并记录衍射数据,再通过计算机软件分析衍射数 据,最终得到分子的晶体结构。
X射线晶体学对于理解分子结构和性质具有重要意义 ,尤其在化学、生物学和材料科学等领域中广泛应 用。
分子光谱方法
分子光谱方法是研究分子对称 性的另一种实验方法。通过分 析光谱数据,可以确定分子的 振动、转动和电子等运动状态 ,从而推断出分子的对称性。
04
分子的点群
点群的分类
80%
按照对称元素类型分类
分子点群可按照对称元素类型进 行分类,如旋转轴、对称面、对 称中心等。
100%
按照对称元素组合分类
分子点群可按照对称元素的组合 进行分类,如Cn、Dn、Sn等。
80%
按照分子形状分类
分子点群可按照分子的形状进行 分类,如线性、平面、立体等。
点群的判断方法
分子没有对称元素,如 NH3。
分子有一个对称元素, 如H2O。
分子有两个对称元素, 如CO2。
分子有多个对称元素, 如立方烷。
02
分子的对称性
对称面和对称轴
对称面
将分子分成左右两部分的面。
对称轴
将分子旋转一定角度后与原分子重合的轴。
对称中心
• 对称中心:通过分子中心点,将分子分成互为镜像的两部分。
具有高对称性的分子往往表现出较弱的磁性,因为它们具有较低的轨道和自旋分 裂能。相反,对称性较低的分子可能表现出较强的磁性,因为它们的轨道和自旋 分裂能较高。
对称性与化学反应活性
总结词
分子对称性对化学反应活性也有重要影响,可以通过对称性 分析来预测和解释分子的化学反应行为。
详细描述
具有高对称性的分子往往具有较低的反应活性,因为它们的 电子云分布较为均匀,难以发生化学反应。相反,对称性较 低的分子可能具有较高的反应活性,因为它们的电子云分布 较为不均匀,容易发生化学反应。
X射线晶体学对于理解分子结构和性质具有重要意义 ,尤其在化学、生物学和材料科学等领域中广泛应 用。
分子光谱方法
分子光谱方法是研究分子对称 性的另一种实验方法。通过分 析光谱数据,可以确定分子的 振动、转动和电子等运动状态 ,从而推断出分子的对称性。
04
分子的点群
点群的分类
80%
按照对称元素类型分类
分子点群可按照对称元素类型进 行分类,如旋转轴、对称面、对 称中心等。
100%
按照对称元素组合分类
分子点群可按照对称元素的组合 进行分类,如Cn、Dn、Sn等。
80%
按照分子形状分类
分子点群可按照分子的形状进行 分类,如线性、平面、立体等。
点群的判断方法
分子没有对称元素,如 NH3。
分子有一个对称元素, 如H2O。
分子有两个对称元素, 如CO2。
分子有多个对称元素, 如立方烷。
02
分子的对称性
对称面和对称轴
对称面
将分子分成左右两部分的面。
对称轴
将分子旋转一定角度后与原分子重合的轴。
对称中心
• 对称中心:通过分子中心点,将分子分成互为镜像的两部分。
具有高对称性的分子往往表现出较弱的磁性,因为它们具有较低的轨道和自旋分 裂能。相反,对称性较低的分子可能表现出较强的磁性,因为它们的轨道和自旋 分裂能较高。
对称性与化学反应活性
总结词
分子对称性对化学反应活性也有重要影响,可以通过对称性 分析来预测和解释分子的化学反应行为。
详细描述
具有高对称性的分子往往具有较低的反应活性,因为它们的 电子云分布较为均匀,难以发生化学反应。相反,对称性较 低的分子可能具有较高的反应活性,因为它们的电子云分布 较为不均匀,容易发生化学反应。
结构化学:第四章 分子对称性和群论基础 (3)

第四章 分子对称性和群论基础
1.对称操作和对称元素 2.对称操作群及对称元素的组合 3.分子的点群 4.分子的偶极矩和极化率 5.分子的手性和旋光性 6.群的表示
4.4. 分子的偶极矩和极化率
Dipole Moment: µ = qr
r
q
-q
分子的对称性可以判断偶极矩是否存在。
1. 只有分子的电荷中心不重合,才有偶极矩。 2. 偶极矩方向是由正电中心指向负电中心。
矢量表达式:
µx α xx α xy α xz Ex
µ y = α yx α yy α yz Ey
µz
α
zx
α zy
α zz Ez
极化率的计算-由折光率算极化率
α
=
3ε 0 (n2
N A(n2
−1)M + 2)d
293K时水n=1.3330;ε0=8.854×10-12J-1·C2·m2
分子的对称性
分子有无偶极矩
分子偶极矩的大小
分子的结构性质
分子的偶极矩和分子结构
例如:Pauling 用µ/er值作为键的离子性的判据
分子 CO
µ/(1030C·m)
0.39
r/(10-10m) 1.1283
µ/er 0.02
强共价键
共 离 HF
价 子 HCl 性性 增 减 HBr
强 弱 HI
6.37
但是,现代科学中一直有一个未解之谜:为什么组成我们机体的重 要物质——蛋白质都是由L-氨基酸构成?而构成核糖核酸的糖又都是D 型?大自然这种倾向性选择的根源何在——它是纯粹的偶然因素还是有 着更深刻的原因?
许多科学家都关注着自然界这一类对称性破缺. 1937年,Jahn与 Teller指出,非线型分子不能稳定地处于电子简并态,分子会通过降低 对称性的畸变解除这种简并. 例如,MnF3中Mn3+周围虽然有6个F-配位 ,却不是标准的正八面体,而是形成键长为0.179、0.191、0.209 nm的3 种Mn-F键. 在线型分子中,类似地也有Renner-Teller效应. 1956年,李政 道、杨振宁提出弱相互作用下宇称不守恒假说,同年由吴健雄等证实. 到了21世纪, 物理学提出了五大理论难题,其中之一就是对称性破缺问题.
1.对称操作和对称元素 2.对称操作群及对称元素的组合 3.分子的点群 4.分子的偶极矩和极化率 5.分子的手性和旋光性 6.群的表示
4.4. 分子的偶极矩和极化率
Dipole Moment: µ = qr
r
q
-q
分子的对称性可以判断偶极矩是否存在。
1. 只有分子的电荷中心不重合,才有偶极矩。 2. 偶极矩方向是由正电中心指向负电中心。
矢量表达式:
µx α xx α xy α xz Ex
µ y = α yx α yy α yz Ey
µz
α
zx
α zy
α zz Ez
极化率的计算-由折光率算极化率
α
=
3ε 0 (n2
N A(n2
−1)M + 2)d
293K时水n=1.3330;ε0=8.854×10-12J-1·C2·m2
分子的对称性
分子有无偶极矩
分子偶极矩的大小
分子的结构性质
分子的偶极矩和分子结构
例如:Pauling 用µ/er值作为键的离子性的判据
分子 CO
µ/(1030C·m)
0.39
r/(10-10m) 1.1283
µ/er 0.02
强共价键
共 离 HF
价 子 HCl 性性 增 减 HBr
强 弱 HI
6.37
但是,现代科学中一直有一个未解之谜:为什么组成我们机体的重 要物质——蛋白质都是由L-氨基酸构成?而构成核糖核酸的糖又都是D 型?大自然这种倾向性选择的根源何在——它是纯粹的偶然因素还是有 着更深刻的原因?
许多科学家都关注着自然界这一类对称性破缺. 1937年,Jahn与 Teller指出,非线型分子不能稳定地处于电子简并态,分子会通过降低 对称性的畸变解除这种简并. 例如,MnF3中Mn3+周围虽然有6个F-配位 ,却不是标准的正八面体,而是形成键长为0.179、0.191、0.209 nm的3 种Mn-F键. 在线型分子中,类似地也有Renner-Teller效应. 1956年,李政 道、杨振宁提出弱相互作用下宇称不守恒假说,同年由吴健雄等证实. 到了21世纪, 物理学提出了五大理论难题,其中之一就是对称性破缺问题.
结构化学第四章分子对称性精讲

共同对称元素:
6C5,10C3,15C2,等
对称操作:
E
12C5
i
12S10
12C52
20C3 15C2
12S103
20S6 15σ h=120
C60
四面体群Td
八面体群Oh
十二面体群 Id
11、线形分子
共同对称元素: C ,v 对于HCN,无对称中心,对称点群为 Cv 若有对称中心,如CO2,对称点群为Dh
ˆ n 1 , C ˆ (1) , C ˆ (1) , ,C n 2 2
ˆ (1) ,C 2
群阶:2n
D2 群
主轴C2垂直于荧光屏
6、Dnh点群 Cn+ nC2(Cn) + h Dnh
对称元素: Cn+ nC2(Cn) + h Dnh
n=偶数:Cn, nC2(Cn), h, In, nv, i n=奇数:Cn, nC2(Cn), h, I2n, nv
药物分子的不对称合成
对称性破缺在生命科学中产生了极为深远的影响,因为构成生命 的重要物质如蛋白质和核酸等都是由手性分子缩合而成,生物体中 进行的化学反应也受到这些分子构型的影响. 药物分子若有手性中心 ,则对映异构体对人体可能会有完全不同的作用,许多药物的有效 成份只有左旋异构体有活性, 右旋异构体无效甚至有毒副作用。例如 ,早期用于减轻妇女妊娠反应的药物酞胺哌啶酮因未能将R构型对映 体分离出去而导致许多胎儿畸形. 类似的情况还有很多,仅举几例, 它们的有效对映体和另一对映体的构型与作用如下:
手性有机化合物的合成方法主要有4种: (1)旋光拆分,(2)用 光学活性化合物作为合成起始物,(3)使用手性辅助剂,(4)使用手 性催化剂. 一个好的手性催化剂分子可产生10万个手性产物. 21世纪的第一个诺贝尔化学奖授予威廉· S· 诺尔斯、野依良治、 K· 巴里· 夏普莱斯, 就是表彰他们在手性催化反应方面的贡献.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4-13)
4.1.4 变分法处理H+2所得主要结果 的分析
(2)Ha,a或Hb,b称为库仑积分,又称α 积分
(4-14)
4.1.4 变分法处理H+2所得主要结果 的分析
(3)Ha,b称为交换积分或共振积分,又称β 积分
(4-15)
4.1.4 变分法处理H+2所得主要结果 的分析
2. 体系的能量
2
3 4
4.1.1 氢分子离子的薛定谔方程
(4-1)
(4-2)
(4-3)
4.1.2 变分法简介
1.变分原理 • 根据平均值假设(假设4),能量平均值式(1-35)为:
(4-4)
• 能量平均值ε 为: (4-5)
4.1.2 变分法简介
2.线性变分法 • 通常根据体系的物理状态,选择适当的试探函数,以期使 用比较少的参数经过不太复杂的计算得到较好的结果。同
E1,E2,E3,…,En
4.2.1 简单分子轨道理论的要点
2.分子轨道可近似用原子轨道线性组合表示,称为LCAO近似 。
(4-19)
(4-20)
4.2.1 简单分子轨道理论的要点
(1)能量相近条件 (4-21)
4.2.1 简单分子轨道理论的要点
(2)轨道最大重叠条件 (4-22)
4.2.1 简单分子轨道理论的要点
1
分子的电子组态与键级
同核双原子分子 异核双原子分子
2
3
4.4.1 分子的电子组态与键级
• 将分子中的电子按泡利不相容原理、能量最低原理、洪德 规则排布在分子轨道上,这种电子在分子轨道中的排布方 式,称为分子的电子组态。
4.4.2 同核双原子分子
1.氢分子(H2)和氦分子(He2) 2.锂分子(Li2)和铍分子(Be2) 3.硼分子(B2),碳分子(C2)
4.氟分子(F2)
5.氮分子(N2) 6.氧分子(O2)
4.4.2 同核双原子分子
4.4.3 异核双原子分子
1.氟化氢分子(HF) • 氢原子和氟原子的电子组态为:
4.4.3 异核双原子分子
2.一氧化碳(CO)
4.4.3 异核双原子分子
3.一氧化氮(NO) • 一氧化氮比氮分子多一个电子,电子组态为:
4.2.2 应用简单分子轨道理论处理 H2的结果
(4-23)
4.3 分子轨道的类型、符号和能级 顺序
1
类型和符号 能级顺序
2
4.3.1 类型和符号
4.3.1 类型和符号
1.σ 分子轨道和σ 键 • 分子轨道空间分布沿键轴是圆柱形对称的称为σ 分子轨道 。填充这类分子轨道的电子叫σ 电子,由σ 电子组成的化 学键称为σ 键。 2.π 分子轨道和π 键 • 分子轨道的空间分布对通过键轴(令为z轴)的xz或yz平面 反映是反对称的,称为π 分子轨道。 3.δ 分子轨道及δ 键
5.对 形成共价键的认识 • 从能量角度看,H+2中的电子具有动能和势能,势能包括 电子与原子核之间的吸引能和电子之间的排斥能。当原子
相互接近时,引起体系动能和势能的变化,维里(Virial) 定理指出,H与H+形成稳定的化学键,即核间距R=Re(平衡 核距离)时,电子的动能增加,势能降低,且动能增加值 为势能降低值的一半,即:
(4-8)
(4-8‘ )
4.1.3 用线性变分法求解H+2的薛定 谔方程
(4-9)
4.1.3 用线性变分法求解H+2的薛定 谔方程
(4-10) (4-11) (4-11’ ) (4-12) (4-12‘ )
4.1.4 变分法处理H+2所得主要结果 的分析
1.Sa,b,Ha,a,Ha,b的意义 (1)Sa,b称为重叠积分
(4-18)
4.2 简单分子轨道理论
1
简单分子轨道理论的要点
应用简单分子轨道理论处理H2的结果
2
4.2.1 简单分子轨道理论的要点
1.将分子中的每一个电子的运动都看成是在全部核和其余电 子所组成的平均势场中运动,于是势能函数只是单电子坐 标的函数。每个电子的运动状态可用单电子波函数ψ i来 描述,ψ i被称为分子轨道,它满足:H^iψ i=Eiψ i • 解得一系列分子轨道和对应的电子能量: ψ 1,ψ 2,ψ 3,对于同核双原子分子,可将各分子轨道按照能量由低到高 的顺序排列,组成了分子轨道能级序。第二周期元素的同 核双原子分子的分子轨道能级一般次序为: σ1s<σ*1s<σ2s<σ*2s<σ2pz<π2px=π2py<π*2px=π*2py< σ*2pz
4.4 双原子分子的结构和性质
• 总结双原子分子轨道理论的讨论,可以看到原子成键时, 内层电子基本不起作用,主要是外层电子起作用。外层电 子亦称价电子,其中又有一部分成键与反键相抵消,相当 于不起作用的孤对电子,只有一部分是有效成键的。一般 讨论分子成键时,主要考虑价电子,忽略内层电子。
(3)对称性匹配条件
4.2.1 简单分子轨道理论的要点
3.分子中的电子按着泡利不相容原理、最低能量原理、洪德 规则排布在分子轨道上。 (1)泡利不相容原理 每个分子轨道上最多只能容纳两个自旋
相反的电子。
(2)能量最低原理 在不违背泡利不相容原理的前提下,电子 尽可能占据能量较低的分子轨道。
(3)洪德规则 在满足以上两个原理的前提下,电子将尽可能 分占不同的分子轨道,且自旋方向相同。
4.1.4 变分法处理H+2所得主要结果 的分析
(4-16)
(4-16’ )
4.1.4 变分法处理H+2所得主要结果 的分析
3.电子密度分布等值线平面图 (4-17)
(4-17‘)
4.1.4 变分法处理H+2所得主要结果 的分析
4.分子轨道平面等值线图
4.1.4 变分法处理H+2所得主要结果 的分析
简明结构化学教程
第四章 分子轨道理论
1 氢分子离子 2 简单分子轨道理论 3 分子轨道的类型、符号和能级顺序 4 双原子分子的结构和性质
5 休克尔分子轨道法和共轭分子结构
6 前沿轨道理论与轨道对称守恒原理 7 基本例题解
4.1 氢分子离子
1
氢分子离子的薛定谔方程 变分法简介 用线性变分法求解H+2的薛定谔方程 变分法处理H+2所得主要结果的分析
时还要求试探函数符合波函数的合格条件。在量子化学中 常采用线性变分法,也就是用一组已知函数 χ 1,χ 2,…,χ r的线性组合来表示试探函数φ ,即: φ =C1χ 1+C2χ 2+…+Crχ (4-6)
4.1.3 用线性变分法求解H+2的薛定 谔方程
• 根据前述,试探函数选为两个氢原子的基态波函数 和 的线性组合: (4-7)