航海学知识点
航海学-第一章_航海基础知识

其短轴旋转形成 的几何体。
《航海学》第一章
地球椭圆体图
概念:由椭圆绕
其短轴旋转形成 的几何体。
《航海学》第一章
地球椭圆体图
概念:由椭圆绕
其短轴旋转形成 的几何体。
《航海学》第一章
地球椭圆体图
概念:由椭圆绕
其短轴旋转形成 的几何体。
《航海学》第一章
地球椭圆体图
概念:由椭圆绕
A Q
G O
W
M A' Q'
E
PS
《航海学》第一章
地理纬度
概念
PN
某点的地理 纬度是指地球椭
A G
圆子午线上该点
的法线与赤道面 Q
O
的夹角。
W
A' M
Q'
E
PS
《航海学》第一章
地理纬度
PN
概念
A
代号:
“”或“Lat”。Q
G O
W
A' M
Q'
E
PS
《航海学》第一章
地理纬度
概念 代号
二、地理坐标
地轴:过南北(N、
PN
S)两极的轴线
Q
O
Q'
PS
《航海学》第一章
二、地理坐标
地轴
PN
地 极 : PN 为 北 极、PS为南极
子午圈:过短 轴 的 子 午 圈 平Q
O
Q'
面与地球椭圆
体表面相交的
椭圆截痕
《航海学》第一章
PS
二、地理坐标
PN
地轴
地极
子午圈
子午线/ 经线:Q
航海学-第一篇基础知识

第一篇 基础知识第一章 坐标、方向与距离第一节 地理坐标一、地球形体船舶在海上航行时,需要确定船舶的位置、航向和航程,这就要求在地球表面建立坐标系和确定方向的基准线,因此要对地球的形状有一定的了解。
地球的自然表面是不平坦的,是一个非常复杂而又不规则的曲面。
陆地上有高山、深谷和平地;海洋里有岛屿和海沟。
因此,地球的自然表面不是数学曲面,不能直接在其上进行运算,也不能直接在其上建立坐标系。
航海上所研究的地球形状,是指由假想的大地水准面所包围的闭合几何体——大地球体。
所谓大地水准面,是指与各地铅垂线相垂直且与完全均衡状态的海平面相一致的水准面,详细地说大地水准面是与平均海面相重合且延伸至大陆底部的一个连续的、无叠痕的、无棱角的闭合曲面。
大地球体仍是一个不规则的球体,不是数学曲面,不能直接在其上进行运算,也不能直接在其上建立坐标系,怎么办呢?一般在航海上,以大地球体的近似体代替大地球体来建立坐标系进行航海计算,以地球园球体作为它的第一近似体,而以地球椭园体作为它的第二近似体。
1. 第一近似体——地球圆球体在解决一般航海问题时,为了计算上的简便,通常是将大地球体当做地球园球体,其半径R =6,371,110M 。
2. 第二近似体——地球椭圆体 在较为准确的航海计算中,需要将为大地球体当做地球椭园体,如图1-1-1所示,地球椭园体是由椭圆P N QP S Q ′绕其短轴P N P S 旋转一周而形成的几何体。
地球椭园体的参数有:长半轴a 、短半轴b 、扁率c 和偏心率e ,它们之间的相互关系是:a b a c -=; a b a e 22-=; c e 22≈ 在不同的历史时期,依据的测量结果不同,因而所推算出的地球椭圆体的参数也不相同。
我国从1954年开始采用前苏联克拉索夫斯基椭圆体参数,现在准备逐步采用IUGGl975年推荐的地球椭圆体参数,参见表1-1-1。
二、地球上的基本点、线、圈把地球看做第二近似体即椭圆体,如图1-1-2所示,O 为地球中心:地轴(axis of the earth)—地球自转的轴(S N P P ),即通过地球中心连结南极和北极的一条假想的线。
(完整版)航海学基础知识

第三章 航向、方位和距离第一节 航海上常用的度量单位一、长度单位1.海里(nautical mile, n mile)1)定义海里等于地球椭圆子午线上纬度一分所对应的弧长简写为1n mile 或1'。
数学公式:1(1852.259.31cos 2)nmile m ϕ=-赤道最短,1842.9m ,两极最长,1861.6m ;两地最大差值是18.7m 。
2)标准海里英国为1853.18m(6080英尺);我国采用1929年国际水文地理学会议通过的海里标准,1n mile=1852m 。
约在纬度44º14'处1n mile 的长度才等于1852m3)航海实践中产生的误差例:某轮沿着赤道向正东航行,每小时25n mile ,航行一天后航程是2524=600n mile ⨯(按1n mile 等于1852m 计算),如果按赤道1 n mile 的实际长度1842.94m 计算,则船舶一天航行的距离是:1852600603n mile 1842.94⨯≈ 由此可以看出,将1n mile 确定为1852m 后,所产生的误差只有航行距离的0.5%。
若在中纬度海区航行,则所产生的误差将更小。
2.链(cable,cab)1n mile 的十分之一为1链。
链是用来测量较近距离的单位。
1链=185.2m3.米(meter,m)国际上通用的长度度量单位。
航海上用来表示海图里的山高和水深,有时也用来度量距离。
4.拓(fathom)、英尺(foot,ft)和码(yard,yd)旧英版海图上用英尺和拓表示水深;山高以英尺表示。
用海里、码和英尺来度量距离。
1拓=1.829m 或6 ft 、1yd=0.9144m 或3 ft 、1 ft=0.3048m 。
目前英版的拓制海图正被米制海图(metric chart)所代替5.公里(kilometer,km)用于海图上表示两个陆标间较远的距离单位。
1km=1000m。
二、速度单位节(knot,kn):航海上计算航速的单位。
航海基础知识

航海基础知识航海是一门涉及导航、海图、船舶操纵和海上安全等领域的学科,是人类探索海洋、开辟新的贸易路线和发展海上经济的关键。
本文将介绍航海基础知识,包括导航工具、航行规则和海上安全等内容。
一、导航工具1.1 海图海图是指海洋和海岸线的地图,用于船舶航行。
它们提供了广阔海洋的地理信息,包括水深、礁石、航标、航道、测距标志以及船舶相关的地理和天文数据。
航海员使用海图来确定船舶的位置、计算航线以及避免潜在的危险。
1.2 罗盘罗盘是指在船舶上用来测定船首方向的仪器。
航海员通过观测罗盘可以确定船舶的航向,从而进行航线的规划和船舶操纵。
1.3 GPS(全球定位系统)全球定位系统是一种卫星导航系统,通过一组卫星和地面设备共同工作,确定地球上任何一点的准确位置。
船舶上的GPS设备可以提供实时的位置信息,帮助航海员确认船只的位置和航行方向。
1.4 雷达雷达是一种用来探测周围物体位置和距离的仪器。
在航海中,雷达可以帮助船舶识别其他船只、陆地、浮冰以及其他导航障碍物,从而避免碰撞和保持安全的航行。
二、航行规则2.1 国际航行规则(COLREGS)国际航行规则是一套国际公约,规定了船舶在海上的导航和操纵规则,旨在确保船舶之间的安全和避免碰撞。
船舶必须遵守COLREGS 的规定,包括航行速度、航行方向、航行灯光和信号等。
2.2 航道标志航道标志是用来指示航道和警示航行障碍物的标志物。
不同的航道标志具有不同的形状、颜色和标识,船舶根据这些标志来辨别航道和确定安全的航行路径。
2.3 航行通报航行通报是船舶之间交流信息的重要方式,用于通知其他船舶自己的位置、航行意图和特殊情况等。
船舶通过无线电、信号旗和船舶灯光等途径进行通报,以确保航行安全和减少可能的冲突。
三、海上安全3.1 船舶保险船舶保险是一种保护船舶、货物和船员的风险管理方式。
船舶所有人可以购买船舶保险来应对潜在的海上安全风险,包括船只损坏、货物丢失和船员伤亡等。
3.2 应急设备应急设备是指船舶上的安全装备,用于应对紧急情况和保障船舶和船员的安全。
航海学知识点汇总

航海学知识点汇总航海,是人类探索和征服海洋的历史悠久和辉煌壮丽的篇章,也是人类社会发展史上重要的一页。
航海是指运用船舶等水上交通工具,在海上或者其他水域中进行商业、旅游、科考等活动。
对于航海爱好者来说,了解一些航海学的基本知识是非常重要的。
下面就为大家介绍一些航海学的知识点,让大家更加深入地了解航海学的世界。
一、船舶构造和稳性1、船舶的构造:船身由两部分组成,即上部建筑和船体(即船壳)。
船体包括船头、船底和船侧。
船舶的推进力是由发动机驱动螺旋桨产生的,螺旋桨和推进装置一般安装在船尾。
船舶的掌舵则是通过舵机等机械装置进行的。
2、船舶的稳性:船舶的稳性是指船舶在不同浮动状态下的稳定性能。
稳定性是指船舶在受到外力作用时,能保持稳定的能力。
船舶的稳定性可以通过以下几种参数来衡量:重心高度、艏甲板高度、纵倾周期、横倾周期、稳性保证系数等。
二、导航术中的基本概念1、导航物:导航物是指能够用来导航的信标、灯塔、岛屿、海岸线等。
导航物可以区分无特征和有特征的导航物,无特征的导航物是常见的灯塔或水手以及遥测设备等,而有特征的导航物则是特殊的地貌或者标志,通常用来标记海域的危险区域或边界。
2、航向:航向是指船舶航行时相对于地球表面的方向,以正北方向为基准。
航向可以通过舰桥的船首向标、罗盘读数等方式得到。
3、航迹:航迹是指船舶航行过程中的实际轨迹。
航迹可以通过航线等方式得到。
4、船速:船速是指船舶在航行过程中的速度,可以通过船速表等仪器得到。
三、海洋气象1、气压系统:气压系统是导致气象变化的重要因素,通常由高压系统、低压系统和锋面构成。
高压系统通常代表干燥、晴朗和温暖的气候,而低压系统则代表雨、雪、风暴等天气。
锋面则代表了气压的变化区。
2、风向和风速:风向和风速是指风的方向和力度。
风一般会影响海洋的浪高、波向和潮汐。
风向和风速可以通过气象图、风速仪等形式得到。
3、浪高和周期:浪高和周期是指海浪高度和波动周期,通常由风速、浪向、水深等因素影响。
航海学-第一篇基础知识..

第一篇 基础知识第一章 坐标、方向与距离第一节 地理坐标一、地球形体船舶在海上航行时,需要确定船舶的位置、航向和航程,这就要求在地球表面建立坐标系和确定方向的基准线,因此要对地球的形状有一定的了解。
地球的自然表面是不平坦的,是一个非常复杂而又不规则的曲面。
陆地上有高山、深谷和平地;海洋里有岛屿和海沟。
因此,地球的自然表面不是数学曲面,不能直接在其上进行运算,也不能直接在其上建立坐标系。
航海上所研究的地球形状,是指由假想的大地水准面所包围的闭合几何体——大地球体。
所谓大地水准面,是指与各地铅垂线相垂直且与完全均衡状态的海平面相一致的水准面,详细地说大地水准面是与平均海面相重合且延伸至大陆底部的一个连续的、无叠痕的、无棱角的闭合曲面。
大地球体仍是一个不规则的球体,不是数学曲面,不能直接在其上进行运算,也不能直接在其上建立坐标系,怎么办呢?一般在航海上,以大地球体的近似体代替大地球体来建立坐标系进行航海计算,以地球园球体作为它的第一近似体,而以地球椭园体作为它的第二近似体。
1. 第一近似体——地球圆球体在解决一般航海问题时,为了计算上的简便,通常是将大地球体当做地球园球体,其半径R =6,371,110M 。
2. 第二近似体——地球椭圆体 在较为准确的航海计算中,需要将为大地球体当做地球椭园体,如图1-1-1所示,地球椭园体是由椭圆P N QP S Q ′绕其短轴P N P S 旋转一周而形成的几何体。
地球椭园体的参数有:长半轴a 、短半轴b 、扁率c 和偏心率e ,它们之间的相互关系是:a b a c -=; a b a e 22-=; c e 22≈ 在不同的历史时期,依据的测量结果不同,因而所推算出的地球椭圆体的参数也不相同。
我国从1954年开始采用前苏联克拉索夫斯基椭圆体参数,现在准备逐步采用IUGGl975年推荐的地球椭圆体参数,参见表1-1-1。
二、地球上的基本点、线、圈把地球看做第二近似体即椭圆体,如图1-1-2所示,O 为地球中心:地轴(axis of the earth)—地球自转的轴(S N P P ),即通过地球中心连结南极和北极的一条假想的线。
航海学(一)复习要点

第一篇基础知识第一章坐标、方向和距离1.名词解释:经度、纬度、经差、纬差、磁差、自差、罗经差、陀罗经差、真方位、磁方位、罗方位、陀螺方位、真航向、磁航向、罗航向、陀螺航向、舷角、海里、灯光初显2.地理坐标系采用的基本大圆(地理坐标系是建立在地球椭圆体上的坐标系3.经差、纬差计算和命名方法4.表示地球椭圆体形状和大小的参数有哪一些5.航海中为了简化计算对地球的形状采用圆球体、精确计算时采用椭圆体。
6.航海中目前使用的划分方向的方法有哪一些7.圆周法、半圆法、罗经点法换算8.磁差变化与哪一些因素有关9.自差变化与哪一些因素有关10.磁差资料的查取11.向位换算12.1海里的长度计算公式13.求地理能见距和初现距离14.中、英版图注射程15.求计程仪航程、计程仪改正率和到达点计程仪读数的计算16.相对计程仪“计风不计流”的概念17.航速校验线必备的条件18.不同水流条件下测定船速和计程仪改正率的方法第二章海图1.名词解释:恒向线、纬度渐长率、基准比例尺2.墨卡托海图采用的投影方法3.墨卡托海图的特点4.大圆海图的特点和投影方法5.重要海图图式6.中、英版海图上山高、灯高、比高、净空高度、水深采用的基本面7.英版海图上PA、PD、ED的含义8.如何判定海图的可靠程度第二篇船舶定位第一章航迹绘算1.名词解释:东西距2.风压差的大小与哪一些因素有关3.风压差确定正负号的方法4.风压差计算公式5.压差角的测定(重点是最小距离方位和正横方位法)6.中分纬度航法的计算7.海图作业试行规则中对航迹推算的规定(连续不间断,只有通过狭水道、渔区可中断。
水流显著的海区一小时一个船位,其他海区2-4小时一个船位8.无风流情况下,推算船位的误差产生的原因有哪一些?正常情况下,航向误差和航程误差各为多少?概率园的半径是多少?第二章陆标定位1.名词解释:船位差2.航海中常用的船位线有哪几种3.说出3种距离定位时判定双值性的方法4.距离定位时观测物标的顺序5.方位定位时观测物标的顺序和选择物标的原则6.三标方位定位时产生误差三角形的原因及处理方法7.倍角法、四点方位法、特殊角法定位的条件8.方位移线定位注意事项第三篇航行方法第一章大洋航行1.航线有哪几种类型2.大圆航线分段的原则3.选择大圆航线时应避开哪一些航行受限制的区域4.选择大圆航线时应考虑哪一些因素5.空白定位图有哪一些特点第二章沿岸航行1. 选择沿岸航线时应考虑哪一些因素2. 选择沿岸航线时,确定航线离岸距离时应考虑哪一些因素(一般数据)3.选择沿岸航线时,确定航线离危险物距离时应考虑哪一些因素第三章狭水道航行1.确定富裕水深大小时应考虑哪一些因素2.通过浅滩的有利时机高潮前一小时3.判定前方浮标是否有碰撞危险的方法4. 狭水道航行可以采用的导航方法、转向方法、避险方法有哪一些5.试述白天判定浅水礁盘存在的方法6. 试述平行方位转向法7.利用叠标导航修正航向的方法8.利用导标导航修正航向的方法第四章特殊条件下的航行1.雾中航行逐点航法的优缺点2. 雾中航行注意事项3.冰区航行注意事项4.利用雾号回声判定船与海岸距离的方法。
(完整版)航海学知识点

(完整版)航海学知识点第⼀篇航海学(地⽂航海)第⼀章坐标、⽅向和距离第⼀节地球形状和地理坐标⼀、地球形状1. 第⼀近似体――地球圆球体航海上为了计算上的简便,在精度要求不⾼的情况下,通常将⼤地球体当作地球圆球体。
2. 第⼆近似体――地球椭圆体在⼤地测量学、海图学和需要较为准确的航海计算中,常将⼤地球体当作两极略扁的地球椭圆体。
地球椭圆体即旋转椭圆体,它是由椭圆P N QP S Q′绕其短轴P N P S旋转⽽成的⼏何体(图1-1)。
表⽰地球椭圆体的参数有:长半轴a、短半轴b、扁率c和偏⼼率e。
⼆、地理坐标1. 地球上的基本点、线、圈地理坐标是建⽴在地球椭圆体表⾯上的。
要建⽴地理坐标,⾸先应在地球椭圆体表⾯上确定坐标的起算点和坐标线图⽹。
如图所⽰:椭圆短轴即地球的⾃转轴――地轴(P N P S);地轴与地表⾯的两个交点是地极,在北半球的称为北极(P N),在南半球的称为南极(P S);通过地球球⼼且与地轴垂直的平⾯称为⾚道平⾯,⾚道平⾯与地表⾯相交的截痕称为⾚道(QQ′),它将地球分为南、北两个半球;任何⼀个与⾚道⾯平⾏的平⾯称为纬度圈平⾯,它与地表⾯相交的截痕是个⼩圆,称为纬度圈(AA′);通过地轴的任何⼀个平⾯是⼦午圈平⾯,它与地表⾯相交的截痕是个椭圆,称为⼦午圈(P N QP S Q′);由北半球到南半球的半个⼦午圈,叫作⼦午线,⼜称经线(P N QP S,P N Q′P S);通过英国伦敦格林尼治天⽂台⼦午仪的⼦午线,叫作格林⼦午线或格林经线(P N GP S)。
2. 地理坐标地球表⾯任何⼀点的位置,可以⽤地理坐标,即地理经度和地理纬度来表⽰。
地理经度简称经度,地⾯上某点的地理经度为格林经线与该点⼦午线在⾚道上所夹的劣弧长,⽤λ或Long表⽰。
某Array点地理经度的度量⽅法为:⾃格林⼦午线起算,向东或向西度量到该点⼦午线,由0°到180°计量。
向东度量的称为东经,⽤E标⽰;向西度量的称为西经,⽤W标⽰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一篇航海学(地文航海)第一章坐标、方向和距离第一节地球形状和地理坐标一、地球形状1. 第一近似体――地球圆球体航海上为了计算上的简便,在精度要求不高的情况下,通常将大地球体当作地球圆球体。
2. 第二近似体――地球椭圆体在大地测量学、海图学和需要较为准确的航海计算中,常将大地球体当作两极略扁的地球椭圆体。
地球椭圆体即旋转椭圆体,它是由椭圆P N QP S Q′绕其短轴P N P S旋转而成的几何体(图1-1)。
表示地球椭圆体的参数有:长半轴a、短半轴b、扁率c和偏心率e。
二、地理坐标1. 地球上的基本点、线、圈地理坐标是建立在地球椭圆体表面上的。
要建立地理坐标,首先应在地球椭圆体表面上确定坐标的起算点和坐标线图网。
如图所示:椭圆短轴即地球的自转轴――地轴(P N P S);地轴与地表面的两个交点是地极,在北半球的称为北极(P N),在南半球的称为南极(P S);通过地球球心且与地轴垂直的平面称为赤道平面,赤道平面与地表面相交的截痕称为赤道(QQ′),它将地球分为南、北两个半球;任何一个与赤道面平行的平面称为纬度圈平面,它与地表面相交的截痕是个小圆,称为纬度圈(AA′);通过地轴的任何一个平面是子午圈平面,它与地表面相交的截痕是个椭圆,称为子午圈(P N QP S Q′);由北半球到南半球的半个子午圈,叫作子午线,又称经线(P N QP S,P N Q′P S);通过英国伦敦格林尼治天文台子午仪的子午线,叫作格林子午线或格林经线(P N GP S)。
2. 地理坐标地球表面任何一点的位置,可以用地理坐标,即地理经度和地理纬度来表示。
地理经度简称经度,地面上某点的地理经度为格林经线与该点子午线在赤道上所夹的劣弧长,用λ或Long表示。
某Array点地理经度的度量方法为:自格林子午线起算,向东或向西度量到该点子午线,由0°到180°计量。
向东度量的称为东经,用E标示;向西度量的称为西经,用W标示。
例如北京的经度为116°22.8'E。
地理纬度简称纬度,地球椭圆子午线上某点的法线与赤道面的夹角称为该点的地理纬度,用ϕ或Lat表示。
某点地理纬度的度量方法为:自赤道起算,向北或向南度量到该点所在纬度圈,由0°到90°计量。
向北度量的称为北纬,用N标示;向南度量的为南纬,用S标示。
例如北京的纬度为39°54.4'N。
纬度圈上各点的纬度相等,经线上各点的经度也都相等,经线与纬度圈所构成的图网为坐标线图网。
第二节航向与方位一、方向的确定、划分与换算1. 航海上方向的划分航海上常用的划分方向的方法有下列三种:(1)圆周法以正北为方向基准000°,按顺时针方向计量到正东为090°,正南为180°,正西为270°,再计量到正北方向为360°或000°。
圆周法始终用三位数表示,是航海上最常用的表示方向的方法。
(2)半圆法以正北或正南为方向基准,分别向东或向西计量到正南或正东,计量范围0°到180°。
用半圆法表示某方向时,除度数外,还应标明起算点和计量方向。
如:30°NE,150°SE,30°SW,150°NW。
(3)罗经点法如图所示:罗经点法以北、东、南、西四个基本方向为基点;将平分相邻基点之间的地面真地平平面方向称为隅点,即东北(NE)、东南(SE)、西南(SW)和西北(NW)四个方向;将平分相邻基点与隅点之间的地面真地平平面方向称为三字点,其名称有基点名称之后加上隅点名称组成,即北北东(NNE)、东北东(ENE)、东南东(ESE)、南南东(SSE)等八个方向;再将平分相邻基点或隅点与三字点之间的十六个地面真地平平面方向称为偏点,偏点的名称由基点名称或隅点名称之后加上偏向的方向来组成,例如:北偏东(N/E)、东北偏北(NE/N)、东偏北(E/N)等。
这样,四个基点、四个隅点、八个三字点和16个偏点,共计32个方向点,叫做32个罗经点。
2. 三种方向划分之间的换算根据航海实际的需要,三种方向之间的换算,通常是指将半圆法和罗经点法所表示的方向换算为相应的圆周法方向,其换算方法如下:(1)半圆法换算成圆周法的法则是:在北东(NE )半圆: 圆周度数 = 半圆度数在南东(SE )半圆: 圆周度数 = 180° - 半圆度数在南西(SW )半圆: 圆周度数 = 180° + 半圆度数在北西(NW )半圆: 圆周度数 = 360° + 半圆度数(2)罗经点法换算成圆周法的法则是:由于相邻两罗经点之间的角度为11°.25,因此,某个罗经点方向所对应的圆周方向,可根据该罗经点在罗经点法中的点数称以11°.25的法则确定。
在掌握了所有罗经点的意义、命名方法以及四个基点与四个隅点所对应的圆周法方向的基础上,还可依据下列原则来换算:八个三字点的圆周方向等于相应的基点方向与隅点方向的平均值;16个偏点的圆周方向等于相应基点或隅点方向加上±11°.25。
其中,±应根据该偏点偏向相应基点或隅点的方向而定:顺时针方向取+,逆时针方向取-。
二、航向、方位和舷角航海上经常涉及到的方向有两种:船舶航行的方向(航向)和物标的方向(方位)。
船舶首尾线向船首方向的延伸线,称作航向线,代号CL 。
船舶航行过程中,在测者地面真地平平面上,自真北线顺时针方向计量到航向线的角度,称为船舶的真航向,计量范围000°至360°,代号:TC 。
船舶和物标的连线称为物标的方位线,代号BL 。
自正北方向线顺时针方向计量到物标方位线的角度,称为船舶的真方位,计量范围000°至360°,代号:TB 。
从航向线到物标方位线之间的夹角,称为物标的舷角或相对方位。
舷角以航向线为基准,按顺时针方向计量到物标方位线,计量范围000°到360°,始终用三位数表示,代号Q;或以船首向为基准,分别向左或向右计量到物标方位线,计量范围0°到180°,向左计量为左舷角Q左,向右计量为右舷角Q右。
当舷角Q = 090°或Q右 = 90°时,叫做物标的右正横;当Q = 270°或Q左 = 90°时,叫做物标的左正横。
航向、方位和舷角之间的关系如下:QTCTB+=或()()⎪⎩⎪⎨⎧+=-为+为左右QQQTCTB如计算所得的真方位值大于360°或小于0°,则应分别减去或加上360°。
第三节向位的测定与换算一、陀螺罗经/电罗经测定向位航海上测定向位(航向和方位)的仪器是罗经。
目前,海船上配备的罗经有陀螺罗经(俗称电罗经)和磁罗经两大类。
陀螺罗经是根据高速旋转的陀螺仪,在受到适当的阻尼力作用后,能迫使其旋转轴保持在其子午圈平面内的原理而制成的。
陀螺罗经是一种不受地磁场和电磁场影响的、具有较大指北力的电动机械仪器,它能带动若干个分罗经,分别安装在驾驶台、驾驶台两翼、海图室和船长房间等,还能为雷达、自动舵和航向记录仪等提供指北信息。
陀螺罗经刻度盘0°所指示的方向称为陀螺罗经北,简称陀罗北,用N G表示。
陀罗北线和船舶航向线之间的夹角,称为陀罗航向,代号GC。
陀罗北线和物标方位线之间的夹角,叫做陀罗方位,代号GB。
陀罗航向和陀罗方位均以陀罗北线为基准,按顺时针方向计量至航向线或物标方位线,计量范围000°到360°。
陀罗北偏开真北角度称为陀螺罗经差(简称陀罗差),用G∆表示。
陀罗北偏在真北的东面,陀罗向位小于真向位,G∆为偏东或偏低,用E或(+)表示;陀罗北偏在真北的西面,陀罗向位大于真向位,G∆为偏西或偏高,用W或(-)表示。
真向位、陀罗向位和陀罗差之间的关系如下:TC = GC+G∆TB = GB+G∆()()⎩⎨⎧∆∆-偏西为+偏东为GG二、磁罗经测定向位1. 磁罗经基本原理磁罗经是我国古代四大发明之一――指南针演变发展而来的。
它是根据在水平面内自由旋转的磁针,受到地磁磁力的作用后,能稳定指示地磁磁北方向的特性而制成的。
如图所示,地球周围存在一个天然磁场――地磁,它好像是由地球内部的一个大磁铁所形成的磁场。
磁力线方向垂直于地面的点,叫做地磁磁极,靠近地理北极的是磁北极;靠近地理南极的是磁南极。
2. 磁罗经基本概念将磁罗经放置在地球上某一点,当它仅受到地磁磁场的作用时,其N 极所指的方向(即磁罗经刻度盘0°的方向)即为磁北N M 。
因为地磁北极与地理北极并不在同一地点,地磁磁场本身又很不规则,所以地面上某点的磁北线与真北线往往不重合。
磁北(N M )偏离真北(N T )的角度称为磁差,代号Var.。
如磁北偏在真北的东面,称磁差偏东,用E 或+表示;磁差偏在真北西面,则称磁差偏西,用W 或-表示。
如图所示:磁北线与航向线之间的夹角称为磁航向,代号MC ;磁北线与方位线之间的夹角称为磁方位,代号MB 。
磁航向与磁方位均以磁北为基准,分别按顺时针方向计量到航向线或物标方位线,计量范围000°至360°。
显然,磁向位、磁差和真向位之间的关系如下: TC = MC + Var.TB = MB + Var.安装在钢铁制成的船上的磁罗经,除了受到地磁的作用外,还将受到船上钢铁在地磁磁场中磁化后形成的磁场――船磁场的影响,以及磁罗经附近电气设备形成的电磁场的影响。
这样,致使磁罗经的指北端不再指示磁北方向,而指向上述各磁场的合力方向上。
此时磁罗经刻度盘0°所指示的北,称为罗北,代号N C 。
罗北偏离磁北的角度称为自差,用缩写Dev 或符号δ表示。
如罗北偏在磁北之东,称为东自差,用E 或+标示;若罗北偏在磁北之西,则为西自差,用W 或-标示。
船上磁罗经的磁针在地磁和船磁的合力影响下,其罗经刻度盘0°所指示的罗北N C 偏离真北N T 的角度称为磁罗经差,简称罗经差,用C ∆表示。
当罗北偏在真北东面时,罗经差偏东,用E 或+标示;罗北偏在真北西面,罗经差偏西,用W 或-标示。
显然,罗经差C ∆是磁差Var 和自差Dev 的代数和,即:C ∆ = Var + Dev以罗北为基准的航向和方位统称为罗向位。
如图所示:罗北线和航向线之间的夹角叫做罗航向,代号CC ;罗北线和物标方位线之间的夹角叫做罗方位,代号CB 。
罗航向和罗方位均以罗北N C 为基准,各自按顺时针方向计量到航向线或物标的方位线,计量范围:000°~360°。
3. 磁差的求取由于地磁磁轴并不与地轴重合,而且地磁磁轴也不通过地球球心,因此各地磁差的大小和方向各不相同。