第六章 近独立粒子及其最概然分布
第六章近独立粒子的最概然分布

第六章近独立粒子的最概然分布6.1试根据式33d d d d d d d d d 2x y z x y z x y z L V n n n p p p p p p h π⎛⎫== ⎪⎝⎭h ,证明:在体积V 内,在ε到d ε+ε的能量范围内,三维自由粒子的量子态数为()()132232d 2d VD m hπεεεε=。
解:用动量空间的球坐标描述自由粒子的动量:sin cos ;sin sin ;cos x y z p p p p p p θϕθϕθ===对动量积分,得在p 到d p p +范围内量子态数为:2233d sin d d 4d Vp Vp V p p h hθθϕΩ==⎰⎰⎰π 自由粒子的能量动量关系为:22p mε=,因此2,d p m p p md εε==得体积V 内,在ε到d εε+的能量范围内,粒子的量子态数为:()132232()d 2d VD m hεεεε=π6.2证明,一维自由粒子,在长度L 内,在ε到d εε+的能量范围内,量子态数为()2d d 2L mD h εεεε=解:一维自由粒子在μ空间体积元d d x x p 内可能的量子态数为:d d d xx x p n h=在长度L 内,动量大小在p 到d p p +范围内的量子态数为2d x L n p h=将能量动量关系:22p mε=,代入,即得()122d d 2L m D h εεεε⎛⎫= ⎪⎝⎭6.3证明二维自由粒子,在面积2L 内,在ε到d εε+的能量范围内,量子态数为()222L D d md hεεε=π。
解:二维自由粒子在μ空间体积元d d d d x y x y p p 内的量子态数为:3d d d d d d x yx y x y p p n n h=动量空间的极坐标,p θ描述粒子的动量,,p θ与,x y p p 的关系为cos ,sin x y p p p p θθ== 用极坐标描述时,二维动量空间的体积元为d d d V p p θ=在面积2L 内,在p 到d p p +,θ到d θθ+范围内,自由粒子可能的状态数为-22d d h L p p θ 对d θ积分,可得面积2L 内,p 到d p p +范围内,二维自由粒子可能的状态数为:2-22d L h p p π 将能量动量关系:()-122m p ε=,代入,即有()2-2d 2d D L h m εεε=π6.4在极端相对论情形下 cp ε=,试求在体积V 内,在ε到的能量范围内三维粒子的量子态数.解:在体积V 内,动量大小在p 到d p p +范围内三维自由粒子可能的状态数为234d V p p h π 将cp ε=带入,得V 内在能量ε到d εε+内,量子态数为:()()-32d 4d D V ch εεεε=π6.5系统有两种粒子,其粒子数分别为N 和N '。
热力学与统计物理学第六章(应用)_近独立粒子的最概然分布

al ln N E ln l al 0 l l al ln l 0 l 1,2,
l
al l e
l
或者
al
e
l
l
玻耳兹曼系统的最概然分布:麦克斯韦-玻耳兹曼分布(M.B) 拉氏乘子由下式确定:
不是独立变量
al 0
需满足条件:
N al 0
l
E l al 0
l
引入拉格朗日乘子 和
,建立辅助函数:
W (a1 , a2 , , al , ) ln N E
其全微分:
al ln N E ln l al 0 l l 26
l l
N ln N al ln al al ln l
当 al 有 al 的变化时,应有 ln 0
l l
ln ln al 1al ln lal
l l
25
的结论,因为
al ln ln l l
l
l
1
(经典极限条件或 所有的l 非简并性条件)
la
F . D.
l ! l l 1 l al 1 al ! ! l l a l ! l a l
l
M . B. al ! N!
l
l a
M . B. al ! N!
确定第 i 个粒子的力 学运动状态。
确定系统的微观运动状态需要
2 Nr
个变量。
qi1 ,, qir ; pi1 ,, pir i 1,2,, N
第六章近独立粒子的最概然分布

近独立粒子的最概然分布热力学和统计物理的关系:热力学是热运动的宏观理论,以实验总结的定律触发,经过严密的逻辑推理得到物体宏观热性质间的联系,宏观过程进行的方向和限度,从而结实热现象的有关规律。
而统计物理是热运动的微观理论,基本观点是认为宏观物质系统由大量微观粒子组成,宏观性质是大量微观粒子的集体表现,宏观热力学量则是相应微观力学量的统计平均值。
热力学验证统计物理,而统计物理揭示了热力学的本质。
μ空间:设粒子的自由度为r 。
经典力学中,粒子在任意时刻的力学运动状态由粒子的r 个广义坐标12r q ,q ,q 和与之共轭的r 个广义动量12r p ,p ,p 在该时刻的数值确定。
粒子的能量ε是其广义坐标和广义动量的函数:1r 1r (q ,q ;p ,p )ε=ε用1r 1r q ,q ;p ,p 共2r 个变量为直角坐标构成一个2r 维空间,称为μ空间。
粒子运动状态的经典描述和量子描述:① 一维谐振子在经典力学中,任一时刻,粒子的位置由它的位移x 确定,与之共轭的动量为p mx ∙=,它的能量是其动量和势能之和:222p 1m x 2m 2ε=+ω 在量子力学中,圆频率为ω的线性谐振子,能量的可能值为:n 1(n )2ε=ω+ ② 转子在经典力学中,用球极坐标(r,,)θϕ描述质点的位置: x rsin cos ,y rsin sin ,z rcos =θϕ=θϕ=ϕ.与坐标共轭的动量为222p mr ,p mr sin ∙∙θϕ=θ=θϕ质点的能量可以表示为22211(p p )2I sin θϕε=+θ在量子力学中,转子的能量是:2M 2Iε= 其中,2M 只能取分立值22M l(l 1),l 0,1,2,=+=③ 自由粒子在经典力学中,在三维空间中运动,在任意时刻的位置可由坐标(x,y,z)确定,与之共轭的动量为:x y z p mx,p my,p mz ∙∙∙=== 自由粒子的能量就是它的动能:222x y z 1(p p p )2mε=++. 在量子力学中,设粒子处在边长为的立方容器内,粒子三个动量分量的可能值为x x x 2p n ,n 0,1,2,L π==±± y y y 2p n ,n 0,1,2,L π==±± z z z 2p n ,n 0,1,2,Lπ==±± x y z n ,n ,n 就是表征三维自由粒子运动状态的量子数,三维自由粒子能量的可能取值为22222x y z 222x y z 2n n n 12(p p p )2m m L++πε=++=态密度:在体积V 内,动量大小在p 到p+dp 的范围内,自由粒子可能状态数为234V p dp h π,根据公式,算出,在体积V 内,在到的能量范围内,自由粒子可能的状态数为312232V D()d (2m)d hπεε=εε D()ε表示单位能量间隔内的可能状态数,称为态密度。
第六章:近独立粒子的最概然分布 热力学统计物理汪志诚

新课:§6.1 粒子运动状态的经典描述
1-d线性谐振子 自由度: 1 相空间维数:2 位置:x
动量:p mx
p2 1 m 2 x 2 能量: 2m 2
半长轴
a 2m
能量椭圆:
p2 x2 1 2 2m m 2
能量曲面包围的相体积:
( ) ab 2
例二、线性谐振子
自由度: 1 空间维数:2
位置:x
动量:p mx
p2 1 2 2 m x 能量: 2m 2
能量椭圆
p2 x2 1 2 2m m 2
p
x
新课:§6.1 粒子运动状态的经典描述小结
例三、转子 自由度:2
空间维数:4
z
, 位置:
p r 2 动量: p r 2 sin 2
新课:§6.1 粒子运动状态的经典描述
能量ε包围的相体积:
0 x L px
2 px px 2m 2m
V , 0
2 px
dxdpx dx
0
L
2 m
2 m
dpx 2 2m L
2m
新课:§6.1 粒子运动状态的经典描述
无外力矩时,转子的总角动 量守恒量
M rp r M 2 p mr p 0 z // M 选 则 2
1 1 1 1 2 2 2 ( p p ) ( p ) 2 2 2I sin 2 I sin
(2)三维自由粒子: 分解 自由度:r 3, r 6 位置:x y z 投影
动量:p x mx p y my
三个2-d子相空间
第六章 近独立粒子的最概然分布(复习要点)

第六章 近独立粒子的最概然分布(复习要点) 一、粒子微观运动状态的描述: 1、粒子运动状态的经典描述:①、相空间、自由度;广义坐标、广义动量;粒子微观状态()r r p p p q q q ,,,,,,2121⇔。
②、经典粒子的微观状态与μ空间体积元的对应关系: 对于经典系统,由于对坐标和动量的测量总存在一定的误差,假设0h p q =∆∆,这时经典系统的粒子运动状态不能用一个点表示,而必须用一个体积元表示,该体积元的大小rr rh p p qq 011=⋅δδδδ 即经典系统中粒子的一个微观状态在 μ 空间所占的体积。
这里0h 由测量精度决定的一个常数。
经典理论上00→h将μ空间划分为许多体积元lτ∆,以lε表示运动状态处在lτ∆内的粒子所具有的能量,则体积元lτ∆内粒子可能的运动状态数为r l lh 0τω∆=k l p p q q l r r l ,...2,1;)(11=∆∆∆∆=∆ τ其中2、粒子运动状态的量子描述:①、波粒二象性、波函数、量子力学中力学量的算符表示;薛定谔方程一组量子数波函数粒子微观运动状态↔↔这组量子数的数目等于粒子的自由度数(不考虑自旋,考虑自旋时应乘为自旋量子数,S S 12+)②、微观体积下,微观粒子的运动状态由波函数确定或由r (r 为自由度数。
空间自由度和一个自旋自由度)个量子确定。
并且微观粒子能量值和动量值的分离性很显著。
③、宏观体积下,量子态与相体积的关系---半经典近似如果粒子局域于宏观体积下运动,能量值和动量值是准连续的。
若粒子的自由度为r ,一个量子态占据的相体积为rh 。
在相体积元rrdp dp dq dq d ∙∙∙∙= 11τ内的可能微观量子态为rrr r h dp dp dq dq h d ∙∙∙∙= 11τ考虑r=3的六维相空间,相体积元zyxdp dp dxdydzdp d =τ内的微观量子态为33hdp dp dxdydzdp hd zy x =τ二、系统微观运动状态的描述1、全同粒子与近独立粒子系; ①、系统由具有完全相同属性(相同的质量、电荷、自旋等)的同类粒子组成。
热力学与统计物理教案:第六章 近独立粒子的最概然分布

为随机事件 A 出现可能性的客观量度,称为事件 A 发生的概率 PA :
lim PA
N
NA N
PA 0 , A 不可能发生; PA 1, A 肯定发生
显然 0 PA 1 。事实上,试验的次数不可能无限多,但是,只要试验次数足够多,我们就可
以用 NA 来表示事件发生的概率。如掷一质量均匀的硬币,若只掷少数几次,正面向上和背 N
统计物理中讨论的系统是由大量微观粒子组成的,大约有1023 数量级。描述大量粒子组
成的系统的宏观性质的物理量称为宏观量,描述单个粒子性质的物理量称为微观量。 粒子(指微观粒子)的运动状态是指它的力学运动状态。如果粒子遵从经典力学的运动
规律,对粒子运动状态的描述称为经典描述。如果粒子遵从量子力学规律,对粒子运动状态 的描述称为量子描述。当然,从本质上讲,微观粒子遵从量子力学规律,不过在一定极限条 件下,经典理论还是有意义的。 粒子运动状态的经典描述
相体积。 统计物理中的几个例子
(1)自由粒子
当自由粒子在三维空间中运动时,其自由度 3 ,所以相空间是 6 维的,粒子在任一时刻 的位置由坐标 x, y, z 确定,共轭的动量分别为 px mx , py my , pz mz ,
相空间坐标分别为 x, y, z, px , py , pz 。
微观粒子服从量子力学规律。
波粒二象性: 粒子 波
, p k
, p 粒子量,
,
k
波量
普朗克常量 h 1.0551034 J S , 2
量纲: T E L P M
海森堡不确定关系 qp ~ h
经典:粒子沿轨道运动。
量子:无轨道, x, p 不能同时确定。
量子态——量子力学中微观粒子的运动状态。 量子态数的计算,量子态的描述
第六章近独立粒子的最概然分布

S=klnW 并且称k 为玻尔兹曼常数。
§6.1 粒子运动状态的经典描述
1.粒子的运动状态
粒子:指组成宏观物质系统的基本单元。
例如:气体中的分子; 金属中的离子和电子; 辐射场中的光子。
粒子的运动状态是指它的力学运动状态。
pz2 )
等能面:px2 py2 pz2 2m
等能面是动量空间半径为 2m 的球面。
相空间体积(能量小于或等于ε):
dxdydz dpxdpydpz
4 V (2m )3/2
3
③线性谐振子
质量为m的粒子在弹性力 f = -kx 作用下,将在原点附近作圆频率 ω= ������/������ 的简谐振动,称为线性谐振子。
玻
在麦氏速度分布律的基础上,第一次考虑
尔 兹
了重力对分子运动的影响,建立了更全面的玻
曼
尔兹曼分布律,建立了玻尔兹曼熵公式。
dN
n0
(
m
2kT
3
)2
e
(
K
P
)
/
kT dv
x
dv
y dv
z
dxdydz
1877 年玻尔兹曼进一步研究了热力学第二定律的统计解释,
玻尔兹曼写道:“(热力学)第二定律是关于几率的定律,”在
气体中双原子分子的振动,晶体中的原子或离子在平衡位置附 近的振动均可看作是简谐运动。
自由度:1 μ空间维数:2
广义坐标 : q x,
广义动量: p px mx
能量: p2 1 m2x2
第6章 近独立粒子的最概然分布

西北师范大学物理与电子工程学院
6.1
粒子运动状态的经典描述
(2)、线性谐振子(自由度为1)
p2 1 ;能量ε 坐标x;动量p x mx mω2 x 2 2m 2
p
能量椭圆:
p2 x2 1 2ε 2m ε mω2
n=2 n=1 n=0 x
(3)、转子(自由度为2)
坐标θ , φ;动量pθ mr θ , pφ mr sin θ φ;
西北师范大学物理与电子工程学院
6.3
系统微观运动状态的描述
(3)、玻耳兹曼系统、玻色系统、费米系统 玻耳兹曼系统:由可分辨的全同近独立粒子组成,且处在一 个个体量子态上的粒子数不受限制的系统。 玻色系统:由不可分辨的全同近独立玻色子组成,且处在一个 个体量子态上的粒子数不受限制的系统。 费米系统:由不可分辨的全同近独立费米子组成,且处在一个 个体量子态上的粒子数最多只能为1,受泡利不相容原理的限制。
自旋角动量在外磁场方向上的投影Sz只能取两个值: S z 在外磁场方向的投影相应为: Z 在外磁场B中的势能为: μB
e 2m
1 2
e B 2m
将S z 表为S z m S , 描述粒子的自旋状态只 要一个量子数 m s, 1 它只能取两个分立的值 。 2
3
L 量子态数为: dn x dn y dnz dp x dp y dpz 2 π
由测不准关系:pq h 对应μ空间的一个体积元,量子相格。
自由度为r,相格大小为: q1, ,qr p1, ,pr hr
因此dnx dn y dnz 表示:Vdpx dp y dpz除以相格大小 hr而得到的 三维自由粒子在 Vdpx dp y dpz内的量子态数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目 录 退 出
第六章
三、本章研究的系统:
近独立粒子及其最概然分布
近独立粒子组成的系统①粒子:分子、原子、离子、电子、光子等。②近 独立:粒子间有相互作用,但可忽略不计。 四、最概然分布
1、分布:指系统中粒子在能级上的填布情况。 2、最概然分布:也称最可几分布,是概率最大的一种分布。 3、体系有多种不同分布,可以证明,最概然分布出现的概率比其余各 种所有可能分布的概率之和好要大得多,因此,体系绝大部分时间处于 这种分布。故可用最概然分布代替体系处于平衡态式的分布。 4、意义:求得最概然分布以后,可求得体系的统计平衡性质。
③写出系统的哈密顿量
Pi L i q
i L, H H q1 , q2 ,qr;p1 , p2 , pr H Pi q
ii
只有保守力时,哈密顿量就是系统的总能量。 ④研究运动:运动规律有正则方程确定
H H ,q i P i qi pi
上一页
下一页
目 录
退 出
第六章
近独立粒子及其最概然分布
概 论
一、统计物理的基本观点和方法
1、基本观点:①宏观物体是由大量微观粒子组成的。②物质的宏观热 性质是由大量微观粒子运动的集体表现,宏观物理量是相应微观量的 统计平均值。 2、方法:深入到微观,从单个粒子的力学规律以及粒子间的相互作用 出发,对大量粒子组成的体系运用概率统计的方法。 二、任何统计理论要涉及解决的三个问题 1、研究对象是什么-------引入何种假设、模型,如何描述其研究对象的 运动状态(力学、几何) 2、如何求出概率分布-------这是核心。 3、如何求出热力学量的统计表达式。 本章为7、8章作准备,研究解决前两个问题。
结论:确定了系统的r个广义坐标和r个广义动量,就确定了体系的运动状态。
上一页 下一页
目 录 退 出
6.1 二、 空间
粒子运动状态的经典描述
把遵从经典力学规律的粒子看作是具有r个自由度的力学体系时,近独 立粒子的运动状态由粒子r个广义坐标和r个广义动量确定----构成一个 2r维抽象空间,称为空间,也称为粒子相空间。 μ空间中任何一点代表力学体系中一个粒子的一个运动状态,这个点称为 代表点(或相点)。当粒子运动状态随时间改变时,代表点相应地在μ空 间中移动,描画出一条轨迹,称为相轨迹。 ①、相点是一个粒子运动状态,而不是粒子,粒子只能在真实空间运动。 ②、任何粒子总可以找到与其对应的空间,不同自由度的粒子不能用同一 空间描述状态。 ③、若粒子受 i E 的限制,粒子状态只能在能量曲面内,称为相体积。 H H ,q ④、 空间中相轨道不相交,因为在物理问题中 P 是单 q p 值函统计物理学的研究方法
伽尔顿板实验
统计规律性的特点 (1)对大量随机事件整体起作用,对 少量粒子组成的系统失去意义. (2)在一定的宏观条件下,某一时刻 系统处在哪一个微观态是偶然的, 但处于某一微观态的概率是确定 的.改变宏观条件,不仅微观态发 生变化,而且系统处在一微观态的 概率也随之改变. (3)统计规律永远伴随着涨落. (4)宏观系统的演化是不可逆的,过 去和将来不等价, 即统计规律性 对时间反演是不对称的.
上一页 下一页
目 录 退 出
热力学与统计物理学的研究方法
动力学规律: 确定性的理论. 在一定的初始条件下,某一时刻系统必然处于一定状态.
统计规律: 非确定性的理论. 由于宏观系统中粒子数的巨大和粒子相互作用的随即性,无法跟踪单个 粒子进行研究,也使得系统整体具有了不能归结为单个粒子行为简单叠 加的新性质和新规律,即统计性质和统计规律.
上一页
下一页
目 录
退 出
第六章
近独立粒子及其最概然分布
6.1、粒子运动状态的经典描述 6.2、粒子运动状态的量子描述 6.3、系统微观运动状态的描述 6.4、等概率原理 6.5、分布和微观状态 6.6、玻耳兹曼分布 6.7、玻色分布和费米分布 6.8、三种分布的关系
上一页 下一页
目 录 退 出
6.1
i i i i
上一页
下一页
目 录
退 出
6.1
粒子运动状态的经典描述
三、常用粒子的空间及相体积: 1、三维自由粒子:自由度:3;μ空间维数:6
广义坐标: q1 x,q2 y,q3 z ,p2 py my ,p3 pz mz 广义动量: p1 px mx
热力学与统计物理学的研究方法
(热力学)
宏观理论
热现象 宏观量
微观理论
(统计物理学) 热现象 微观量
研究对象 物 理 量
出 发 点 方 法
优 点
观察和实验 总结归纳 逻辑推理
普遍,可靠 不深刻
微观粒子 统计平均方法 力学规律
揭露本质
缺 点
二者关系
无法自我验证
热力学验证统计物理学,统计物理学揭示热 力学本质
x y z
2 m
1
上一页
下一页
目 录
退 出
6.1
粒子运动状态的经典描述
三、常用粒子的空间及相体积:
2、对于一维自由粒子:(自由度为1)
px px
在μ空间中描述一维自由粒 子的方法:
空间:6维抽象空间,相体积元: dxdydzdp x dpy dpz
1 2 2 0 ~ , ( 即: ( px py p z2 ) ) 相体积:粒子在体积V内运动,能量介于 2m
所以粒子在μ空间能达到的相体积为:
3 4 dxdydz dpx dpy dpz V dpx dpy dpz V 2m 2 3 V 0 p2 p2 p2
粒子运动状态的经典描述
一、粒子运动状态的经典描述 若粒子(系统)有r个自由度,则研究方法分为以下几步为: q1 , q2 , qr ①确定描述系统力学运动状态的r个广义坐标: ②写出系统的拉氏函数: L E K - U
E K=E( ; U=U(q1 , q2 ,qr) K q1 , q2 ,qr;p1 , p2 , pr) p1 , p2 , pr为与r个广义坐标q1 , q2 ,qr 相对应的r个广义动量。