钢的锻造温度范围
钨钢锻打温度

钨钢锻打温度
钨钢锻打温度是指进行钨钢锻打工艺时所需要的适宜温度范围。
钨钢作为一种高硬度、高熔点的金属材料,其锻打温度对于锻造工艺的成功与否至关重要。
钨钢的锻打温度通常在1500℃到1600℃之间。
这个温度范围是通过实践经验总结出来的,可以保证钨钢在锻打过程中具有良好的可塑性和延展性。
在这个温度范围内,钨钢的晶粒能够得到良好的排列,从而提高材料的强度和硬度。
锻打温度的选择除了要考虑材料本身的特性外,还要考虑到具体的锻打工艺和要求。
例如,如果需要进行较大变形的锻打工艺,温度可以适当降低,以增加材料的塑性,从而更好地完成锻造任务。
而对于需要较高精度和表面光洁度的锻打工艺,温度可以适当提高,以减少表面缺陷和晶粒生长。
在实际操作中,钨钢锻打温度的控制十分重要。
过高的温度会导致材料的烧结和变形困难,而过低的温度则会导致材料的脆性增加,容易出现裂纹和断裂。
因此,锻打温度的选择应根据具体情况进行合理调整,以保证钨钢锻打的质量和效果。
钨钢锻打温度是钨钢锻打工艺中不可忽视的重要参数。
正确选择和控制锻打温度,可以有效提高钨钢的力学性能和耐磨性能,保证锻件的质量和可靠性。
在实际操作中,应根据具体情况进行合理调整,
以确保锻打过程中材料的可塑性和延展性,使得钨钢锻打工艺达到最佳效果。
金属锻造工艺流程

金属锻造工艺流程金属锻造是一种重要的金属加工工艺,利用力的作用使金属材料发生塑性变形,以改变其形状和尺寸的加工方法。
在金属锻造过程中,通过锻造来提高金属材料的强度、硬度和机械性能。
下面将介绍金属锻造的基本工艺流程。
首先,金属锻造的第一步是选材。
根据生产要求和产品要求,选择合适的金属材料,如低碳钢、高碳钢、不锈钢等。
材料的选择应根据产品的用途、工作环境和经济性来确定,确保产品具有良好的性能。
第二步是热加工。
金属锻造通常要将金属材料加热到适当的温度,使其达到塑性变形的状态。
加热温度的选择取决于金属材料的特性和要求。
一般来说,对于低碳钢和合金钢,锻造温度通常在800℃以上。
第三步是锻造操作。
锻造操作通过施加力量来改变金属材料的形状和尺寸。
通常有两种锻造方法,即手工锻造和机械锻造。
手工锻造主要是通过人工操作完成,适用于小批量生产和复杂形状的产品。
而机械锻造则是通过设备来实现,适用于大规模批量生产的产品。
第四步是冷处理。
在锻造完成后,通常需要对金属制件进行冷却处理,以消除残余应力和改善金属的力学性能。
常见的冷处理方法包括水淬、油淬、空冷等。
第五步是后续加工。
经过锻造和冷处理后,金属锻件通常需要进行后续的加工工序,以达到最终的产品要求。
常见的后续加工工艺有热处理、机加工、表面处理等,以进一步提高产品的性能和精度。
最后一步是质量检验。
在金属锻造过程中,质量检验是非常重要的一步,以确保产品的质量和合格率。
常用的质量检验方法有外观检查、尺寸检测、材料分析等。
综上所述,金属锻造是一种重要的金属加工方法,具有广泛的应用范围。
通过选择合适的材料、热加工、锻造操作、冷处理、后续加工和质量检验等一系列工艺流程,可以实现金属锻造的各项要求,提高产品的质量和性能。
35crmo锻造温度

35crmo锻造温度
摘要:
1.35crmo 钢的概述
2.35crmo 钢的锻造温度
3.35crmo 钢锻造温度的选择原因
4.35crmo 钢锻造过程中的注意点
5.总结
正文:
35crmo 钢是一种高强度、高韧性的合金结构钢,因其优异的机械性能在制造工程中有着广泛的应用。
在锻造这种钢材时,选择合适的锻造温度至关重要。
首先,我们来了解一下35crmo 钢的概述。
35crmo 钢是我国常用的高质合金结构钢之一,其碳含量为0.35%,铬含量为1.0%,钼含量为0.7%。
这种钢材具有较高的强度、韧性及耐磨性,常用于制造轴类、齿轮、模具等重要零件。
接下来,我们来探讨35crmo 钢的锻造温度。
根据相关资料,35crmo 钢的锻造温度范围在1050-1150℃之间。
在这个温度范围内,钢的塑性好,变形抗力适中,有利于获得良好的锻造效果。
那么,为什么35crmo 钢锻造温度的选择如此重要呢?这是因为锻造温度的选择直接影响到钢的组织结构和性能。
如果锻造温度过高,容易导致晶粒粗大,降低钢的韧性和塑性;如果锻造温度过低,钢的变形抗力过大,容易导
致锻件出现裂纹、夹杂等缺陷。
因此,选择合适的锻造温度是保证锻件质量的关键。
在35crmo 钢锻造过程中,还需要注意以下几点:
1) 严格控制锻造温度,避免过热或过冷;
2) 合理选择锻造速度和变形程度,以保证钢的组织结构和性能;
3) 保持锻件冷却速度均匀,以减小内应力;
4) 及时进行锻后热处理,提高钢的力学性能。
总之,35crmo 钢的锻造温度对其质量有着至关重要的影响。
乌兹钢锻打温度

乌兹钢锻打温度
冷却后把坩埚从火中移开,并将其打破,取出半球形的钢锭(ingot). 波斯人称为蛋(egg or baida). 将它放在铁砧上进行锤打,作硬度试验. 经正常铸造的钢锭很硬,经锤打后也不会有凹痕. 故需用特别含有铁锉屑或粉末状铁矿石之粘土混合物覆盖,从而强化钢锭的脱碳. 把钢锭重新加热到火红色约700摄氏度至900摄氏度后,再通过锤打作硬度试验. 重复此热处理过程,直到金属过到足够的软度以便锻造.钢锭之锻炼:将钢锭之温度慢慢降低,并控制在700摄氏度至900摄氏度之间. 这温度是一个非常重要的关键. 铁匠只能靠经验,用眼看火之颜色,到达暗红时进行锻造. 因为若温度升高到900摄氏度以上将会把过程倒过来,而令渗碳体和奥氏体的晶体(crystalsof cementite and austentite)形成. 温度越高,碳熔解,造成晶体及波形花纹图案之损失. 若温度低于700摄氏度,钢即不能得到充份的锻炼. 因为欧洲之铁匠一般在1300摄氏度的高温下来锻炼金属,因此他们永远不能掌握到锻炼大马士革钢的技术.由于对钢锭的有控制式热处理和轻度的锻炼,覆盖的粘土,包括含有铁锉屑或粉末状铁矿石,使钢锭表面脱碳. 另外氧化作用亦产生同样的作用. 钢锭的碳分逐渐减少,从原来的2.2%或更高降低至1.8%,即从白铸铁状态到UH碳钢. 此过程亦可称为退火和球状处理(an annealing and spheroidizing treatment). 令碳成份减少及大的碳化晶体分裂或粉碎或球型化成较少之体积. 结果钢条变得有可展性和有轫性.。
锻造温度

850
8CrV1120源自8005CrNiMo,W1,W2
1100
800
5W2CrSiV,4W2CrSiV,3W2CrSiV,WCrV,W3CrV
1050
850
3W4CrSiV,3W4Cr2V,V,CrMn2SiWMoV,Cr4W2MoV
1100
850
8V
1100
800
4Cr5W2SiV
1150
1200
800
1200
0.3~0.8
15Cr2MnNi2TiA
1180
850
1180
0.3~0.8
16Cr2MnTiA
1200
800
1200
0.3~0.8
18Cr2Ni4WA
1180
850
1180
0.3~0.8
13Ni5A,21Ni5A
1180
850
1180
0.3~0.8
20CrNi3A
1180
850
锻造温度范围是指始锻温度和终锻温度之间的一段温度间隔。确定锻造温度的基本原则是,就能保证金属在锻造温度范围内具有较高的塑性和较小的变形抗力,并得到所要求的组织和性能。锻造温度范围应尽可能宽一些,以减少锻造火次,提高生产率。
碳钢的锻造温度范围如图10(铁-碳状态图)中的阴影线所示。在铁碳合金中加入其他合金元素后,将使铁-碳状态图的形式发生改变。一些元素(如Cr,V,W,Mo,Ti,Si等)缩小r相区,升高A3和A1点;而另一些元素(如Ni,Mn等)扩大r相区,降低A3和A1点。所有合金元素均使S点和E点左移。由此可见,合金结构钢和合金工具钢也可参照铁-碳状态图来初步确定锻造温度范围,但相变点(如熔点,A3,A1,ACm等)则需改用各具体钢号的相变点。
锻压试题

对
错
15
冲压也有冷、热冲压之分。
对
错
16
冲压只适用于金属材料,非金属材料不能冲压。
对
错
17
当冲裁件断面质量要求较高时,应选取较小的凸凹模间隙值。
对
错
18
锻件的冷却是保证锻件质量的重要环节之一。
对
错
19
锻件上直径小于25mm的小孔,一般不宜冲出。
加热温度过高
加热速度太快
保温时间过长
72
以下三种制造齿轮毛坯的方法中,其齿坯力学性能最好的方法是
用等于齿坯直径的圆钢切割
用小于齿坯直径的圆钢镦粗
用等于齿坯厚度的钢板切割
73
有一批15钢中等大小的锻件,锻后应采用
空冷
炉冷
坑冷
74
在保证锻件质量的前提下,应采用快速加热
对
错
75
在条件相同的情况下,低碳钢、中碳钢、高碳钢及合金钢加热时出现裂纹的倾向都一样。
对
错
42
某厂需要生产80000件外圆φ12、内径φ6.5的同轴度要求较高的垫圈,应选用的模具是
简单模
连续模
复合模
43
目前应用最广泛的锻坯加热炉是
手锻炉
反射炉
用的锻坯加热炉是
手锻炉
反射炉
煤气炉
电阻炉
45
坯料的始锻温度超过该材料所允许加热的最高温度,就会产生
过热、过烧
氧化
脱碳
对
错
58
弯曲前工件长度计算应以图纸上工件的哪一种尺寸为准?
外层尺寸
中性尺寸
内层尺寸
59
弯曲时坯料内侧受拉,外侧受压
金属热锻造温度

金属热锻造温度金属热锻造温度是指在金属加工过程中,通过对金属进行加热处理,使其达到适当的温度范围,以便进行锻造。
在不同的金属材料和不同的锻造工艺中,所需要的热处理温度也会有所不同。
本文将从以下几个方面详细介绍金属热锻造温度相关内容。
一、金属热锻造温度的意义金属材料在进行锻造之前需要经过加热处理,这是因为在低温下进行锻造会导致材料脆性增加、塑性降低、易产生裂纹等问题。
而通过加热处理使其达到适当的温度范围后,则能够改善材料的塑性和韧性,提高其变形能力和抗拉强度,并且还能够减少内部应力和缺陷等问题,在一定程度上提高了产品质量和生产效率。
二、影响金属热锻造温度因素1. 金属材料种类不同种类的金属材料具有不同的化学成分和物理特性,在进行加热处理时所需的最佳温度范围也会有所不同。
例如,碳素钢的最佳加热温度为1150℃-1250℃,而铝合金的最佳加热温度则为450℃-550℃。
2. 锻造工艺不同的锻造工艺在进行加热处理时也会有所不同。
例如,自由锻造和模锻造的加热温度范围就存在差异。
自由锻造需要较高的加热温度,通常在材料的回火点以上50℃左右,而模锻造则需要较低的加热温度,在材料回火点以下50℃左右。
3. 加热方式金属材料的加热方式也会对其最佳加热温度产生影响。
一般来说,电阻式加热和气体加热可以更好地控制材料的温度分布和升降速率,因此适用于对材料进行精确控制的情况。
而火焰喷射式或感应式加热则更适用于对大型或复杂形状零件进行快速、均匀、高效的加热处理。
三、常见金属材料的最佳加热温度范围1. 碳素钢碳素钢是一种常见的金属材料,其最佳加热温度范围为1150℃-1250℃。
在这个温度范围内,碳素钢具有较高的塑性和韧性,易于进行变形和成型。
2. 不锈钢不锈钢是一种具有耐腐蚀性能的金属材料,其最佳加热温度范围为1100℃-1200℃。
在这个温度范围内,不锈钢可以更好地保持其抗拉强度和塑性,并且还可以减少内部应力和缺陷等问题。
钢的锻造温度范围

图11 45Mn2钢的过热 图12 30CrMnSiA钢的塑
魏氏组织×100
性图及变形抗力图
由于生产条件不同,各工厂所用的锻造温度范围也不完全相同。合
金结构钢的锻造温度范围见表4。合金结构钢钢锭锻造温度范围见表5。
合金工具钢、弹簧钢和滚珠轴承钢的锻造温度范围见表6。
表4 合金结构钢的锻造温度和加热规范
≤900
4
1240 1260
6.5 1160 800
35CrMnSi40CrMnSiMoV
35~38CrMoAl
1050~ 1100~
≤900
4
1200 1200
6.5 1160 800
25~30Ni
12~37CrNi3 12~20Cr2Ni4
40CrNiMo 35CrNi3W 35CrNi3WV 30~40CrNiW 45CrNiWV 18~25Cr2Ni4W 14CrMnSiNi2Mo
在确定锻造热力学参数时,并不是在任何情况下,都需要上述的所 有资料。当对锻件的组织和性能没有严格要求时,往往只要有塑性图及 变形抗力图就够了。若对锻件的晶粒大小有严格要求,而且在机械性能 方面也有硬性规定时,除状态图、塑性图和变形抗力图之外,还需要参 考再结晶图以及能说明所采用热力规范是否能保证产品机械性能的资 料。
此外,锻件终锻温度与变形程度有关。若最后的锻造变形程度很 小,变形量不大,不需要大的锻压力,即使终锻温度低一些也不会产生 裂纹。故对精整工序、校正工序,终锻温度允许经规定值低50~80℃。
当亚共析钢在A3和A1温度区间锻造时,由于温度低于A3,所以铁素 体从奥氏体中析出,在铁素体和奥氏体两相共存情况下继续进行锻造变 形时,将形成铁素体与奥氏体的带状组织,只是铁素体比奥氏体更细 长,而奥氏体在进一步冷却时(低于A1温度)转变为珠光体,所以室温 下见到铁素体与珠光体沿主要伸长方向呈带状分布。这种带状组织可以 通过重结晶退火(或正火)予以消除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锻造温度范围是指始锻温度到终锻温度见得一段温度区间。
1、确定原则确定钢的锻造温度范围的基本原则是保证金属有较高的塑性和较小的变形抗
力,并得到所要求的组织和性能。
锻造温度范围应尽可能宽一些,以减少锻造火次,提高生产效率。
(1)坯料在锻造过程中具有良好的塑性和较低的变形抗力
(2)锻件具有良好的内部组织和力学性能
(3)减少加热火次,节约燃料,提高生产率。
2、基本方法确定钢的锻造温度范围的基本方法是以铁碳状态图为基础,参照塑性图、变
形抗力图、再结晶图,以塑性、变形抗力和保证锻件质量三个主要方面来分析确定锻造温度范围,并通过各种实验和生产时间来进行验证、修改。
如下图
加热毛坯的大小、运送毛坯的方法及机械化程度的不同以及加热炉与锻压设备间距的不一样,毛坯有几摄氏度到几十摄氏度的温降,因此,在这段时间内,应尽可能减少毛坯的温降。
始锻温度高,变形抗力减小,锻压设备的吨位或压力可以小些。
但加热温度过高,接近熔点,会出现过烧现象。
如果金属加热的最高温度略低于过烧的温度,但加热的时间长,则会出现过热现象。
因此,最高加热温度应低于过热温度。
钢的过烧温度约比熔点低100~150℃,过热温度又比过烧温度低约50℃,所以最高加热温度应比熔点低150~200℃。
例如,低碳钢的熔点在1500℃左右,最高加热温度可取1300℃。
高碳钢因含碳量增加,熔点降低。
合金钢因合金元素的成分或含量增加,其熔点也随之降低。
所以始锻温度也应相应降低。