七年级数学第五章练习题

合集下载

数学七年级下册第五章

数学七年级下册第五章

数学七年级下册第五章一、选择题(每题3分,共30分)下列各式中,属于整式的是()A. x+x1B. 3x2−2xy+y2C. xD. x+1x下列合并同类项的结果中,正确的是()A. 3x+2x=5B. 2x2−x2=1C. 7x−x=6D. x2y−yx2=0下列说法正确的是()A. a6的系数是1B. 单项式−2πab2的次数是3C. 多项式2x2−3x+1是三次三项式D. x2+y2与x+y2是同类项下列去括号正确的是()A. a−(b−c)=a−b−cB. a+(b+c−d)=a−b−c+dC. a−2(b−c)=a−2b+2cD. −(a−b)+c=−a+b+c若多项式x2−kx−15因式分解的结果是(x+3)(x−5),则k的值为()A. −2B. 2C. −8D. 86-10题略...二、填空题(每题4分,共20分)若单项式2x2y与−5xyn是同类项,则n= _______。

若多项式3x2−kx−8分解因式得(3x+4)(x−2),则k= _______。

已知(x+3)(x+n)=x2+(n+3)x+21,则n= _______。

去括号:a−2(b−c)= _______。

若A=2x2−ax−y+6,B=−bx2+3x−5y−1,且A+2B中不含x项,则a+2b= _______。

三、解答题(共50分)合并同类项:(1)3a+2b−5a+b(2)5x2y−3xy2+7x2y−xy2+1先化简,再求值:(1)(2x2−x)−2(x2−3x),其中x=−1(2)3a2−[5a−(2a−3)+2a2],其中a=−21已知多项式A=3x2−5x+1,B=2x2+3x−1,求:(1)A−B(2)当x=−1时,求A−B的值。

若关于x的多项式x2+3kxy−3y2+xy−8不含xy项,求k的值。

已知多项式A=(x+1)2−x(x−2)。

(1)化简多项式A。

(2)若(x+2)A+B=x3+5x2+8x+4,求B。

2022-2023学年北师大版数学七年级下册第五章生活中的轴对称 章节练习

 2022-2023学年北师大版数学七年级下册第五章生活中的轴对称 章节练习

试卷第1页,共6页 第五章生活中的轴对称 章节练习 北师大版数学七年级下册一、单选题1.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点 2.如图,若△ABC 与111A B C △关于直线MN 对称,1BB 交MN 于点O ,则下列说法不一定正确的是( )A .11AC A C =B .1BO B O =C .1CC MN ⊥D .11AB B C ∥3.下面由北京冬奥会比赛项目图标组成的四个图形中,可看作轴对称图形的是( )A .B .C .D .4.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D .5.下列图形中,是轴对称图形的是( )试卷第2页,共6页A .B .C .D .6.北京2022年冬奥会会徽如图所示,组成会徽的四个图案中是轴对称图形的是( )A .B .C .D .7.下列四幅照片中,主体建筑的构图不对称的是( )A .B .C .D .8.下列润滑油1ogo 标志图标中,不是..轴对称图形的是( ) A . B . C . D .9.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有( )A .2条B .4条C .6条D .8条10.冬季奥林匹克运动会是世界上规模最大的冬季综合性运动会,下列四个图是历届冬奥会图标中的一部分,其中是轴对称图形的为( )试卷第3页,共6页 A . B . C .D .11.如图,在由小正方形组成的网格图中再涂黑一个小正方形,使它与原来涂黑的小正方形组成的新图案为轴对称图形,则涂法有( )A .1种B .2种C .3种D .4种12.下列体现中国传统文化的图片中,是轴对称图形的是( )A .B .C .D .二、填空题13.如图,将一张宽度相等的纸条折叠,折叠后的一边与原边的夹角是140°,则a 的度数是______.14.如图,在3×3的正方形网格中有两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形构成一个轴对称图形,那么涂法共有________种.试卷第4页,共6页15.小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数是________.16.如图,图1是长方形纸带,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,若图3中108CFE ∠=︒,则图1中的DEF ∠的度数是______.三、解答题17.请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图△,四边形ABCD 中,AB=AD ,∠B=∠D ,画出四边形ABCD 的对称轴m ;(2)如图△,四边形ABCD 中,AD△BC ,∠A=∠D ,画出边BC 的垂直平分线n .18.如图,△ABC 中,△ABC 与△ACB 的外角的平分线相交于点E ,且△A =60°.试卷第5页,共6页(1)△若△ABC =40°,则△E =________;△若△ABC =100°,则△E =________.(2)嘉嘉说△E 的大小与△B 的度数无关,你认为他说得对吗?请说明理由.19.如图,△ABC 和△ADE 关于直线MN 对称,BC 与DE 的交点F 在直线MN 上.(1)图中点C 的对应点是点 ,△B 的对应角是 ;(2)若DE =5,BF =2,则CF 的长为 ;(3)若△BAC =108°,△BAE =30°,求△EAF 的度数.20.已知长方形纸片ABCD , E 、F 分别是AD 、AB 上的一点,点I 在射线BC 上、连接EF 、FI ,将A ∠沿EF 所在的直线对折,点A 落在点H 处,B ∠沿FI 所在的直线对折,点B 落在点G 处.(1)如图1,当HF 与GF 重合时,则EFI ∠=_________°;(2)如图2,当重叠角30HFG ∠=︒时,求EFI ∠的度数;(3)如图3,当GFI EFH αβ∠=∠=,时,GFI ∠绕点F 进行逆时针旋转,且GFI ∠总有试卷第6页,共6页一条边在EFH ∠内,PF 是GFH ∠的角平分线,QF 是EFI ∠的角平分线,旋转过程中求PFQ ∠的度数(用含α,β的式子表示).答案第1页,共1页参考答案:1.B2.D3.D4.C5.B6.D7.B8.C9.B10.A11.C12.B13.70°##70度14.515.45°16.24°##24度17.(1)见解析;(2)见解析;18.(1)△30°;△30°(2)嘉嘉说得对,理由见解析19.(1)E ,△D(2)3(3)△EAF =39°20.(1)90︒;(2)75EFI ∠=︒; (3)2αβ-.答案第2页,共1页。

人教版七年级数学下册第五章测试题(含答案)

人教版七年级数学下册第五章测试题(含答案)

农村管理创新探讨随着城市化的推进和农村经济的快速发展,农村管理面临着新的挑战和需求。

如何利用现代科技和管理理念,提升农村管理水平,助力农村发展,成为亟待解决的问题。

本文将从不同角度出发,探讨农村管理的创新。

一、数字农村建设随着信息技术的迅猛发展,数字化已经成为农村管理的关键词之一。

数字农村建设将现代化技术引入到农村,实现农村基础设施的信息化和智能化。

通过建设农村信息化平台,实现数据的互通共享,可以提高资源的配置效率,并为农村发展提供积极支持。

二、贫困农村的创新案例在农村管理创新的过程中,贫困地区的农村发展是重点和难点。

为了解决贫困问题,一些地方政府和社会组织提出了一些创新案例。

例如,通过发展特色农业和乡村旅游,传统贫困地区的农民可以增加收入。

此外,推动农民参与农产品加工和电商平台的建设,也为贫困地区农民创造了更多就业机会。

三、农村土地管理农村土地管理一直是一个复杂而重要的问题。

传统的土地占有权和承包权制度已经无法满足现代农村管理的需求。

一些地方已经开始尝试土地流转和农地集体经营的改革,以适应现代产业发展的需求。

改革可以通过确保农民权益和保护农村环境等方面,推动农村土地资源的更加合理利用。

四、农村金融服务创新传统金融服务往往难以满足农村的需求,例如小额贷款和农民保险等。

现代金融服务的创新可以提供更多种类的金融产品和服务,满足农村发展的多样化需求。

例如,一些地方政府和金融机构合作,成立农村金融合作社,为农民提供方便快捷的金融服务。

五、农村社会组织建设农村社会组织是促进农村管理创新的重要力量。

传统的村民自治组织在一些地方存在效率低下和权力滥用等问题。

为了解决这些问题,一些地方政府开始鼓励和支持农村社会组织的建设。

通过培育和引导有效的农村社会组织,可以提高村民的自治能力,推动农村管理的创新。

六、农村教育创新农村教育是农村人才培养和农村社会发展的重要基础。

农村教育普及和教师素质提升一直是农村管理创新的重要方向。

七年级数学下册《第五章分式》练习题-附答案(浙教版)

七年级数学下册《第五章分式》练习题-附答案(浙教版)

七年级数学下册《第五章分式》练习题-附答案(浙教版)一、选择题1.若分式x +12-x有意义,则x 满足的条件是( ) A.x ≠-1 B.x ≠-2 C.x ≠2 D.x ≠-1且x ≠22.若分式2x +63x -9的值为零,则x 等于( ) A.2 B.3 C.-3 D.3或-33.与分式﹣11-x的值相等的是( ) A.﹣1x -1 B.﹣11+x C.11+x D.1x -14.下列约分正确的是( ) A.B. =﹣1C. =D. =5.下列分式中,最简分式是( )A.x 2-1x 2+1B.x +1x 2-1C.x 2-2xy +y 2x 2-xyD.x 2-362x +126.下列运算结果为x -1的是( )A.1-1xB.x 2-1x ·x x +1C.x +1x ÷1x -1D.x 2+2x +1x +17.化简a 2a -1-1-2a 1-a的结果为( ) A.a +1a -1B.a -1C.aD.1 8.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-39.施工队要铺设1 000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务,设原计划每天施工x 米,所列方程正确的是( )A.1 000x -1 000x +30=2B.1 000x +30-1 000x =2C.1 000x -1 000x -30=2D.1 000x -30-1 000x=2 10.若﹣2<a ≤2,且使关于y 的方程y +a y -1+2a 1-y =2的解为非负数,则符合条件的所有整数a 的和为( )A.﹣3B.﹣2C.1D.2二、填空题11.要使分式1x -1有意义,x 的取值应满足 . 12.当x =1时,分式x x +2的值是________. 13.把分式a +13b 34a -b 的分子、分母中各项系数化为整数的结果为________. 14.方程2x +13-x =32的解是 . 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.在小学阶段,我们知道可以将一个分数拆分成两个分数的和(差)的形式,例如,=. 类似地,我们也可以把一个较复杂的分式拆分成两个较简单,并且分子次数小于分母次数的分式的和或者差的形式.例如=,仿照上述方法,若分式可以拆分成的形式,那么 (B +1)﹣(A +1)= .三、解答题17.化简:x -2x -1·x 2-1x 2-4x +4-1x -2.18.化简:(1-2x -1)·x 2-xx 2-6x +9.19.解分式方程:xx -1﹣2x =1;20.解分式方程:32x -4﹣xx -2=12.21.化简(xx -1 - 1 x 2-1 )÷x 2+2x +1x 2 ,并从-1,0,1,2中选择一个合适的数求代数式的值。

北师大版七年级上册数学第五章一元一次方程应用题专项练习(附答案)

北师大版七年级上册数学第五章一元一次方程应用题专项练习(附答案)
北师大版七上数学第五章一元一次方程应用题专项练习
一、解答题
1.某人计划骑车以每小时 12 千米的速度由 A 地到 B 地,这样便可以在规定的时间到达 B 地,但他因有事将原计划 出发的时间推迟了 20 分钟,便只好以每小时 15 千米的速度前进,结果比规定时间早 4 分钟到达 B 地,求 A、B 两 地间的距离.(列方程解应用题)
(2)如果小聪行走的速度是 4 千米/小时,那么到几时几分,小明与小聪相距 3 千米?
21.列方程解应用题 为了迎接比赛,七年级学生准备买一些器材,现了解情况如下:甲乙两家商店出售同样品牌的乒乓球和球拍,乒乓 球拍每副定价 20 元,乒乓球每盒定价 5 元,经洽谈后,甲店:每买一副球拍赠一盒乒乓球;乙店按定价的九折优惠, 该班需购买球拍 4 副,乒乓球若干盒(不少于 4 盒).若你是负责人,你会决定到哪家商店购买?说明理由.
16.某行军纵队以 7 千米/时的速度行进,队尾的通讯员以 11 千米/时的速度赶到队伍前送一封信,送到后又立即返回 队尾,共用 13.2 分钟,求这支队伍的长度.
23.已知线段 AB,延长 AB 到点 C,使 ‫ﳀ‬
‫ ﳀ‬,D 为 AC 的中点,若 BD=3cm,求线段 AB 的长.
17.列方程解应用题:登山运动是最简单易行的健身运动,在秀美的景色中进行有氧运动,特别是山脉中森林覆盖率 高,负氧离子多,真正达到了身心愉悦的进行体育锻炼。张老师和李老师登一座山,张老师每分钟登高 10 米,并且 先出发 30 分钟,李老师每分钟登高 15 米,两人同时登上山顶,求这座山的高度。
7.一个角的余角比这个角的补角的一半还少 40°,求这个角的度数.
8.从甲地到乙地,公共汽车原需行驶 7 个小时,开通高速公路后,车速平均每小时增加了 20 千米,只需 5 个小时即 可到达,求甲、乙两地的路程.

第五章5.1.2等式的性质同步练习2024-2025学年人教版数学七年级上册

第五章5.1.2等式的性质同步练习2024-2025学年人教版数学七年级上册

课题: 5.1.2等式的性质一.选择题(共8小题)1.如果a =b ,那么下列等式一定成立的是( ) A .B .a =﹣bC .D .ab =12.根据等式的性质,若等式m =n 可以变形得到m +a =n ﹣b ,则a 、b 应满足的条件是( ) A .互为相反数 B .互为倒数C .相等D .a =0,b =03.下列选项中,能表示如图所示的事实的是( )A.如果a=b ,则2a=2bB.如果a=b ,则a-c=b+cC.如果a=b ,则a+c=b+cD.如果a=b ,则()0≠=c cbc a 4.下列运用等式的性质对等式进行的变形中,错误的是( ) A .若a =b ,则=B .若a =b ,则ac =bcC .若a (x 2+1)=b (x 2+1),则a =b D .若x =y ,则x ﹣3=y ﹣3 5.若3a =2b +4,则下列等式不一定成立的是( ) A .3a ﹣4=2bB .3a +1=2b +5C .3ac =2bc +4D .6.我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.若设牧童有x 人,根据题意可列方程为( ) A .6x +14=8x B .6(x +14)=8x C .8x +14=6xD .8(x ﹣14)=6x7.在3x =3y ,x +4=4+y ,7﹣2x =7﹣2y ,3x ﹣1=2y +2中,根据等式的性质变形能得到x =y 的个数为( ) A .1B .2C .3D .48.如图,天平中的物体a 、b 、c 使天平处于平衡状态,则物体a 与物体c 的重量关系是( )A .2a =3cB .4a =9cC .a =2cD .a =c二.填空题(共6小题)9.用适当的数或式子填空,使所得的结果仍是等式,并说明理由. (1)如果7x ﹣9=12,那么7x =12+ ,根据 ; (2)如果﹣4x =16,那么x = ,根据 ; (3)如果x +=y ﹣0.75,那么x = ,根据 ; (4)如果=2,那么x = ,根据 .10.在物理学中,压强p 与物体所受的压力F 、物体的受力面积S 之间有如下关系:SF p .由此可以得到F=pS,那么其变形的依据是 。

人教版数学七年级下册第五章《相交线与平行线》周练习含答案

人教版数学七年级下册第五章《相交线与平行线》周练习含答案

人教版数学七年级下册第五章《相交线与平行线》周练习第五章相交线与平行线周周测1一选择题1. 如图:下列四个判断中,正确的个数是().①的内错角只有②的同位角是③的同旁内角是..④图中的同位角共有个A. 个B. 个C. 个D. 个2.如图,已知于点,点..在同一直线上,且,则为().A.B.C.D.3.如图,直线相交于点 ,射线平分 , ,若,则的度数为().A.B.C.D.4.如图,直线.被直线所截,则的同旁内角是()A.B.C.D.5.如图,与是内错角的是()A.B.C.D.6.如图,与是()A. 对顶角B. 同位角C. 内错角D. 同旁内角7.已知两条平行线被第三条直线所截,则以下说法不正确的是()A. 一对同位角的平分线互相平行B. 一对内错角的平分线互相平行C. 一对同旁内角的平分线互相平行D. 一对同旁内角的平分线互相垂直8.如图,直线相交于点,于,若,则不正确的结论是()A.B.C.D.9.如果点在直线上,也在直线上,但不在直线上,且直线..两两相交符合以上条件的图形是()A.B.C.D.10.如图两条非平行的直线被第三条直线所截,交点为,那么这条直线将所在平面分成()A. 个部分B. 个部分C. 个部分D. 个部分11.如图,若两条平行线,与直线,相交,则图中共有同旁内角的对数为()A.B.C.D.12.若点到直线的距离为,点到直线的距离为,则线段的长度为()A.B.C. 或D. 至少13.如图,在平面内,两条直线,相交于点,对于平面内任意一点,若,分别是点到直线,的距离,则称为点的“距离坐标”.根据上述规定,“距离坐标”是的点共有()个.A. 个B. 个C. 个D. 个14.如图,两条直线,交于点,射线是的平分线,若,则等于()A.B.C.D.15.如图,点是直线外的一点,点在直线上,且,垂足是,,则下列不正确的语句是()A. 线段的长是点到直线的距离B. 线段的长是点到直线的距离C. 三条线段中,最短D. 线段的长是点到直线的距离二填空题16.如图,与相交于点,,,则度.17.如图,在菱形中,点是对角线上的点,于点,若,则到的距离为.18.如图,标有角号的个角中共有对内错角,对同位角,对同旁内角.19.四条直线两两相交,至多会有个交点.20.如图,,,,则度.三解答题21.如图,图中共有多少对同位角,多少对内错角,多少对同旁内角.22.如图,用数字标出的八个角中,同位角.内错角.同旁内角分别有哪些?请把它们一一写出来.23.如图,直线..两两相交,射线平分,已知,,求的度数.第五章相交线与平行线周周测1 参考答案与解析一、选择题1.C2.B3.C4.C5.D6.B7.C8.C9.D 10.C 11.D 12.D13.D 解析:依题意,作与l1平行且距离为2的直线两条,作与l2平行且距离为1的直线两条,两组平行线的交点即为所求,共4个点符合题意.14.C 15.B二、填空题16.36 17.3 18.4 2 4 19.6 20.55三、解答题21.解:有6对同位角,4对内错角,4对同旁内角.22.解:同位角:∠2与∠8,∠3与∠7,∠4与∠6;内错角:∠1与∠4,∠2与∠6,∠3与∠5,∠4与∠8,;同旁内角:∠2与∠4,∠2与∠5,∠3与∠6,∠4与∠5.23.解:∵BE平分∠ABD,∠2=75°,∴∠ABE=∠2=75°,∴∠1=180°-∠ABE=∠2=180°-75°-75°=30°.∵∠1=3∠3,∴∠3=25°.∵∠3与∠4是对顶角,∴∠4=∠3=25°.第五章相交线与平行线周周测2一选择题1.如图,已知直线a,b被直线所截,那么的同位角是()A.B.C.D.2. 如图,已知三条直线,,相交于一点,则等于().A. °B. °C. °D. °3.将一副三角板按图中方式叠放,则角的度数是().A.B.C.D.4.如图,下列叙述正确的是().A. 和是内错角B. 和是同位角C. 和是同位角D. 和是同旁内角5.如图,直线,被直线所截,则的同旁内角是()A.B.C.D.6.如图:下列四个判断中,正确的个数是().①的内错角只有②的同位角是③的同旁内角是,,④图中的同位角共有个A. 个B. 个C. 个D. 个7.甲.乙.丙.丁四个学生在判断时钟的分针与时针互相垂直的时,他们每个人都说两个时间,说对的是()A. 丁说时整和时整B. 丙说时整和时分C. 乙说点分和点分D. 甲说时整和点分8.如图,直线相交于点,于,若,则不正确的结论是()A.B.C.D.9.如图,若两条平行线,与直线,相交,则图中共有内错角的对数为()A.B.C.D.10.如图,能表示点到直线的距离的线段共有()A. 条B. 条C. 条D. 条11.在一个平面上任意画条直线,最多可以把平面分成的部分是()A.B.C.D.12.如图,点是直线外的一点,点在直线上,且,垂足是,,则下列不正确的语句是()A. 线段的长是点到直线的距离B. 线段的长是点到直线的距离C. 三条线段中,最短D. 线段的长是点到直线的距离二填空题13.如图,与相交于点,,,则度.14.如图,,于,图中共有_______个直角,图中线段______的长表示点到的距离,线段_________的长表示点到的距离.15.如图,的内错角有个.16.如图,,,,则度.三解答题17.如图,图中共有多少对同位角,多少对内错角,多少对同旁内角.18.如图,用数字标出的八个角中,同位角.内错角.同旁内角分别有哪些?请把它们一一写出来.19.如图,直线,,相交于点,平分,,.求的度数.第五章相交线与平行线周周测2 参考答案与解析一、选择题1.A2.C3.D4.A5.C6.C7.A8.C9.D 10.D 11.C 12.B二、填空题13.36 14.3 CD AC 15.3 16.55三、解答题17.解:有6对同位角,4对内错角,4对同旁内角.18.解:同位角:∠2与∠8,∠3与∠7,∠4与∠6;内错角:∠1与∠4,∠2与∠6,∠3与∠5,∠4与∠8,;同旁内角:∠2与∠4,∠2与∠5,∠3与∠6,∠4与∠5.19.解:∵,,∴∠DOE=180°-∠1-∠2=180°-30°-45°=105°.∵∠DOE与∠COF是对顶角,∴∠COF=105°.∵平分,∴∠3=∠FOG=105°÷2=52.5°.第五章相交线与平行线周周测3一选择题1. 如图,已知∠1=∠2,则下列结论一定成立的是()A.AB//CD B.AD//BC C.∠B=∠D D.∠3=∠42. 下列图形中,能由∠1=∠2得到AB//CD的是()A.B. C.D.3. 如图,能判定的条件是()A.B.C.D.4. 对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=180°5. 如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB∥CD的条件个数有()A.1个B.2个C.3个D.4个6. 如图,下列条件中,不能判断直线∥的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°7. 如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70° B.∠2=100° C.∠2=110° D.∠3=110°8. 如图,用两个相同的三角板按照如图方式作平行线,能解释其中道理的定理是()A.同位角相等两直线平行B.同旁内角互补,两直线平行C.内错角相等两直线平行D.平行于同一条直线的两直线平行9. 如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A+∠ACD=180°C.∠ACE=∠DCE D.∠A=∠ACE10. 如图,下列能判定AB∥CD的条件有().(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个11. 过一点画已知直线的平行线,则( )A.有且只有一条B.有两条C.不存在D.不存在或只有一条12. 如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180 o D.∠3+∠4=180 o二填空题13. 如图,两直线a.b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a.b的位置关系是____________ .14. 在同一平面内,_____________________叫作平行线.15. 如图,直线a、b被直线c所截,若满足,则a、b平行(写出一个即可).16. 已知为平面内三条不同直线,若,,则与的位置关系是.三解答题17. 看图填空:如图,∠1的同位角是,∠1的内错角是,如果∠1=∠BCD,那么,根据是;如果∠ACD=∠EGF,那么,根据是.18. 如图,已知∠1=∠2,AC平分∠DAB,试说明DC∥AB.19.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.20.如图,已知:∠B=∠D+∠E,试说明:AB∥CD.第五章相交线与平行线周周测3 参考答案与解析一、选择题1.B2.D3.D4.D5.C6.B7.C8.C9.D 10. C 11.D 12.D二、填空题13.平行14.不相交的两条直线15.∠1=∠2(答案不唯一)16.平行三、解答题17.∠EFG ∠BCD,∠AED DE∥BC 内错角相等,两直线平行CD∥GF 同位角相等,两直线平行18. 解:∵AC平分∠DAB,,∴∠1=∠CAB.∵∠1=∠2,∴∠CAB=∠2,∴DC∥AB.19. 证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF.∵∠C=∠D,∴∠D=∠CEF,∴BD∥CE.20..解:过点E向右作EM//CD,则∠D=∠DEM.∵∠B=∠D+∠E,第五章相交线与平行线周周测4一选择题1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等12第1题图第2题图第3题图2.如图,梯子的各条横档互相平行,若∠1=70°,则∠2的度数是()A.80°B.110°C.120°D.140°3.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ) A .∠3=∠4B .∠1=∠2C .∠D =∠DCE D .∠D +∠ACD =180°4.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐130°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次左拐50° 5.如图,下列说法中,正确的是( ) A .因为∠A +∠D =180°,所以AD ∥BC B .因为∠C +∠D =180°,所以AB ∥CD C .因为∠A +∠D =180°,所以AB ∥CDD .因为∠A +∠C =180°,所以AB ∥CD 第5题图 二 填空题6.在同一平面内,如果直线b 和c 都与直线a 垂直,那么直线b 和c的位置关系是 . 7.如图,已知∠1=∠2,由此可得 ∥ .第7题图 第8题图8.如图,已知直线、被直线所截,∠1=60°, 则当∠2= °时,∥. 9.如图,小明利用两块相同的三角板,分别在三角板的边缘画直线和,这是根据________________,两直线平行.第9题图 第10题图10.如图,直线a 、b 与直线c 相交,给出下列条件:①∠1=∠2; ②∠4=∠6; ③∠4+∠7=180°; ④∠5+∠3=180°.其中能判断a ∥b 的条件是 (只填序号). 三 解答题11.如图,已知∠1=70°,∠2=110°,请用三种方法判定AB ∥DE.a b c a b AB CD12.已知:如图,CE平分∠ACD,∠1=∠2.求证:AB∥CD.第五章相交线与平行线周周测4 参考答案与解析一、选择题1.A2.B3.B4.D5.C二、填空题6.平行7.AD BC8.1209.内错角相等10.①③④三、解答题11. 解:(1)∵∠1=70°,∴∠AFC=180°-70°=110°.∵∠2=110°,∴∠AFC=∠2,∴AB//DE.(2)∵∠1=70°,∴∠BFD=180°-70°=110°.∵∠2=110°,∴∠BFD=∠2,∴AB//DE.(3)∵∠1=70°,∴∠AFD=70°.∵∠2=110°,∴∠AFD+∠2=180°,∴AB//DE.12.证明:∵CE平分∠ACD,,∴∠2=∠DCE.∵∠1=∠2,∴∠DCE=∠1,∴AB ∥CD.第五章 相交线与平行线周周测5一 选择题1.如果相等的两个角的一边在一条直线上,另一边互相平行,那么这两个角( ) A.相等 B.互补 C.相等或互补 D.不能确定2.如图,∠1和∠2互补,那么图中平行的直线是( ) A.b a // B.d c // C.e d // D.e c //第2题图 第4题图3.下列条件中,能得到互相垂直的是( )A.对顶角的平分线B.邻补角的平分线C.平行线的内错角的平分线D.平行线的同位角的平分线 4.如图,n m //,那么∠1.∠2.∠3的关系是( )A.∠1+∠2+∠3=360°B.∠1+∠2-∠3=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°5.一辆汽车在直路上行驶,两次拐弯后,仍按原来的方向行驶,那么这两次拐弯时( ) A.第一次向右拐30°,第二次向右拐30°B.第一次向右拐30°,第二次向右拐150°C.第一次向左拐30°,第二次向右拐150°D.第一次向左拐30°,第二次向右拐30° 6.下列命题中,是假命题的是( )A.同旁内角互补B.对顶角相等C.直角的补角仍然是直角D.两点之间,线段最短7.如图,在三角形ABC中,BC=5,∠A=70°,∠B=75°,把三角形ABC沿直线BC的方向平移到三角形DEF的位置.若CF=3,则下列结论中错误的是 ( ) A.DF=5 B.∠F=35°C.BE=3 D.AB∥DE8.如图,将周长为10个单位的三角形ABC沿边BC向右平移2个单位得到三角形DEF,则四边形ABFD周长为()A.12B.14C.16D.18第8题图第9题图第10题图9.如图是一块长方形ABCD的场地,AB=102m,AD=51m,从A.B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m210.如图,O是正六边形ABCDEF的中心,下列图形:三角形OCD;三角形ODE;三角形OEF;三角形OAF;三角形OAB.其中可由三角形OBC平移得到的有()A.1个B.2个C.3个D.4个二填空题11.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC周长为16cm,则四边形ABFD周长为.第13题图第14题图第15题图12.如图,长方形ABCD的边AB=10,BC=6,则图中四个小长方形的周长和为.13.如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/s的速度沿着A→B方向移动,则经过 s,平移后的长方形与原来长方形重叠部分的面积为24 . 14.如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF= .15.“两数之和始终是正数”是________命题(填“真”或“假”).16.把命题“平行于同一条直线的两条直线互相平行”改写成“如果……,那么……”的形式为_______________________________________________.17.如图,是我们生活中经常接触的小刀,刀片的外形是一个直角梯形,刀片上.下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=度.第17题图第18题图18.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论有(只填序号).三解答题19.如图,点A在直线MN上,且MN//BC.求证:∠BAC+∠B+∠C=180°.M A NB C20.如图,M,N,T和P,Q,R分别在同一直线上,且∠1=∠3,∠P=∠T.求证:∠M=∠R.21.如图,直线m⊥l,n⊥l,∠1=∠2.求证:∠3=∠4.22.已知,如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,试判断BF与AC的位置关系,并说明理由.第五章相交线与平行线周周测5 参考答案与解析一、选择题1.C2.D3.D4.B5.D6.A7.A8.B9.C 10.B二、填空题11.20 12.32 13.3 14.30°15.假16.如果两条直线平行于同一条直线,那么这两条直线互相平行17. 90 18.①②③三、解答题19.证明:∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC.∵∠BAC+∠MAB+∠NAC=180°,∴∠BAC+∠B+∠C=180°.20.证明:∵∠1=∠3,∠1=∠2,∴∠2=∠3,∴PN∥QT,∴∠T=∠MNP.∵∠P=∠T,∴∠P=∠MNP,∴PR∥MT,∴∠M=∠R..21.证明:∵m⊥l,n⊥l,∴m∥n,∴∠1=∠4,∠,2=∠3.∵∠1=∠2,∴∠3=∠4.22.解:BF⊥AC.理由如下:∵∠AGF=∠ABC,∴FG∥BC,∴∠1=∠3.∵∠1+∠2=180°,∠3+∠2=180°,∴BF∥DE,∴∠BFC=∠DEC.∵DE⊥AC,∴∠DEC=90°,∴∠BFC=90°,∴BF⊥AC.第五章相交线与平行线周周测6一选择题1. 下列命题正确的是( )A.两直线与第三条直线相交,同位角相等B.两直线与第三条直线相交,内错角相等C.两直线平行,内错角相等D.两直线平行,同旁内角相等2.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=23°,则∠2的度数是()A.23°B.22°C.37°D.67°3.如图,AB∥CD,点E在CB的延长线上.若∠ABE=70°,则∠ECD的度数为()A.20°B.70°C.100°D.110°4.如图,∠B=∠C,AD∥BC,∠BAC=100°,则∠CAD的度数是()A.30°B.35°C.40°D.50°5.如图,已知AB∥CD,EA是∠CEB的平分线,若∠BED=40°,则∠A的度数是()A.40°B.50°C.70°D.80°6.如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A.40°B.45°C.50°D.60°7.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A.30°B.45°C.60°D.75°8. 如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140°D.170°9.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3 B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°10.如图,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A.45°B.40°C.35°D.30°11. 如图,点D是三角形ABC的边AB的延长线上一点,BE∥AC.若∠C=50°,∠DBE=60°,则∠CBD的度数等于()A.120°B.110°C.100°D.70°12.如图,AB∥ED,则∠A+∠C+∠D=( )A.180°B.270°C.360°D.540°二填空题13. 如图,已知AB//DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为.14.如图,已知AD∥BE,∠DAC=29°,∠EBC=45°,则∠ACB= °.15.如图,已知AB∥CD,∠1=130°,则∠2= .16.如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠EGF= °.三解答题17. 如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H. ∠GFH+ ∠BHC=180°.求证:.18.如图,已知∠B=∠C,AD∥BC,求证:AD平分∠CAE.19.如图,已知AB//CD,分别写出下列四个图形中,∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以证明.20.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知),∠2=∠DGF(),∴∠1=∠DGF,∴BD∥CE(),∴∠3+∠C=180º().又∵∠3=∠4(已知),∴∠4+∠C=180º,∴∥DF(同旁内角互补,两直线平行),∴∠A=∠F().第五章相交线与平行线周周测6 参考答案与解析一、选择题1.C2.C3.D4.C5.C6.C7.D8.C9.D 10.D 11.B 12.C二、填空题13.45°14.74 15.50°16.32三、解答题17.证明:∵BD平分∠ABC,∴∠2=∠ABD.∵∠GFH+∠BHC=180°,∠FHD=∠BHC,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD.∵∠2=∠ABD,∴∠1=∠2.18.证明:∵AD∥BC,∴∠2=∠B,∠1=∠C.∵∠B=∠C,∴∠1=∠2,∴AD平分∠CAE.19.解:(1)∠P=360°-∠A-∠C.(2)∠P=∠A+∠C.(3)∠P=∠C-∠A.(4)∠P=∠A-∠C.若选(3),证明如下:过点P向左作PQ∥AB,则∠A=∠APQ.∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∴∠CPA=∠CPQ-∠APQ=∠C-∠A.20.对顶角相等同位角相等,两直线平行两直线平行,同旁内角互补AC 两直线平行,内错角相等第五章相交线与平行线周周测7一选择题1.将图①所示的图案通过平移后可以得到的图案是()A B C D 图①2.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A. 先向下移动1格,再向左移动1格B. 先向下移动1格,再向左移动2格C. 先向下移动2格,再向左移动1格D. 先向下移动2格,再向左移动2格第2题图第3题图3.如图,已知三角形ABC的面积为8,将三角形ABC沿BC的方向平移到三角形A’B’C’的位置,使B’和C重合,连结AC’交A’C于D,则三角形CAC’的面积为()A.4B.6C.8D.164.四根火柴棒形成如图所示的“口”字,平移火柴棒后,原图形能变成的汉字是()5.如图,面积为12cm²的三角形ABC沿BC方向平移至三角形DEF的位置,平移的距离是边BC的2倍,则图中四边形ACFD的面积为()A.24cm²B.36cm²C.48cm²D.60cm²第5题图第6题图6.如图,小明从家到学校有①②③三条路可走,每条路的长分别为a,b,c,则()A. B. C. D.7.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()A.20 B.22 C.24 D.26第7题图第8题图8.如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,至少需要移动()A.8格B.9格C.11格D.12格二填空题9.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC周长为16cm,则四边形ABFD周长为.第9题图第10题图第11题图10.如图,将三角形ABC沿射线AC平移得到三角形DEF.若AF=17,DC=7,则AD= .11.如图,边长为8cm的正方形ABCD先向上平移4cm,再向右平移2cm,得到正方形A′B′C′D′,此时阴影部分的面积为_________.12.某小区的一块长26米,宽15米的草坪内要修一条如图所示宽度相同的通道.当通道的宽度为2米时,剩下的草坪面积是通道面积的倍.第12题图第13题图第14题图13.鑫都大酒店在装修时,准备在主楼梯(如图)上铺上红地毯,已知这种地毯每平方米售价35元.楼梯宽2米,则购买这种地毯至少需元.14.如图,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为cm2.三解答题15.如图,已知,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠AEF,∠1=40°,求∠2的度数.16.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中∠DEF=20°,则图③中∠CFE的度数是多少?(2)若图①中∠DEF=α,把图③中∠CFE的度数用α表示是多少?17.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.求∠PAG的度数.第五章相交线与平行线周周测7 参考答案与解析一、选择题1.A2.C3.C4.B5.C6.C7.C8.A二、填空题9.20 10.5 11.24cm²12.4 13.630 14.168三、解答题15.解:∵AB∥CD,∠1=40°,∴∠AEG=∠1=40°.∵EG平分∠AEF,,∴∠AEF=2∠AEG=80°,∴∠2=180°-∠AEF=180°-80°=100°.16.解:图①中,∵AD∥BC,∴∠DEF=∠BFE,∴∠CFE=180°-∠DEF.图②中,由折叠得∠CEF=180°-∠DEF,∴∠CFB=∠CEF-∠BFE=180°-2∠DEF.图③中,由折叠得∠CFB=180°-2∠DEF,∴∠CFE=∠CFB-∠BFE=180°-3∠DEF.(1)若图①中∠DEF=20°,则图③中∠CFE=180°-3×20°=120°.(2)若图①中∠DEF=α,则图③中∠CFE=180°-3α.17.解:∵DB∥FG∥EC,∠ABD=60°,∠ACE=36°,∴∠BAG=∠ABD=60°,∠CAG=∠ACE=36°,∴∠BAC=∠BAG+∠CAG=60°+36°=96°.∵AP平分∠BAC,∴∠PAC=12∠BAC=12×96°=48°,∴∠PAG=∠PAC-∠CAG=48°-36°=12°.第五章相交线与平行线周周测8一选择题1.下列选项中能由左图平移得到的是()A. B. C. D.2.在四边形ABCD中,下列各图中∠1与∠2相等的是()3.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点4.将命题“对顶角相等”写成“如果……,那么……”的形式,正确的是()A.如果两个角相等,那么它们是对顶角B.如果两个角是对顶角,那么它们相等C.如果对顶角,那么相等D.如果两个角不是对顶角,那么这两个角不相等5.如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠56.如图,AB//CD,∠AGE=128°,HM平分∠EHD,则∠MHD的度数是()A.46°B.23°C.26°D.24°7.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠4=∠5C.∠2=∠3D.∠2+∠4=180°8.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()CA.60°B.65°C.70°D.80°9.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°10.如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为( )A.70ºB.50ºC.40ºD.30º二填空题11.如图,将三角形ABC沿BC’方向平移4cm,得到三角形A’B’C’,那么CC’= cm.12.将一个直角三角板和一把长方形直尺按如图放置,若∠α=54°,则∠β的度数是______.13.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=40°,则∠AEF=.14.如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直角边分别交直线b于B,C两点.若∠1=42°,则∠2的度数是.15.如图,AB∥CD,∠B=160°,∠D=120°,则∠E=_________16.如图①:MA1∥NA2,图②:MA1∥NA3,图③:MA1∥NA4,图④:MA1∥NA5,…,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1= °(用含n的代数式表示).三解答题17.完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.证明:∵HG∥AB(已知),∴∠1=∠3(______ ).又∵HG∥CD(已知),∴∠2=∠4.∵AB∥CD(已知),∴∠BEF+______=180°(______ ).又∵EG平分∠BEF(已知),∴∠1=∠______.又∵FG平分∠EFD(已知),∴∠2=∠______,∴∠1+∠2=(______ ),∴∠1+∠2=90°,∴∠3+∠4=90°(______ ),即∠EGF=90°.18.如图是一个汉字“互”字,其中,∥,∠1=∠2,∠=∠.求证:∠=∠.19.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°. (1)证明:∠B=∠ADG;(2)求∠BCA的度数.20.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.21.如图,已知DC∥FP,∠1=∠2,∠FED=28º,∠AGF=80º,FH平分∠EFG.(1)证明:DC∥AB;(2)求∠PFH的度数.22.如图,已知AB∥CD,C在D的右侧,BM平分∠ABC,DN平分∠ADC,BM,DN所在直线交于点E,∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.第五章相交线与平行线周周测8参考答案与解析一、选择题1.C2.B3.A4.B5.A6.C7.C8.C9.B 10.D二、填空题11.4 12.36° 13.110° 14.48° 15.40° 16.180n三、解答题17.两直线平行,内错角相等∠EFD 两直线平行,同旁内角互补 BEF EFD ∠BEF+∠EFD 等量代换18.证明:如图,延长交于点.∵∥,∴∠1=∠3.又∵∠1=∠2,∴∠2=∠3,∴∥HN,∴∠=∠.又∵∠=∠,∴∠=∠.19.(1)证明:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴BC∥DG,∴∠B=∠ADG.(2)解:∵DG∥BC,∴∠3=∠BCA.∵∠3=80°,∴∠BCA=80°.20.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°.∵∠DAC=120°,∴∠ACB=60°.又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°.∵CE平分∠BCF,∴∠BCE=20°.∵EF∥BC,∴∠FEC=∠BCE=20°.21.(1) 证明:∵∠1=∠2,∴AB∥FP.∵DC∥FP,∴DC∥AB.(2)解:∵DC∥FP,∴∠EFP=∠FED=28º.∵AB∥FP,∴∠GFP=∠AGF=80º.∴∠EFG=∠EFP+∠GFP=28°+80°=108°.∵FH平分∠EFG,∴∠EFH=∠EFG=×108°=54°,∴∠PFH=∠EFH-∠EFP=54°-28°=26 º.22.解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=∠ADC=×70°=35°.(2)如图,过点E向左作EF∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=n°+35°.(3)如图①,过点E向左作EF∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.图①图②如图②,过点E向左作EF∥AB.∵BM平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABM=∠ABC=n°,∠CDE=∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABM=n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF-∠DEF=n°-35°.综上所述,∠BED的度数发生了改为,改变为215°-n°或n°-35°.第五章相交线与平行线周周测9一选择题1.点P为直线l外一点,点A,B,C为直线l上三点,P A=4cm,PB=5cm,PC=3cm,则点P到直线l的距离为()A.4cm B.5cmC.小于3cm D.不大于3cm2.如图,点E,F分别是AB,CD上的点,点G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列判断中,错误的是()A.∠AEF=∠EFC B.∠A=∠BCFC.∠AEF=∠EBC D.∠BEF+∠EFC=180°第2题图第3题图3.如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,且∠ODE与∠ADC相等,则∠DEB的度数是()A.75°36′ B.75°12′ C.74°36′ D.74°12′4.下列图形中,可以由其中一个图形通过平移得到的是()5.如图①~④,其中∠1与∠2是同位角的有()A.①②③④B.①②③C.①③D.①第5题图第6题图6.如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4C.∠1+∠3=180° D.∠3+∠4=180°7.有下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④内错角相等.其中假命题有()A.①②B.①③C.②④D.③④8.若∠1与∠2是对顶角且互补,则它们两边所在的直线()A.互相垂直B.互相平行C.既不垂直也不平行D.不能确定9.如图,BD∥AC,BE平分∠ABD,交AC于点E.若∠A=50°,则∠1的度数为() A.65° B.60° C.55° D.50°第9题图第10题图10.已知直线m∥n,将一块直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上.若∠1=20°,则∠2的度数为()A.20° B.30°C.45° D.50°二填空题11.如图,当剪刀口∠AOB增大21°时,∠COD增大________°.第11题图第12题图12.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=________°.13.如图,在线段AC,BC,CD中,线段________最短,理由是____________________.第13题图第14题图14.如图,直线AB,CD相交于点O,OE⊥AB,∠COE=68°,则∠BOD的度数为________.15.如图,直线l1∥l2,∠1=20°,则∠2+∠3=________°.第15题图第17题图16.平移变换不仅与几何图形有着密切的联系,而且在一些特殊结构的汉字中,也有平移变换的现象,如:“日”“朋”“森”等,请你再写两个具有平移变换现象的汉字_____ ___.17.如图是超市里购物车的侧面示意图,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2的1911倍,则∠2的度数是________.18.以下三种沿AB折叠纸带的方法:(1)如图①,展开后测得∠1=∠2;(2)如图②,展开后测得∠1=∠2且∠3=∠4;(3)如图③,测得∠1=∠2.其中能判定纸带两条边线a,b互相平行的是________(填序号).三解答题19.如图,直线AB,CD相交于O,OE是∠AOD的平分线,∠AOC=28°,求∠AOE的度数.20.如图,在方格纸中,每个小方格的边长均为1个长度单位,三角形ABC的三个顶点和点P都在小方格的顶点上.要求:①将三角形ABC平移,使点P落在平移后的三角形内部;②平移后的三角形的顶点在方格的顶点上.请你在图甲和图乙中分别画出符合要求的一个示意图,并写出平移的方法.21.如图,已知AE⊥BC,FG⊥BC,∠1=∠2.求证:AB∥CD.22.如图,直线AB,CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角为________,∠BOE的邻补角为________;(2)若∠AOC=70°,且∠BOE∶∠EOD=2∶3,求∠AOE的度数.23.如图,现有以下3个论断:①AB∥CD;②∠B=∠C;③∠E=∠F.请以其中2个论断为条件,另一个论断为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?请选择其中一个真命题加以证明.24.如图,已知AB∥CD,CE,BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3……第n次操作,分别作∠ABE n-1和∠DCE n-1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠B+∠C;(2)如图②,求证:∠BE2C=14∠BEC;(3)猜想:若∠E n=b°,求∠BEC的度数.第五章相交线与平行线周周测9 参考答案与解析一、选择题1.D2.C3.B4.B5.C6.D7.D8.A9.A 10.D二、填空题11.21 12.50 13.CD 垂线段最短14.22°15.20016.林晶(答案不唯一)17.55°18.①②三、解答题19.解:∵∠AOC=28°,∴∠AOD=180°-∠AOC=180°-28°=152°.∵OE是∠AOD的平分线,∴∠AOE=12∠AOD=12×152°=76°.20.解:如图,共有3种情况:图甲图乙图丙图甲:将三角形ABC向右平移4个单位长度;图乙:将三角形ABC先向右平移4个单位长度,再向上平移1个单位长度;图丙:将三角形ABC先向右平移3个单位长度,再向上平移1个单位长度.21.证明:∵AE⊥BC,FG⊥BC,∴AE∥FG,∴∠1=∠A.∵∠1=∠2,∴∠2=∠A,∴AB∥CD.22.解:(1)∠BOD ∠AOE(2)∵∠AOC=70°,∴∠BOD=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=25∠BOD=25×70°=28°,∴∠AOE=180°-∠BOE=180°-28°=152°.23.解:(1)命题一:如果AB∥CD,∠B=∠C,那么∠E=∠F.命题二:如果AB∥CD,∠E=∠F,那么∠B=∠C.命题三:如果∠B=∠C,∠E=∠F,那么AB∥CD.(2)三个命题都是真命题.若选择命题(1),证明如下:∵AB∥CD,∴∠B=∠CDF.∵∠B=∠C,∴∠CDF=∠C,∴AC∥BD,∴∠E=∠F.24.(1)证明:过点E向左作EF∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠BEC=∠B,∠CEF=∠C,∴∠BEC=∠BEF+∠CEF=∠B+∠C.(2)证明:同(1)理,可证∠BE1C=∠ABE1+∠DCE1,∠BE2C=∠ABE2+∠DCE2.∵∠ABE和∠DCE的平分线交于点E1,∠ABE1和∠DCE1交于点E2,∴∠ABE1=12∠ABE,∠DCE1=12∠DCE,∠ABE2=12∠ABE1,∠DCE2=12∠DCE1,∴∠BE1C=12∠ABE+12∠DCE=12∠BEC,∴∠BE2C=12×12∠ABE+12×12∠DCE=14∠BEC.(3)由(1)(2)知∠BE1C=12∠BEC,∠BE2C=14∠BEC,∴∠∠BE n C=12n⎛⎫⎪⎝⎭∠BEC,∴若∠E n=b°,∠BEC=2n。

七年级数学下册第五章《相交线与平行线》经典习题(课后培优)

七年级数学下册第五章《相交线与平行线》经典习题(课后培优)

一、选择题1.下列命题中是真命题的有()①两个角的和等于平角时,这两个角互为邻补角;②过一点有且只有一条直线与已知直线平行;③两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行;④图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等;A.1个B.2个C.3个D.4个B解析:B【分析】根据补角和邻补角的定义可判断①,根据平行公理可判断②,根据平行线的性质和判定可判断③,根据平移的性质可判断④,进而可得答案.【详解】解:两个角的和等于平角时,这两个角互为补角,故命题①是假命题;过直线外一点有且只有一条直线与已知直线平行,故命题②是假命题;两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行,故命题③是真命题;图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等,故命题④是真命题.综上,真命题有2个.故选:B.【点睛】本题考查了真假命题、平行线的判定和性质以及平移的性质等知识,属于基础题型,熟练掌握上述知识是解题的关键.2.下列语句是命题的是()A.平分一条线段B.直角都相等C.在直线AB上取一点D.你喜欢数学吗?B解析:B【分析】根据命题的定义分别进行判断.【详解】A.平分一条线段,为描述性语言,不是命题;B.直角都相等,是命题;C.在直线AB上取一点,为描述性语言,不是命题;D.你喜欢数学吗?是疑问句,不是命题.故选:B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.3.下列命题:①同位角相等;②过一点有且只有一条直线与已知直线平行; ③过一点有且只有一条直线与已知直线垂直; ④如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行.其中假命题的个数是( )A .1个B .2个C .3个D .4个A解析:A【分析】根据平行线的性质、八个基本事实、平行线的判定等知识分别判断即可.【详解】解:同位角不一定相等,①是假命题;过直线外一点有且只有一条直线与已知直线平行,②是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,③是假命题;如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行,④是真命题,故选:A .【点睛】本题考查了命题与定理、平行线的判定与性质、八个基本事实,熟记八个基本事实,会判断命题的真假是解答的关键.4.如图,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角A 解析:A【分析】 根据同位角的定义求解.【详解】解:直线a ,b 被直线c 所截,∠1与∠2是同位角.故选:A .【点睛】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.5.如图,//AB EF ,90C ∠=︒,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠=∠+∠B .180αβγ∠+∠+∠=︒C .90αβγ∠+∠-∠=︒D .90βγα∠+∠-∠=︒C解析:C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.【详解】如图,分别过C 、D 作AB 的平行线CM 和DN ,∵AB//EF ,∴AB//CM //DN //EF ,∴αBCM ∠∠=,MCD NDC ∠∠=,NDE γ∠∠=,∴αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠+=++=++, 又∵BC CD ⊥,∴BCD 90∠=,∴αβ90γ∠∠∠+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A.5个B.4个C.3个D.2个B 解析:B【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选B.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.7.(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°B 解析:B【解析】试题分析:由AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选B.考点:平行线的性质8.如图,直线a,b被直线c所截,且a//b,若∠1=55°,则∠2等于()A .35°B .45°C .55°D .125°C解析:C【解析】 试题分析:根据图示可得:∠1和∠2是同位角,根据两直线平行,同位角相等可得:∠2=∠1=55°.考点:平行线的性质9.如图,已知AB CD ∕∕,AF 交CD 于点E ,且,40BE AF BED ⊥∠=︒,则A ∠的度数是( )A .40︒B .50︒C .80︒D .90︒B解析:B【分析】 直接利用垂线的定义结合平行线的性质得出答案.【详解】解:∵,40BE AF BED ⊥∠=︒,∴50FED ∠=︒,∵AB CD ∕∕,∴50A FED ∠=∠=︒.故选B .【点睛】此题主要考查了平行线的性质以及垂线的定义,正确得出FED ∠的度数是解题关键. 10.如图,将△ABE 向右平移50px 得到△DCF ,如果△ABE 的周长是400px(1px=0.04cm ),那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm C解析:C【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.注意:1px = 0.04cm .【详解】∵1px = 0.04cm,∴50px=2cm,400px=16cm,∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF=AB+BE+AE+AD+EF=△ABE的周长+AD+EF.∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故选:C.【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.二、填空题11.高兴同学在学习了全等三角形的相关知识后发现:只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图,一把直尺压住射线OB且与射线OA交于点M,另一把直尺压住射线OA且与第一把直尺交于点P,则OP平分∠AOB.若∠BOP=32°,则∠AMP=_____°.64【分析】由长方形直尺可得MP//OB再根据作图过程可知OP平分∠AOB进而可得∠AMP的度数【详解】解:∵OP平分∠AOB∴∠MOB=2∠BOP=64°由长方形直尺可知:MP//OB∴∠AMP=解析:64【分析】由长方形直尺可得MP//OB,再根据作图过程可知OP平分∠AOB,进而可得∠AMP的度数.【详解】解:∵OP 平分∠AOB ,∴∠MOB =2∠BOP =64°,由长方形直尺可知:MP //OB ,∴∠AMP =∠MOB =64°,故答案为:64.【点睛】此题主要考查了基本作图,关键是掌握角平分线的作法.12.已知A ∠与B (A ∠,B 都是大于0°且小于180°的角)的两边一边平行,另一边垂直,且227A B ∠-∠=︒,则A ∠的度数为_________.或【分析】分两种情况:①如图1作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B=∠BEF ∠A=∠AEF 根据∠A+∠B=求出∠A=;②如图2作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B+∠BEF=∠A 解析:39︒或99︒.【分析】分两种情况:①如图1,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B=∠BEF ,∠A=∠AEF ,根据∠A+∠B=90︒,227A B ∠-∠=︒,求出∠A=39︒;②如图2,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B+∠BEF=180︒,∠A+∠AEF=180︒,根据∵∠AEB=∠AEF+∠BEF=90︒,227A B ∠-∠=︒,计算得出答案.【详解】分两种情况:①如图1,作EF ∥BD ,∴∠B=∠BEF ,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A=∠AEF ,∴∠A+∠B=∠AEF+∠BEF=90︒,∵227A B ∠-∠=︒,∴∠A=39︒;②如图2,作EF ∥BD ,∴∠B+∠BEF=180︒,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A+∠AEF=180︒,∴∠A+∠AEB+∠B=360︒,∵∠AEB=∠AEF+∠BEF=90︒,∴∠A+∠B=270︒,∵227A B ∠-∠=︒,∴∠A=99︒;故答案为:39︒或99︒..【点睛】此题考查平行线的性质,平行公理的推论,根据题意作出图形,引出恰当的辅助线解决问题是解题的关键.13.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移2个单位后,得到A B C ''',连接A C ',则A B C ''的周长为________.12【分析】根据平移的性质得则可计算则可判断为等边三角形继而可求得的周长【详解】平移两个单位得到的又是等边三角形的周长为故答案为:12【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动会解析:12【分析】根据平移的性质得2BB '=,4A B AB ''==,=60A B C B ∠''∠=︒,则可计算624B C BC BB '=-'=-=,则4A B B C ''='=,可判断A B C ''△为等边三角形,继而可求得A B C ''△的周长.【详解】 ABC 平移两个单位得到的A B C ''',2BB ∴'=,AB A B ='',4AB =,6BC =,4A B AB ∴''==,624B C BC BB '=-'=-=,4A B B C ∴''='=,又60B ∠=︒,60A B C ∴∠''=︒,A B C ∴''是等边三角形,A B C ∴''的周长为4312⨯=.故答案为:12.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14.如图,//,//,62AC ED AB FD A ∠=︒,则EDF ∠度数为___________.62°【分析】首先根据两直线平行同位角相等求出∠DEB 的度数再根据两直线平行内错角相等求出∠EDF 的度数【详解】解:∵AC//DE ∠A=62°∴∠DEB=∠A=62°(两直线平行同位角相等)∵DF/解析:62°【分析】首先根据两直线平行,同位角相等求出∠DEB 的度数,再根据两直线平行,内错角相等求出∠EDF 的度数.【详解】解:∵AC//DE ,∠A=62°,∴∠DEB=∠A=62°(两直线平行,同位角相等),∵DF//AB ,∴∠EDF=∠DEB=62°(两直线平行,内错角相等).故答案为:62°.【点睛】本题考查了平行线的性质,解决本题的关键是熟记平行线的性质.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补. 15.“等腰三角形的两条边相等”的逆命题是________________.(填真命题或假命题)真命题【分析】交换命题的题设和结论即可得到该命题的逆命题根据等腰三角形的定义判断即可【详解】等腰三角形的两条边相等的逆命题是:两条边相等的三角形是等腰三角形;它是真命题故答案为:真命题【点睛】本题考 解析:真命题【分析】交换命题的题设和结论即可得到该命题的逆命题,根据等腰三角形的定义判断即可.【详解】“等腰三角形的两条边相等”的逆命题是:两条边相等的三角形是等腰三角形;它是真命题,故答案为:真命题.【点睛】本题考查了命题的真假判断、逆命题的概念,掌握等腰三角形的定义是解题的关键. 16.如图,请你添加一个条件....使得AD ∥BC ,所添的条件是__________.∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时根据同位角相等两直线平行可得AD//BC;当∠DAC=∠C时根据内错角相等两直线平行可得AD//BC;当∠DAB+∠B=180°时根据同旁内角解析:∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时,根据“同位角相等,两直线平行”可得AD//BC;当∠DAC=∠C时,根据“内错角相等,两直线平行”可得AD//BC;当∠DAB+∠B=180°时,根据“同旁内角互补,两直线平行”可得AD//BC,故答案是:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(答案不唯一).17.如图,点A、B为定点,直线l∥AB,P是直线l上一动点,对于下列各值:①线段AB的长;②△PAB的周长;③△PAB的面积;④∠APB的度数,其中不会随点P的移动而变化的是(填写所有正确结论的序号)______________.①③【分析】求出AB长为定值P到AB的距离为定值再根据三角形的面积公式进行计算即可;根据运动得出PA+PB不断发生变化∠APB的大小不断发生变化【详解】解:∵AB为定点∴AB长为定值∴①正确;∵点A解析:①③【分析】求出AB长为定值,P到AB的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB不断发生变化、∠APB的大小不断发生变化.【详解】解:∵A、B为定点,∴AB长为定值,∴①正确;∵点A,B为定点,直线l∥AB,∴P到AB的距离为定值,故△APB的面积不变,∴③正确;当P点移动时,PA+PB的长发生变化,∴△PAB的周长发生变化,∴②错误;当P点移动时,∠APB发生变化,∴④错误;故选A.【点睛】本题考查了平行线的性质,等底等高的三角形的面积相等,平行线间的距离的运用,熟记定理是解题的关键.18.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.19.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.40°【分析】本题主要利用两直线平行同旁内角互补两直线平行内错角相等以及角平分线的定义进行做题【详解】∵AD∥BC∴∠BCD=180°-∠D=80°又∵CA平分∠BCD∴∠ACB=∠BCD=40°∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∠BCD=40°,∴∠ACB=12∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.20.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,AB=10,DH=4,平移距离为8,则阴影部分的面积是_______________.64【分析】根据平移变化只改变图形的位置不改变图形的形状可得出两个三角形大小一样阴影部分面积等于梯形ABEH的面积;DE=AB根据线段的和差关系可求出HE的长度再根据梯形的面积公式即可得答案【详解】解析:64【分析】根据平移变化只改变图形的位置,不改变图形的形状,可得出两个三角形大小一样,阴影部分面积等于梯形ABEH的面积;DE=AB,根据线段的和差关系可求出HE的长度,再根据梯形的面积公式即可得答案.【详解】∵两个三角形大小一样,∴S△ABC=S△DEF,∴S△ABC-S△HEC=S△DEF-S△HEC,∴S阴影=S梯形ABEH,∵其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,AB=10,∴DE=AB=10,∵DH=4,∴HE=DE-DH=6,∵平移距离是8,∴BE=8,∴S阴影=S梯形ABEH=12(HE+AB)·BE=12×(10+6)×8=64,故答案为:64【点睛】本题主要考查了平移的性质,通过观察图形把阴影部分的面积转化为熟知图形的面积是关键的一步.三、解答题21.利用网格画图,每个小正方形边长均为1(1)过点C 画AB 的平行线CD ;(2)仅用直尺,过点C 画AB 的垂线,垂足为E ;(3)连接CA 、CB ,在线段CA 、CB 、CE 中,线段______最短,理由___________. (4)直接写出△ABC 的面积为 _________.解析:(1)见详解;(2)见详解;(3)CE ,垂线段最短;(4)8.【分析】(1)取点D 作直线CD 即可;(2)取点F 作直线CF 交AB 与E 即可;(3)根据垂线段最短即可解决问题;(4)用割补法,大长方形的面积减去三个小三角形的面积即可;【详解】 解:(1)直线CD 即为所求;(2)直线CE 即为所求;(3)在线段CA 、CB 、CE 中,线段CE 最短,理由:垂线段最短;故答案为CE ,垂线段最短;(4) S △ABC =18﹣12×1×5﹣12×1×3﹣12×2×6=8, ∴△ABC 的面积为8.【点睛】本题主要考查垂线、平行线及其做图,注意作图的准确性.22.如图,已知AC BC ⊥,CD AB ⊥,DE AC ⊥,1∠与2∠互补,判断HF 与AB 是否垂直,并说明理由(填空).解:垂直,理由如下:∵DE AC ⊥,AC BC ⊥,∴90AED ACB ==︒∠∠(垂直的意义)∴//DE BC (_____)∴1DCB ∠=∠(_____)∵1∠与2∠互补(已知)∴DCB ∠与2∠互补∴_________//________(_____)∴BFH CDB ∠=∠(_____)∵CD AB ⊥∴90CDB ∠=︒∴90HFB ︒∠=∴HF AB ⊥.解析:同位角相等,两直线平行;两直线平行,内错角相等;CD ;FH ;同旁内角互补,两直线平行;两直线平行,同位角相等.【分析】根据平行线的性质及平行线的判定解答.【详解】解:垂直,理由如下:∵DE AC ⊥,AC BC ⊥,∴90AED ACB ==︒∠∠(垂直的意义)∴//DE BC (同位角相等,两直线平行)∴1DCB ∠=∠(两直线平行,内错角相等)∵1∠与2∠互补(已知)∴DCB ∠与2∠互补∴CD //FH (同旁内角互补,两直线平行)∴BFH CDB ∠=∠(两直线平行,同位角相等)∵CD AB ⊥∴90CDB ∠=︒∴90HFB ︒∠=∴HF AB ⊥.故答案为:同位角相等,两直线平行;两直线平行,内错角相等;CD ;FH ;同旁内角互补,两直线平行;两直线平行,同位角相等.【点睛】此题考查平行线的判定及性质定理,熟记定理并熟练应用解决问题是解题的关键. 23.如图,已知:∠DGA=∠FHC ,∠A=∠F .求证:DF ∥AC .(注:证明时要求写出每一步的依据)解析:见解析.【分析】先根据∠DGA=∠EGC 证出AE ∥BF ,再根据平行证明出∠F=∠FBC 即可求证出结论.【详解】证明:∵∠DGA=∠EGC(对顶角相等)又∵∠DGA=∠FHC (已知)∴∠EGC=∠FHC (等量代换)∴AE ∥BF (同位角相等,两直线平行)∴∠A=∠FBC (两直线平行,同位角相等)又∵∠A=∠F (已知)∴∠F=∠FBC (等量代换)∴DF ∥AC (内错角相等,两直线平行).【点睛】此题考查平行线的判定与性质:同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.24.如图,有三个论断:①12∠=∠;②B C ∠=∠;③A D ∠=∠,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.解析:答案见解析【分析】先从①②③中任选两个作为条件,另一个作为结论构成一个命题,然后根据平行线的判定和性质及对顶角相等进行证明即可.【详解】已知:12∠=∠,B C ∠=∠求证:A D ∠=∠证明:如图:13∠=∠ 又12∠=∠32∴∠=∠//EC BF ∴AEC B ∴∠=∠又B C ∠=∠AEC C ∴∠=∠//AB CD ∴A D ∴∠=∠.【点睛】本题主要考查了平行线的判定与性质以及命题与定理的证明问题,证明的一般步骤包括写出已知、求证、画出图形和证明.25.如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F . (1)CD 与EF 平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B 的度数.解析:(1)CD与EF平行.理由见解析;(2)∠B=35°【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF∥CD;(2)由EF∥CD,根据平行线的性质得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根据内错角相等,两直线平行得到DG∥BC,所以∠ACB=∠3=115°,根据三角形的内角和即可得到结论.【详解】(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°,∵∠A=30°,∴∠B=35°.【点评】本题考查了平行线的判定与性质,注意:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.26.平移三角形ABC,使点A移动到点A′,画出平移后的三角形A′B′C′.解析:见解析【分析】先分别确定A、B、C平移后的对应点A′、B′、C′,然后再顺次连接即可.【详解】解:如图:连接AA′,在AA′在一条直线上CC′=AA′,得到C′;再作BB′∥AA′且BB′=AA′,最后顺次连接得到△A′B′C′即为所求三角形.【点睛】本题主要考查了平移作图,根据题意确定A、B、C平移后的对应点A′、B′、C′是解答本题的关键.27.如图,已知直线l1//l2,l3、和l1、l2分别交于点A、B、C、D,点P在直线l3或上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;(4)若点P在线段DC延长线上运动时,请直接写出∠1、∠2、∠3之间的关系.解析:(1)证明见详解;(2)∠3=∠2﹣∠1;(3)∠3=360°﹣∠1﹣∠2,证明见详解;(4)∠3=360°﹣∠1﹣∠2.【分析】此题四个小题的解题思路是一致的,过P作直线l1、l2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,即可得出∠1、∠2、∠3的数量关系.【详解】解:(1)如图(1)证明:过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠EPF=∠QPE+∠QPF,∴∠EPF=∠1+∠2.(2)∠3=∠2﹣∠1;证明:如图2,过P作直线PQ∥l1∥l2,则:∠1=∠QPE、∠2=∠QPF;∵∠EPF=∠QPF﹣∠QPE,∴∠EPF=∠2﹣∠1.(3)∠3=360°﹣∠1﹣∠2.证明:如图(3),过P作PQ∥l1∥l2;∴∠EPQ+∠1=180°,∠FPQ+∠2=180°,∵∠EPF=∠EPQ+∠FPQ;∴∠EPQ +∠FPQ +∠1+∠2=360°,即∠EPF=360°﹣∠1﹣∠2;(4)点P在线段DC延长线上运动时,∠3=∠1﹣∠2.证明:如图(4),过P作PQ∥l1∥l2;∴∠1=∠QPE、∠2=∠QPF;∵∠QPE﹣∠QPF=∠EPF;∴∠3=∠1﹣∠2.【点睛】此题主要考查的是平行线的性质,能够正确地作出辅助线,是解决问题的关键. 28.如图1所示的是北斗七星的位置图,图2将北斗七星分别标为A ,B ,C ,D ,E ,F ,G ,并顺次首尾连接,若AF 恰好经过点G ,且//AF DE ,105D E ∠=∠=︒.(1)求F ∠的度数.(2)连接AD ,当ADE ∠与CGF ∠满足怎样的数量关系时,//BC AD ,并说明理由.解析:(1)75°;(2)当∠ADE+∠CGF=180°时,BC ∥AD .【分析】(1)根据平行线的性质解答即可;(2)根据平行线的判定和性质解答即可.【详解】解:(1)∵AF ∥DE ,∴∠F+∠E=180°,∵105E ∠=︒∴∠F=180°-105°=75°;(2)如图,当∠ADE+∠CGF=180°时,BC ∥AD ,∵AF∥DE,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180°,∴∠GAD=∠CGF,∴BC∥AD.【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
D
B
C 第五章
编审 谢心
班级 _________ 姓名 学号_______
一、选择题(每题3分,总45分) 1、如图,∠1与∠2是对顶角的是( )
A 、
B 、
C 、
D 、 2、如图1,∠AOC 的邻补角是( )
A 、∠BOC
B 、∠BOD
C 、∠BOC 和∠AO
D D 、无法确定
图1 图2 图3 3、已知,∠1与∠2互为邻补角,∠1=40°,则∠2为多少度( ) A 、20° B 、40° C 、80° D 、140° 4、如图2,已知直线AB 及点P,过点P 画直线AB 的垂线有几条( ) A 、不能画, B 、只能画一条 C 、可以画两条 D 、可以画无数条 5、如图3,表示A 到BC 的距离的线段( )
A 、A
B B 、A
C C 、BC
D 、AD 6、如图4,找出∠1的同位角( ) A 、∠2 B 、∠3 C 、∠4 D 、无同位角
图4 图5 图6
A B
P

1
2 1
1
1
2 2
2
A
D
C B
O
A B
E
F C D
1
2 1
3 4
7、下列说话正确的是( )
A 、互补的两个角一定是邻补角
B 、同一平面内,b // a, c // a,则b//c
C 、同一平面内,,,.a c b c a b ⊥⊥⊥则
D 相等的角一定是对顶角。

8,如图5,∠1=∠2,则有( )
A 、 EB//CF,
B 、 AB//CF,
C 、 EB//CD,
D 、 AB//CD, 9、如图6,已知∠1=80°, m//n, 则∠4=( )
A 、100°,
B 、70°
C 、80°,
D 、60°, 10、如图7,AB//EF,BC//DE, ∠B=40°,则∠E=( )
A 、90°,
B 、120°
C 、140°,
D 、360°,
图7 图8 图9 11、如图8,∠1=∠2,∠5=70°则∠3=( )
A 、110°,
B 、20°
C 、70°,
D 、90°, 12、如图9,AB//CD //EF, 那么∠A+∠ADE+ ∠
E =( ) A 、270°, B 、180° C 、360°, D 、90°,
13、如图10,点E 在AC 的延长线上,下列条件中能判断AB//CD 的是() A 、∠1=∠2, B 、∠3=∠4 C 、∠D=∠DCE D ∠D+∠ACD=180°
图10 图11 14、下列说法正确的是( )
A 、平移只改变原图形的大小,形状,位置。

B 、定理一定是真命题。

C 、同位角相等是真命题。

D 、同一平面内,过直线外一点能画出无数条直线与已知直线平行。

A
B
E F
C D 2
c d a 5
b 3 1 2 A B E F C D
A
B
E
F
C
D
C
1
E
B A
3
D
2 4
15、如图11,AB//CD//EF, ∠ABE=38°,∠BCD=100°,则∠BEC=( ) A 、42°, B 、32° C 、62°, D 、38°, 二、填空题(每题3分,总15分)
16、∠1与∠2互为对顶角∠2=30°,∠1= 。

17、如图12,∠AOC=31°,∠BOC=59°,则OA 与OB 的位置关系 。

18、如图13,∠1与∠2互为 (填同位角、同旁内角,内错角)。

19、如图14,当∠DAC=∠BCA ,则 AD // 。

20、如图15,AE//CD, DE 平分∠ADC ,∠EAD=50°则∠DEA= 。

图12 图13 图14 图15 三、解答题(总40分) 21、作图题。

(6分)
(1)如图(1),过线段AB 的中点C ,作CD 垂直AB 。

(2分) (2)如图(2),过点P 画直线AB 的平行线CD 。

(2分)
(3)如图(3),画∠AOC 的角平分线一点P 到两边的距离(2分)
22、如图,已知∠ABP+∠BPC=180°,∠1=∠2,在括号里填写理由.(6分)
解:因为 ∠ABP+∠BPC=180°(已知)
所以 AB//CD ( ) 所以 ∠ABP=∠BPD ( ) 又因为 ∠1=∠2(已知)
所以 ∠ABP-∠1=∠BPD-∠2(等量代换 ) 所以 ∠3=∠4
A
B O C
2
A
B C 1
C
A
D
B C
A D
E
4 A B
E
F
C
D 1 2
3 P
所以 EB//FP()
23.如图,∠1=60°,∠4=120°,判定m//n吗?为什么?写出理由过程.(7分)
24,如图直线AB与CD相交与O,∠EOC=80°,OA平分∠EOC,求∠BOD的度数?(7分)
25,如图,∠1=∠2,能得到∠3=∠4吗?为什么?写出理由过程(7分)
26,如图,已知:DE∥CB,∠1=∠2,为什么:CD平分∠ECB?写出理由过程(7分)
E
2
1
D
C
B
1 a
b
2
3
4
O
A
B
E
D
C。

相关文档
最新文档