景杰生物:磷酸化修饰蛋白质组学
蛋白质组学研究中的磷酸化分析技术与策略:揭示修饰调控的多样性与复杂性

蛋白质组学研究中的磷酸化分析技术与策略:揭示修饰调控的多样性与复杂性蛋白质组学通过全面分析和解析蛋白质组中的成分和功能,帮助我们理解细胞内的生物过程和调控机制。
磷酸化是一种常见的蛋白质修饰类型,通过在蛋白质分子中引入磷酸基团来调控其功能和相互作用。
蛋白质组学研究中的磷酸化分析技术与策略对于揭示修饰调控的多样性和复杂性具有重要意义。
图1。
一、蛋白质组学研究中的磷酸化分析技术:1.质谱分析技术:包括质谱仪和液相色谱技术等,用于鉴定和定量磷酸化蛋白质,并确定磷酸化位点的位置。
2.磷酸化酶和磷酸酶的应用:通过激酶和磷酸酶的作用,实现对磷酸化修饰的调控和定量分析。
图2。
二、磷酸化分析策略与方法:1.定性磷酸化分析:通过质谱技术鉴定和定位蛋白质中的磷酸化修饰位点,帮助理解蛋白质磷酸化修饰的多样性和动态变化。
2.定量磷酸化分析:结合标记和非标记的定量方法,实现对磷酸化修饰的定量分析,揭示磷酸化的丰度变化与细胞信号通路和生物过程的相关性。
三、磷酸化修饰的调控多样性与复杂性:1.磷酸化修饰的多样性:磷酸化修饰可发生在不同氨基酸残基上,如丝氨酸、苏氨酸和酪氨酸等,形成不同类型的磷酸化修饰。
2.磷酸化修饰的复杂性:磷酸化修饰可以发生在单个蛋白质上的多个位点,形成复杂的磷酸化修饰网络,参与多个生物过程的调控。
四、磷酸化分析的研究价值与应用:1.研究细胞信号通路:磷酸化分析可帮助揭示细胞信号通路中磷酸化修饰的动态调控过程,从而深入了解细胞的功能和调控机制。
2.发现新的药物靶点:通过分析磷酸化修饰的变化,可以发现新的疾病标志物和药物靶点,为疾病治疗提供新的策略和目标。
蛋白质组学研究中的磷酸化分析技术与策略对于揭示修饰调控的多样性与复杂性具有重要意义。
通过研究磷酸化修饰在蛋白质组中的定位和功能调控,我们可以更深入地理解细胞信号通路和生物过程的调控机制。
磷酸化分析在细胞生物学、疾病研究和药物开发等方面具有广阔的应用前景。
磷酸化蛋白质组学中的分离富集方法研究进展

磷酸化蛋白质组学中的分离富集方法研究进展
柏兆方;王红霞
【期刊名称】《分析化学》
【年(卷),期】2009(37)9
【摘要】蛋白质的磷酸化是一种可逆性的翻译后修饰,在细胞的增值、分化、信号转导以及转录与翻译调控、蛋白质复合体的形成、蛋白质降解等方面发挥着极为重要的作用.因此磷酸化蛋白的鉴定成为翻译后修饰研究的重要内容.但由于磷酸化蛋白的丰度较低, 难以用质谱直接检测.为了解决这个问题,改善质谱对磷酸肽的信号响应, 需要对磷酸化蛋白质或磷酸肽进行富集.本文系统地介绍了磷酸化蛋白组学研究中应用较为广泛和最新建立的各种分离富集方法的原理、特点、应用研究进展,包括抗体富集法、激酶特异富集法、亲和富集法、化学修饰法、多种色谱分离富集方法以及MALDI靶盘富集法.
【总页数】8页(P1382-1389)
【作者】柏兆方;王红霞
【作者单位】国家生物医学分析中心,北京,100850;国家生物医学分析中心,北京,100850
【正文语种】中文
【相关文献】
1.重质馏分油中硫化物分离富集方法的研究进展 [J], 朱根权;夏道宏;阙国和
2.尿液蛋白质组学中样品前期处理方法的研究进展 [J], 卢海涛;牛超;倪茂巍;朱忠欣;丛维涛;金利泰
3.糖蛋白质组学中基于化学反应的富集方法研究进展 [J], 包慧敏;谢力琦;陆豪杰
4.磷酸化肽段分离富集方法研究进展 [J], 李莎; 王露; 王迎; 陈平
5.iTRAQ蛋白质组学方法发现高同型半胱氨酸诱导的鸡胚神经管畸形中存在氧化磷酸化通路异常 [J], 张勤; 李丹; 白宝玲; 万春蕾; 肖宗慧
因版权原因,仅展示原文概要,查看原文内容请购买。
什么是磷酸化蛋白质组学

什么是磷酸化蛋白质组学为什么磷酸化蛋白质组学很重要?DNA转录成mRNA再翻译成具有特定氨基酸序列的蛋白质才能在体内发挥作用,而这些蛋白质中的大多数通常需要化学修饰才能发挥作用,即翻译后修饰(PTM)。
翻译后修饰是在蛋白质的氨基酸序列中加入特定的氨基酸或改变特定的化学官能团,从而改变蛋白质结构的过程。
目前已发现三百多种潜在的PTM类型,同一个蛋白具有多个不同修饰位点,有利于形成结构和功能不同的蛋白质。
什么是磷酸化修饰?在众多PTM类型中,磷酸化修饰约占所有蛋白质的三分之一,是最普遍的修饰类型之一。
它影响细胞内信号转导、细胞结构、细胞增殖、细胞凋亡、转录、代谢过程以及病原微生物适应能力的调节等。
因此,不同细胞的蛋白质磷酸化水平不同,特定部位的磷酸化水平可能从不到1%到90%以上。
磷酸化的过程是在激酶的催化下,将三磷酸腺苷的磷酸基团转移到蛋白质的氨基酸侧链上,然后三磷酸腺苷变成二磷酸腺苷。
对于大多数蛋白质来说,磷酸化修饰是一种可逆的瞬时修饰。
当蛋白质的某个部位帮助蛋白质完成任务时,蛋白质就会在磷酸酶的作用下被去磷酸化,就像蛋白质功能的一种“开关”,少量的磷酸化就是永久性的修饰。
多种氨基酸残基均可发生磷酸化修饰,可分为四类:1.丝氨酸、苏氨酸、酪氨酸、羟脯氨酸的羟基残基发生O-磷酸化;2.酸、赖氨酸残基上的组氨酸N-磷酸化;3.半胱氨酸残基的S-磷酸化;4.天冬氨酸、谷氨酸残基的酰基磷酸化。
磷酸化蛋白质组学应用磷酸化蛋白质组学是对磷酸化蛋白质的综合分析,包括磷酸化的鉴定、定位和定量。
药物。
利用质谱法已经在人类细胞中识别出超过10万种不同的磷酸化修饰,这些修饰可能会影响每种蛋白质的功能。
许多研究表明,一些重要生物标记物的磷酸化在肺癌、皮肤癌、慢性髓系白血病、阿尔茨海默病和糖尿病等疾病中调节失调。
例如2019年发表在《Nature》上的一篇文章利用磷酸化蛋白结合蛋白质组学、转录组学和全基因组测序寻找早期肝癌的新治疗靶点。
蛋白质组学和磷酸化蛋白质组学

蛋白质组学和磷酸化蛋白质组学
蛋白质组学和磷酸化蛋白质组学是生物科学领域中的两个重要分支。
它们的研究范围和应用重点有所不同。
蛋白质组学是一个以蛋白质群体为研究对象的学科,致力于分析细胞、组织或生物体中所有蛋白质的组成、性质、功能和相互作用。
蛋白质组学的研究范围广泛,包括蛋白质的表达模式、修饰和功能等多个方面。
通过蛋白质组学技术,可以发现与疾病相关的潜在分子靶点,为疾病的早期诊断和治疗提供帮助。
例如,研究肥胖和肝脂肪变性等代谢性疾病的病理生理条件下的蛋白质组学和磷酸化蛋白质组学变化,有助于寻找潜在的治疗靶点。
磷酸化蛋白质组学是蛋白质组学的一个特例,它主要关注的是样品中蛋白磷酸化修饰的大规模鉴定和定量。
磷酸化蛋白质组学的研究具有很大的挑战性,因为磷酸化蛋白在总体蛋白质中的比例很低,且处于动态变化的状态,同时磷酸化肽段在质谱检测时的离子化效率也较低。
为了解决这些问题,需要在质谱检测前对样品进行磷酸化肽段的富集处理,以去除非磷酸化肽段,提高磷酸化肽段的离子化效率,从而更多地检测磷酸化肽段和磷酸化位点。
总的来说,蛋白质组学和磷酸化蛋白质组学都是生物科学领域中非常重要的研究工具,对于理解生物过程和疾病机制具有重要意义。
磷酸化蛋白质组学常用分析和定量方法

蛋白质的磷酸化修饰是生物体内重要的共价修饰方式之一。
蛋白质的磷酸化和去磷酸化这一可逆过程几乎调节着包括细胞的增殖、发育、分化、信号转导、细胞凋亡、神经活动、肌肉收缩及肿瘤发生等过程在内的所有生命活动。
目前已知有许多人类疾病是由于某些异常的磷酸化修饰所引起,而有些磷酸化修饰却是某种疾病所导致的后果。
在哺乳动物细胞生命周期中,大约有1/3的蛋白质发生过磷酸化修饰;在脊椎动物基因组中,有5%的基因编码的蛋白质是参与磷酸化和去磷酸化过程的蛋白激酶和磷酸(酯)酶。
磷酸化修饰本身所具有的简单、灵活、可逆的特性以及磷酸基团的供体ATP的易得性,使得磷酸化修饰被真核细胞所选择接受而成为一种最普遍的调控手段。
鉴于磷酸化修饰在生命活动中所具有的重要意义,探索磷酸化修饰过程的奥秘及其对细胞功能的影响已成为众多生物化学家及蛋白组学家所关心的内容。
用蛋白质组学的理念和分析方法研究蛋白质磷酸化修饰,可以从整体上观察细胞或组织中磷酸化修饰的状态及其变化,这对以某一种或几种激酶及其产物为研究对象的经典分析方法是一个重要的补充,同时提供了一个全新的研究视角,并由此派生出磷酸化蛋白质组学(phosphoproteomics)这一新概念。
在蛋白质组学水平进行磷酸化蛋白质的分析定量研究已引起人们广泛关注,各种技术也相应地发展起来.1.1 免疫亲和色谱富集磷酸化蛋白质最简单的方法就是用识别磷酸化氨基酸残基的特异抗体进行免疫共沉淀,从复杂混合物中免疫沉淀出目标蛋白质。
目前,仅有酪氨酸磷酸化蛋白质的单克隆抗体可以用来进行有效的免疫共沉淀。
这是因为该抗体具有较强的亲和力和特异性,可以有效地免疫沉淀酪氨酸磷酸化的蛋白质。
Imam-Sghiouar等人从B-淋巴细胞中通过免疫沉淀获得酪氨酸磷酸化的蛋白质,然后再用二维电泳分离技术并结合质谱分析方法,鉴定出多个与斯科特综合症相关的酪氨酸磷酸化的蛋白质。
由于抗磷酸化丝氨酸和苏氨酸抗体的抗原决定簇较小,所以令抗原抗体的结合位点存在空间障碍,特异性较差。
磷酸化组学分析技术

百泰派克生物科技磷酸化组学分析技术磷酸化蛋白质组(Phosphoproteome)就是蛋白质组中全部的磷酸化蛋白质,而磷酸化蛋白质组学(Phosphoproteomics)就是针对磷酸化蛋白质的全面分析,包括对磷酸化的定性、定位和定量。
磷酸化蛋白质组学分析技术主要与质谱技术相结合进行分析,分析流程包括样品中提取蛋并酶解成肽段,之后利用固定金属离子亲和色谱法(IMAC)、二氧化钛亲和色谱法(TiO2)等方法富集磷酸化肽段,最后联合质谱检测技术进行分析。
常用的质谱定量磷酸化蛋白质组学分析技术主要包括TMT(Tandem Mass Tag),LFQ(Label Free Quantitation)和DIA(Data Independent Acquisition)技术。
TMT定量:TMT是添加同位素标记的一种定量技术,TMT除了可以应用在全蛋白质组的鉴定以外,也可以用于磷酸化蛋白质组学分析。
目前经过后期改进,TMT技术最多能同时对16个样品进行标记分析,消除多批次标记不平行问题,进一步减少定量数据丢失,准确性高。
LFQ非标记定量:LFQ磷酸化蛋白质组学,其利用基于质谱的非标记定量技术研究磷酸化蛋白质组,可实现磷酸化蛋白质组的定性和定量鉴定。
LFQ和TMT标记定量相比,非标记定量操作简单,样品损失小,单次实验可定量到的蛋白数目更多。
但由于非标记定量依据一级谱图的峰强度或者峰面积,所以数据质量是关键,严重依赖于质谱仪的稳定性。
DIA:DIA数据非依赖采集模式,是一种质谱分析中使用的数据采集模式,由于DIA 数据采集窗口更宽,谱图更为复杂,想要在混合的谱图中正确定位磷酸化位点并且正确处理磷酸肽位置异构体,对谱图处理能力需要达到更高的要求。
百泰派克生物科技采用Thermo Fisher的Q ExactiveHF质谱平台,Orbitrap Fusion质谱平台,Orbitrap Fusion Lumos质谱平台结合Nano-LC,推出磷酸化定量蛋白组分析服务技术包裹。
磷酸化蛋白质组如何鉴定

磷酸化蛋白质组如何鉴定接着上次的内容,今天,小编跟您聊聊磷酸化蛋白质组鉴定!蛋白质翻译后修饰(PTMs)几乎参与了细胞所有正常生命活动的过程,并发挥十分重要的调控作用。
蛋白修饰已经成为国际上蛋白质研究的一个极其重要的领域,目前研究比较成熟的有磷酸化、乙酰化、糖基化、泛素化等。
蛋白质磷酸化是生物体中最常见、最重要的一种蛋白质翻译后修饰方式,它可以通过激发、调节诸多信号通路进而参与调控生物体的生长、发育、逆境应激、疾病发生等多种生命过程,一直是生物学研究的重点与热点。
根据客户需求,金开瑞蛋白质组平台可提供磷酸化蛋白质组全谱鉴定、label-free定量技术服务。
磷酸化蛋白质组全谱鉴定以组织、细胞等较为复杂样本为研究对象,目的在于鉴定样品中发生磷酸化的蛋白质以及相应的磷酸化位点。
首先对蛋白样本进行酶解,TiO2或IMAC-Fe 或IMAC-Ti富集磷酸化多肽,5600-plus质谱检测,利用得到的质谱谱图与相应数据库搜索比较,从而得到肽段序列结果,同时通过生物信息软件计算出磷酸化位点。
对于磷酸化位点鉴定,为了增加定位修饰位点的准确性,金开瑞采用较流行的Ascore算法对发生在各位点的磷酸化修饰做进一步打分评估,从而正确辨别真实修饰位点。
技术路线:技术特点:●富集方法特异性高,对低PH溶液、去垢剂、盐类、其它低分子污染物有更高的耐受性,容易与非磷酸化肽段分离;●通量大,一次可以鉴定1000个以上磷酸化位点。
适用范围:●已知物种基因组序列、ESTs序列或蛋白质序列全库;●无其他特别要求。
经典案例:题目:Identification of tyrosine-phosphorylated proteins associated withlung cancer metastasis using label-free quantitative analyses.(用Label-free定量技术鉴定肺癌转移相关的酪氨酸磷酸化蛋白)期刊:Journalof proteome research主要技术:Label-free定量技术文章摘要:酪氨酸磷酸化(P-酪氨酸)蛋白可参与肺癌的侵袭和转移,但目前已被报道的数量还较少。
磷酸化蛋白质组学研究的主要内容和方法

磷酸化蛋白质组学研究的主要内容和方法磷酸化蛋白质组学研究是一种重要的生物学研究方法,主要用于揭示蛋白质磷酸化在细胞信号传导和调控中的作用机制。
本文将介绍磷酸化蛋白质组学研究的主要内容和方法。
一、磷酸化蛋白质组学研究的主要内容磷酸化蛋白质组学研究主要包括以下几个方面的内容:1. 磷酸化蛋白质的鉴定:通过质谱技术,对细胞或组织中的蛋白质进行分离、提取和纯化,然后利用质谱仪对蛋白质进行鉴定和定量分析,确定其磷酸化状态和磷酸化位点。
2. 磷酸化蛋白质的功能研究:通过生物信息学分析、蛋白质相互作用网络等方法,研究磷酸化蛋白质在细胞信号传导和调控中的功能和作用机制,揭示磷酸化蛋白质在生物体内的生理和病理过程中的重要作用。
3. 磷酸化蛋白质的动态调控研究:通过时间序列实验和药物刺激等方法,研究磷酸化蛋白质在不同生理和病理条件下的动态调控,分析其变化规律和潜在的调控机制。
二、磷酸化蛋白质组学研究的主要方法磷酸化蛋白质组学研究主要依赖于以下几种方法:1. 蛋白质提取和纯化:通过细胞裂解、离心、蛋白质抽提和纯化等步骤,将目标蛋白质从复杂的生物样品中分离出来,使其具备进一步分析的条件。
2. 质谱分析:利用质谱仪对蛋白质进行分析和鉴定。
常用的质谱技术包括质谱仪联用气相色谱、液相色谱、飞行时间质谱等,可以鉴定蛋白质的氨基酸序列、磷酸化位点等信息。
3. 生物信息学分析:通过计算机分析和比较不同蛋白质的氨基酸序列、结构和功能,预测磷酸化位点和磷酸化蛋白质的功能。
4. 蛋白质相互作用网络分析:通过构建蛋白质相互作用网络,研究磷酸化蛋白质与其他蛋白质的相互作用关系和信号传导通路。
5. 功能验证实验:通过基因敲除、过表达、药物干预等实验手段,验证磷酸化蛋白质的功能和调控机制。
总结起来,磷酸化蛋白质组学研究主要涉及磷酸化蛋白质的鉴定、功能研究和动态调控研究,主要依赖于蛋白质提取和纯化、质谱分析、生物信息学分析、蛋白质相互作用网络分析和功能验证实验等方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
磷酸化蛋白质组学分析
降低样品复杂度
规模化分析
特异性富集方法 有效预分级方法 IMAC/MOAC C18/SCX/HILIC
Nat. Protocol, 2013, 8, 461-480.
17
磷酸化蛋白质组学分析策略
常用 定量 方法
绝对定量 MRM
Spectral counts
无标记定量
色谱峰面积
calcium calmodulin kinase IV (CaMKIV)
Annu. Rev. Biochem. 2011, 80:825–858.
钙调蛋白激酶4
12
Cross-talk with Ubiquitination
Mol. Cell, 2007, 28(5), 730-738.
13
Cross-talk with Ubiquitination and Acetylation p53 stabilization
Tauopathy (Tau蛋白病) Alzheimer’s disease
Trends Mol. Med., 2009, 15(3), 112-119.
10
mTOR磷酸化和细胞自噬
mTORC1复合体
Nat. Cell. Biol., 2011, 13(2), 132-141.
11
Cross-talk with O-GlcNAc
20
肝脏组织的磷酸化蛋白质组
J. Proteomics, 2014, 96, 253–262.
21
PTM-Biolabs
谢谢!
18
三、磷酸化蛋白质组学的应用
样品类型
某细胞 某细胞
项目类型
SILAC SILAC
磷酸化位点
4500 6200
某菌类
某细胞
iTRAQ
iTRAQ
1500
>9000
19
拟南芥的磷酸化蛋白质组
共鉴定到5828个Leabharlann 酸化位点,2500多个磷酸化蛋白质
J. Proteomics, 2013, 78, 486–498.
共鉴定到近9万个翻译后修饰位点 3
翻译后修饰蛋白质的酶调控系统
磷酸化
糖基化
甲基化
酶系统
泛素化 乙酰化
降解
4
蛋白激酶
蛋白激酶(protein kinase,PK): 是一类磷酸转移酶,其作用是将 ATP 的 - 磷酸基转移到底物特定的氨基酸残基上, 使蛋白质磷酸化, 发挥其生理生化功能。
蛋白激酶作为药物靶点,用于临床疾病的靶向治疗
Curr. Opin. Cell Biol., 2003, 15, 164–171.
14
p53 transcriptional activation
A: acetylation
Curr. Opin. Cell Biol., 2003, 15, 164–171.
15
二、磷酸化蛋白质组学技术路线
磷酸化蛋白质组的实验流程
Nat. Rev. Mol. Cell. Biol., 2007, 8, 530-541. Proteomics, 2010, 10, 1284-1296.
5
蛋白激酶的种类
6
蛋白激酶与底物间的特异性作用
蛋白激酶的特异性:模体(motif)是指底物蛋白上的特定氨基酸序列。
蛋白激酶与底物特异性作用 Substrate P
Kinase
激酶 PKA CK2 ERK2 AKT CaMK2 特异性作用模体 K/R-X1-2-S/T S/T-D/E-X-E/D P-X-S/T-P R-X-R-X-X-S/T R-X-X-S/T
Biochim. Biophys. Acta, 2005, 1754, 200-209. Cell Death Differ., 2007, 14, 66-72.
相对定量
稳定同位素 标记定量
代谢标记:SILAC
ICAT/CysTMT
化学标记法
iTRAQ/TMT O18标记 二甲基标记
注:八标iTRAQ磷酸化的通量会相对较低
Nat. Chem. Biol., 2005, 1, 252-262. J. Proteome Res., 2010, 9, 4045–4052.
7
蛋白质磷酸化的生物学功能
信号传导
酶活性 蛋白质磷酸化
新陈代谢
Trends Biotechnol., 2002, 20, 261-268.
细胞周期
细胞骨架
8
组蛋白H3磷酸化与基因转录
Trends Genet., 2004, 20(4), 214-220.
9
Tau蛋白磷酸化和神经退行性疾病的治疗
PTM-Biolabs
高通量磷酸化蛋白质组学
朱俊 博士
2015年05月21日
主要内容
一、蛋白质磷酸化研究背景 二、磷酸化蛋白质组学技术路线 三、磷酸化蛋白质组学的应用
2
一、蛋白质磷酸化研究背景
蛋白质翻译后修饰
磷酸化 57191
蛋白质存在超过300种翻译后修饰!
Sci. Rep., 2011,13,1-5.