哈尔滨工业大学机械原理3课件

合集下载

机械原理(全套15PPT课件)

机械原理(全套15PPT课件)
按形状分为盘形、圆柱形、平板型等;按从动件类型分为尖底、滚子、平底等
从动件的常用运动规律
等速运动规律
从动件匀速运动,产生刚性冲击
等加速等减速运动规律
从动件分段匀变速运动,产生柔性冲击
简谐运动规律(余弦加速度运动规律)
从动件按余弦规律加速运动,无冲击
正弦加速度运动规律
从动件按正弦规律加速运动,无冲击
平面四杆机构的设计
按照给定的连杆位置设计四杆机构
按照给定的运动轨迹设计四杆机构
作图法、解析法
作图法、解析法
按照给定的急回特性设计四杆机构
按照给定的传动角设计四杆机构
作图法、解析法
作图法、解析法
05 凸轮机构及其设 计
凸轮机构的应用和分类
凸轮机构的应用
自动机械、操纵控制、传动装置等
凸轮机构的分类
重要性
机械原理是机械工程学科的基础 ,对于理解和分析机械系统的运 动、力和能量传递过程具有重要 意义。
机械原理的研究对象和内容
研究对象
机械系统,包括机构、传动、控制等 方面。
研究内容
机构的结构分析、运动分析、力分析 、动力学分析、优化设计等。
机械原理的发展历程和趋势
发展历程
从简单机械到复杂机械系统,从经验设计到基于科学计算的设计。
机械原理(全套15PPT课件)
contents
目录
• 机械原理概述 • 机构的结构分析 • 平面机构的运动分析 • 平面连杆机构及其设计 • 凸轮机构及其设计 • 齿轮机构及其设计
01 机械原理概述
机械原理的定义与重要性
定义
机械原理是研究机械系统中力的 传递、转换和效应的基本规律和 原理的学科。
具有急回特性、死点位置、压力角和 传动角等特性,这些特性对机构的运 动性能和动力性能有重要影响。

哈工大机械设计第三章PPT课件

哈工大机械设计第三章PPT课件
对螺纹的要求:足够的强度和良好的工艺性 连接螺纹:自锁 管 螺 纹:紧密性、气密性 传动螺纹:效率高 调整螺纹:精度高 起重螺纹:效率高、自锁性好
机电工程学院 张锋
《机械设计》第三章
1 普通螺纹
特点:牙型为等边三角形,螺纹的牙型角
=2=60。牙侧角大,因为 f f
cos
所以 f
一般 n 4
导程Ph-同一条螺旋线上相邻两个牙 型在中径线上对应点间的 轴向距离,
Ph=nP。
机电工程学院 张锋
《机械设计》第三章
螺纹升角ψ-螺旋线的切线与垂直于螺纹轴线 的平面间的夹角。
arctanP dh2 arctanndP2
旋向:螺旋线绕行的方向
右旋,左旋
牙型角---轴向剖面内螺纹 牙型两侧边的夹角
牙侧角---螺纹牙型侧边与 螺纹轴线的垂线的夹角
机电工程学院 张锋
3.1.1 常用螺纹类型及特点
《机械设计》第三章
螺纹的分类: 按牙形:普通螺纹 、矩形螺纹、 梯形螺纹、
锯齿形螺纹、管螺纹 按母体形状:圆柱螺纹、圆锥螺纹
机电工程学院 张锋
《机械设计》第三章
细牙的缺点:牙小,相同载荷下磨损快,易 脱扣 细牙的应用场合:
常用于承受冲击、振动及变载荷、或空心、 薄壁零件上及微调装置中
机电工程学院 张锋
2 、矩形螺纹
《机械设计》第三章
特点:牙形为正方形,=0,
f’小 f tg 小
tan tan( )

f f cos
机电工程学院 张锋
《机械设计》第三章
机电工程学院 张锋
《机械设计》第三章
只介绍普通螺纹的有关公差精度方面的知识 1.普通螺纹的公差等级及精度 GB/T197-2003规定:公差等级有3,4,5,6,7,8

机械原理第三章精选全文完整版

机械原理第三章精选全文完整版
利用死点: ①夹紧机构 图 ②飞机起落架 图
第三节 四杆机构的设计
一、四杆机构的设计的基本问题
平面连杆机构的功能:
(1)传动功能 图
(2)引导功能

四杆机构的设计的基本问题:
(1)实现预定的连杆位置问题; (1)实现已知运动规律问题; (2)实现已知轨迹问题。
设计方法:(1)图解法;(2)解析法;
ψ
θ
a AC2 AC1 2
a EC1 / 2
90 -θ
ψ
θ
θ
(2)曲柄滑块机构
已知: H , K,e ,求机构其它构件尺寸.
步骤:
180 (k
1)
k 1
取 l 作图
AB=(AC1-AC2)/2 BC=AC1-AB
H
c2
c1
90
A
lAB l AB
O
Hale Waihona Puke lBC l BCM
(3)导杆机构
已知: lAD , K
根据 3 ,则得
2
arcsin
l3
sin
3 l1 sin
l2
1
第四节 平面连杆机构的运动分析(8)
2.速度分析
将式(l1ei1 l2ei2 l4 l3ei3 对时间求导,得到
l ie 指数函数求导
i1
11
l22iei2
l33iei3
e 将式中的每项乘 i2,并取实部消去 2 ,解得:
3)以平面高副联接的两构件, 若高副元素之间为纯 滚动时, 接触点即为两构件的瞬心;若高副元素 之间既滚动又滑动, 则瞬心在高副接触点处的公 法线上。 图
(2)不直接相联的两构件的瞬心——三心定理
三心定理: 三个彼此作平面运动的构件共有三个瞬 心,且必定位于同一直线上。 图

哈工大机械原理大作业3

哈工大机械原理大作业3

Harbin Institute of Technology机械原理大作业三课程名称:设计题目:院系:班级:设计者:学号:指导教师:设计时间:哈尔滨工业大学大作业3 齿轮传动设计 1、设计题目1.1机构运动简图1.2机械传动系统原始参数2、传动比的分配计算由已知条件,电动机转速n=1450r/min ,输出转速n 1=27 r/min ,n 2=31 r/min ,n 3=37 r/min ,带传动最大传动比max p i =2.5,滑移齿轮传动最大传动比=4,定轴齿轮传动最大 传动比=4。

可求得:传动系统的总传动比为:11n ni == 1450/27=53.70322n ni == 1450/31=46.774 33n ni == 1450/37=39.189 传动系统的总传动比分别由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。

设带传的传送比为其最大传送比5.2max =p i ,滑移齿轮的传动比为321,,v v v i i i ,定轴齿轮传动的传动比为f i ,则总传动比由于1i > 2i > 3i ,故取1max 4v v i i ==则定轴齿轮传动部分的传动比为1max max5.37f p v i i i i ==滑移齿轮传动的传动比22max3.49v f p i i i i ==33m a x2.92v f p i i i i ==定轴齿轮传动由3对齿轮传动组成, 每对齿轮的传动比为:1.754d i ==≤3、齿轮齿数的确定滑移齿轮齿数3=v i 65622.9521z z == 2=v i 8766 3.4719z z ==1=v i 10967 3.9417z z ==齿轮7,齿轮8:719z = 866z =781()852a m z z =+=齿轮9,齿轮10:917z =1067z =此时已知条件为'a =85mm ,910211()842()ni i a m z z X X ==+=-∑mm ''arccos(cos )21.78a aαα==总变位系数:'910()0.552tan z z x inv inv ααα∑+=-=根据x ∑值和1093.94 3.0z uz ==>,按选择变位系数线图左部斜线⑤分配变位系数,得90.45x =齿轮5,齿轮6:5=21z662z =此时已知'a =85mm ,561()832a m z z =+= ''arccos(cos )23.42a a αα==100.10x =总变位系数:'65() 1.082tan z z x inv inv ααα∑+=-=根据x ∑值和652.953z u z ==>,按选择变位系数线图左部斜线④分配变位系数,得 50.5x =60.58x =定轴圆柱齿轮齿数=d i 1214111326 1.5317z z z z ===齿轮11,齿轮12:角度变位正传动。

哈工大机械原理课件

哈工大机械原理课件

I
5
IV
2
II
4
V
1
III
3
移 动 副
V
1
IV
2
螺 旋 副
V
1
2、根据组成运动副的两个运动副元素的接触情况分类 运动副元素以点或线接触的运动副称为高副 。
球面高副
柱面高副
运动副元素以面接触的运动副称为低副 。
球面低副
移动副
转动副
3、根据组成运动副的两个构件的相对运动形式分类
空间运动副
球销副
螺旋副
只是为了表明机构的运动状态或各构件的 相互关系,也可以不按比例来绘制运动简图, 通常把这样的简图称为机构示意图。
常用机构构件、运动副代表符号
绘制机构运动简图的步骤
1. 在绘制机构运动简图时,首先确定机构的原动件 和执行件,两者之间为传动部份,由此确定出组成机 构的所有构件,然后确定构件间运动副的类型。 2. 为将机构运动简图表示清楚,恰当地选择投影面。一 般选择与多数构件的运动平面相平行的面为投影面,必要 时也可以就机械的不同部分选择两个或两个以上的投影面 ,然后展开到同一平面上。总之,绘制机构运动简图要以 正确、简单、清晰为原则。 3. 选择适当的比例尺,根据机构的运动尺寸定出各运动 副之间的相对位置,然后用规定的符号画出各类运动副,并 将同一构件上的运动副符号用简单线条连接起来,这样便可 绘制出机构的运动简图。
30米/分
500
二、创新
◆自然科学领域的最高成就是发现
◆应用技术领域的最高成就是发明
发明:
◆基础理论知识
◆应用技术知识 ◆实践经验
◆强烈的创新意识 ◆勤奋的工作
两用折叠椅
外环
双曲面滚柱加载器

机械原理第3版课件第六章

机械原理第3版课件第六章

常取单头螺杆凸轮z2≥6,从动盘按正弦加速度规律设计, 可控制中心距消除间隙,承载能力高,间歇频率为1200次/分, 分度精度为30″。
(3)共轭凸轮式间歇机构
动力特性好,分度精度高,成本较低。
圆柱凸轮间歇运动机构
蜗杆凸轮间歇运动机构
凸轮式间歇机构的特点和应用
• 结构简单,运转可靠,无需专门定位装置;
电影放映机的 间歇卷片机构
间歇转位机构
二、棘轮机构
一)、棘轮机构的工作原理和类型
右图所示的为常见的外啮合齿式棘轮 机构,它主要由棘轮3,主动棘爪2, 止回棘爪4和机架组成。当主动摆杆1 逆时针摆动时,摆杆上铰接的主动棘 爪2插入棘轮3的齿内,推动棘轮同向 转动一定角度。当主动摆杆顺时针摆 动时,止回棘爪4阻止棘轮反向转动。 此时主动棘爪在棘轮的齿背上滑回原 位,棘轮静止不动,从而实现将主动 件的连续摆动转换为从动棘轮的单向 步进转动。为保证棘爪工作可靠,常 利用弹簧6使棘爪紧压齿面。
1、齿式棘轮机构
常用棘轮机构可分为齿式与摩擦式两大类 单动式棘轮机构 单向式棘轮机构 齿棘 式轮 双动式棘轮机构 机 棘 双向式棘轮机构 构 轮 机 构 偏心楔块式棘轮机构 摩棘 擦轮 式机 滚子楔紧式棘轮机构 构
齿式棘轮机构
内啮合棘轮机构
棘齿条机构
当棘轮的直径为无穷大时,变为棘齿条,此时, 棘轮的单向转动变为棘齿条的单向移动。
4)适于恶劣的工作环境下工作,特别是在易燃、易爆、
多尘埃、强磁、强振、潮湿、有辐射和温度变化大的恶 劣环境中工作时,安全可靠性优于液压、电子和电气机 构。 5)易于实现过载保护。
图6-33 可移动式气动通用 机械手结构示意图 1—真空吸头 2—水平缸 3—垂直缸 4—齿轮齿条副 5—回转缸

机械原理ppt课件完整版

机械原理ppt课件完整版

机械原理的定义与重要性
2024/1/25
定义
机械原理是研究机械系统运动、 力和能量转换规律的科学。
重要性
机械原理是机械工程学科的基础 ,对于理解和分析机械系统的性 能、优化机械设计和提高机械效 率具有重要意义。
4
机械原理的研究对象和内容
研究对象
机构学
传动学
控制理论
机械系统,包括机构、 传动、控制等子系统。
动力学原理
牛顿运动定律、动量定理、动能定理等是机械系统动力学的基本原理,它们揭示了机械系 统运动的基本规律。
17
机械系统的运动方程和求解方法
运动方程的建立
根据机械系统的受力情况和约束条件,可以建立机械系统的运动方程。这些方程通常是一组微分方程或差分方程。
2024/1/25
求解方法
求解机械系统的运动方程可以采用解析法、数值法或图解法等方法。其中,解析法可以得到精确的解,但通常只适用 于简单的机械系统;数值法可以求解复杂的机械系统,但得到的是近似解;图解法则是一种直观形象的求解方法。
工艺特点
机械制造工艺具有多样性、复杂性 和综合性等特点,需要根据不同的 产品要求和生产条件制定相应的工 艺方案。
21
机械制造装备的分类和特点
加工装备
包括机床、刀具、夹具等,用于 对原材料进行切削、磨削等加工 操作,具有高精度、高效率和高
自动化等特点。
热处理装备
包括加热炉、淬火设备、回火设 备等,用于改善材料的力学性能 和加工性能,提高产品的使用寿
稳定性概念及判定方法:稳定性是指 机械系统在受到扰动后能否恢复到原 平衡状态的能力。稳定性的判定方法 包括静力学判定法、动力学判定法和 能量判定法等。其中,静力学判定法 主要关注机械系统在平衡位置附近的 稳定性;动力学判定法则通过分析机 械系统的运动方程来判断其稳定性; 能量判定法则是通过分析机械系统的 能量变化来判断其稳定性。

机械原理第3版课件第三章

机械原理第3版课件第三章


v
生无限值惯性力,并由此对凸轮产
生冲击

a
+∞
—— 刚性冲击

-∞
s = c0 c1 v = ds dt = c1 回程运动方程: a = dv dt = 0
边界条件
运动始点:=0, s=h 运动终点: = ,s=0
s = h (1 ) h v = ω a = 0 Nhomakorabeaf

从动件在运动起始、中点 和终止点存在柔性冲击 适用于中速轻载场合
f
O
f/2
4h2/f2

c)五次多项式运动规律 表达式为
v = ds / dt = C1 2C2 3C3 2 4C4 3 5C5 4 a = dv / dt = 2C2 2 6C3 2 12C4 2 2 20C5 2 3 s = C0 C1 C2 2 C3 3 C4 4 C5 5
推程边界条件
在始点处:=0, s1=0, v1=0, a1=0; 在终点处: = Φ s2=h, v2=0, a2=0; 解得待定系数为
C0=0,C1=0,C2=0,C3=10h/Φ 3,C4=-15/ Φ4,C5=6h/ Φ5
位移方程式为
S=10hφ 3/ Φ3-15hφ4/Φ4+6hφ5/Φ5
第二节
凸轮机构基本运动参数设计
一、凸轮工作转角的确定
二、从动件运动规律设计
一、凸轮工作转角的确定
s
*从动件在远停处对应 的转角s——远停角。
h
0
0
120º
s
180º
300º
360º

120º
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xA li yA li
cosi sini
dxB
速度: dt
xB
xA -ili sini
dyB dt
yB
yA ili cosi
x
O
加速度:
d2xB dt2
xB
xA-i2li
c
osi
-ili
s ini
d2yB dt2
yB
yA-i2li
s
ini
ili
c osi 47
(2) RRRII级杆组的运动分析
通常认为摩擦力是阻力,但是,有时候摩擦力也可以是驱动力
51
摩擦力是驱 动力的实例
Ff Ff
vv
汽车前进方向
52
二、杆组法对平面连杆机构进行受力分析
自学,参见教材49页~53页。
53
三、运动副的摩擦及计及摩擦时机构的力分析
1. 移动副的摩擦和自锁
n
摩擦角(锥)
n
F F F Rij
t FNij
Fn
4
三、连杆机构的缺点
•惯性力不易平衡 •不易精确实现各种运动规律和轨迹要求
5
3-2 平面连杆机构的基本类型及其演化
一、平面四杆机构的基本类型及应用
基本类型: 曲柄摇杆机构
四杆机构 连杆曲线
6
双曲柄机构
7
双摇杆机构
8
周转副
连架杆 曲柄
周转副
机架
连杆 曲柄摇杆机构
摆转副
连架杆 摇杆 摆转副
9
二、平面连杆机构的演化
40
2. 运动分析的基本方法 ◆图解法 ◆解析法 ◆实验法
41
二、用速度瞬心法对平面机构作速度分析 1. 什么是速度瞬心?
作平面运动的两个构件上瞬时相对速度等于零的点或绝对速度 相等的点(等速重合点),称为速度瞬心。
设有m个构件 1,2,3,4,...,m
速度瞬心的个数: K (m -1 )(m -2 ).. .1m-(1m )
i
F fij
e Mr Ffijr
轴颈加速转动
e G
ω ji
FNij F Rij
rO j
i
F fij
e Mr Ffijr
轴颈减速转动
57
结论:(1) 当 e时,M=Mf,轴颈匀速转动
或静止不动;
(2) 当 e时,M>Mf,轴颈加速转动 (3) 当 e时,M<Mf,无论驱动力G
增加到多大,轴颈都不会转动, 这种现象称为自锁。
机械原理
第三章 连杆机构分析与设计
哈尔滨工业大学
2004年2月
1
一、定义与分类
3-1 概述
(1)由若干刚性构件用低副联接而成的机构称为连杆机构 连杆机构又称为低副机构
2
(2)连杆机构可分为 空间连杆机构和 平面连杆机构
空间连杆机构
平面连杆机构
3
二、连杆机构的优点
• 承受载荷大,便于润滑 • 制造方便,易获得较高的精度 • 两构件之间的接触靠几何封闭实 现 • 实现多种运动规律和轨迹要求
23
二、压力角和传动角 V
F
S
W FSco s
压力角:力F的作用线与力作用点绝对速度V所夹的锐角 α称为压力角。 传动角:压力角的余角γ称为传动角
24
W FSco s
在其它条件不变的情况下压力角α越大,作功W越大
压力角是机构传力性能的一个重要指标,它是力的利用率大小 的衡量指标。
25
曲柄摇杆机构的压力角
55
2. 转动轴颈的摩擦和自锁
Mr
G
ω ji
FNij F Rij
rO j
i
F fij
G FRij Mr Ffijr
e Mr G
Mr G
M r G eG
ω ji
FNij F Rij
rO j
i
F fij
e Mr Ffijr
G FRij 轴颈均速转动
56
e G
ω ji
FNij F Rij
rO j
比较
ad bc d-a bc badc b d-ac cadb c d-ab
d -a a d b c adbc b d - a c a d cbd-ac c d -a b a d bcd-ab
adbc
bd-ac
cd-ab
ac ab a d
a最短
a
b
c
d
该机构中构件a最短, 构件a能否整周回转?
a d
当最短杆与最长杆之和小于等于其它两杆长度之和 即
abcd
该式表明铰链四杆运动链有两个周转动副, 并且这两个周转副在最短杆的两端。
18
◆最短杆是连架杆或机架
周转副
b
a
d
周转副
摆转副
c
摆转副
最短杆a是机架时,连架杆b,d都是曲柄
最短杆a是连架杆时,b或者d是机架,a是曲柄
c是机架时,无曲柄
双摇杆机构
t2
2 1
180 - 1
t1 t2
3 3
31
3. 行程速比系数K
通常把从动件往复运动平均速度的比 值(大于1)称为行程速比系数,用K表示。
K从 从动 动件 件慢 快速 速行 行程 程平 平 度 度均 均 速 速 33
3
t1
t1
1 1
180 1
3
t2
t2
2 1
180 - 1
K
180 180
O
4
D
(1)用I级杆数学模型计算B点的运动
(2)用RRR杆组数学模型计算C点的运动
(3)用I级杆数学模型计算E点的运动
(4)用RRP杆组数学模型计算F点的运动
50
3-5 平面连杆机构的力分析机械效率
一、力分析的基本知识
作用在机械上的力: ◆驱动力 驱使机械运动的力,其特征:力与作用点速度方向的夹 角为锐角 ◆阻力 阻碍机械运动的力,其特征:力与作用点速度方向的夹角 为钝角
解析法有很多种不同的方法,本教材采用杆组法
分解 基本杆组
建立基本杆 组数学模型
按照基本杆组构成机构的 顺序对机构进行运动分析
46
2. 杆组法运动分析的数学模型
(1) 同一构件上点的运动分析 y
B
li i
A li
rA
B
i
已知:A (xA ,yA )l,i,li,δ , i
数学模型
位置:
xB yB
BD2 a2 d2 2adcos BD2 b2 c2 2bccos
cosb2c2-a2d22adcos
2bc
90
b
B
δ max
a
A
d
Fn
C
γ
α
F Ft
δ
Vc
c
δmin
D
26
90
180
B a A
b
Fn α F
C
α γδ γ
Ft c
Vc
δ max
δmin
d
D
27
曲柄滑块机构的压力角
m
ab
a
nb
导杆机构总 构是转导杆机
构。
是有曲柄的
d
21
4、偏置导杆机构有曲柄的条件
ae
d
ad-e
有曲柄,该机 构是摆动导杆 机构。
a
e
d
ad-e
有曲柄,该机 构是摆动导杆 机构。
22
a
d
d -e a d e
没有曲柄。
a
e e
结论
d
ade 偏置导杆机构有
有曲柄,该机 构是转动导杆
曲柄的条件是
机构。
ade,ade
180 K1
K1 32
四、机构的死点位置
1. 死点位置 所谓死点位置就是指从动件的传动角等于零或者压力角等于90∘时 机构所处的位置。
如何确定机构的 死点位置?
分析B、C点的压力角
C
C1
B
b a B2
c
C2
c
b
aA
d
D
B1
33
曲柄摇杆机构(曲柄为主动件)的死点
M
FB
M AB
B
vB
B 0
FB
C
e
max min
28
三、急回运动和行程速比系数
1. 极位夹角
当机构从动件处于两极限位置时,主动件曲柄在两相应位
置所夹的角
曲柄摇杆机构的极位夹角
C
C
C
b B
aA
d
D
B
29
曲柄滑块机构的极位夹角
BA B
C
摆动导杆机构的极位夹角
B
A
Bd
e
C
D
30
2. 急回运动
当曲柄等速回转的情况下,通
常把从动件往复运动速度快慢不同
osi y Djljc
osj
加速度: d2xC
dt2
xC
xB
ili
s ini
i2li
cosi
d2yC dt2
yC
yB ili
cosi
i2li
s ini
48
(3) RRPII级杆组的运动分析
y
C
li
lj
B i
rB rK
K
D
j
x
O
s
49

y
6
K E
5
F
I级杆
RRP杆组
C
H
I级杆
3
2
RRR杆组
相关文档
最新文档