常用拉普拉斯变换总结

合集下载

拉普拉斯变换表

拉普拉斯变换表

拉普拉斯变换表拉普拉斯变换是一种非常重要的数学工具,它在物理、工程、数学、经济等领域均有广泛的应用。

本文将详细介绍拉普拉斯变换的定义、性质、公式表、逆变换及其应用方面的内容。

一、拉普拉斯变换的定义拉普拉斯变换是一种数学工具,用于将一个函数f(t)在复数域上进行变换。

拉普拉斯变换L{f(t)}的定义如下:L{f(t)}=F(s)=∫_0^∞e^(-st)f(t)dt其中,s是复数域上的变量,f(t)是定义在[0,∞)上的函数。

式中的e^-st可以看作是一个因子,它起到了对f(t)作拉普拉斯变换的影响作用。

二、拉普拉斯变换的性质(1)线性性:L{af(t)+bg(t)}=aL{f(t)}+bL{g(t)}其中,a和b为任意常数。

(2)时移性:L{f(t-k)}=e^(-ks)F(s)其中,k为任意实数。

(3)尺度变换:L{f(at)}=1/aF(s/a)其中,a为任意实数,a≠0。

(4)复合性:若F(s)=L{f(t)},G(s)=L{g(t)},则L{f(g(t))}=F(G(s))。

(5)初值定理:lim_(t→0^+)f(t)=lim_(s→∞)sF(s)(6)终值定理:lim_(t→∞)f(t)=lim_(s→0^+)sF(s)三、拉普拉斯变换表以下是一些常用的函数的拉普拉斯变换表。

f(t) F(s)t^n n!/s^(n+1)e^at 1/(s-a)sin(at) a/(s^2+a^2)cos(at) s/(s^2+a^2)1 1/st 1/s^2(t^n)e^at n!/(s-a)^(n+1)u(t-a) e^(-as)/sexp(-at)u(t) 1/(s+a)1-exp(-at)u(t) 1/(s(s+a))1/(a+t) exp(-as)δ(t-a) e^(-as)t^n u(t) n!/s^(n+1)t^n exp(-at)u(t) n!/(s+a)^(n+1)(t^n sin(bt))u(t) nb^s/(s^2+b^2)^(n+1)(t^n cos(bt))u(t) s^n/(s^2+b^2)^(n+1)其中,δ(t)表示狄拉克函数,u(t)即单位阶跃函数。

常用拉普拉斯变换及反变换

常用拉普拉斯变换及反变换

419附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质 齐次性)()]([s aF t af L =1线性定理叠加性)()()]()([2121s F s F t f t f L ±=±一般形式=−=][′−ٛ−=−=−−−−=−∑11)1()1(1222)()()0()()(0)0()(])([)0()(])([k k k k nk k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L M )( 2微分定理初始条件为0时)(])([s F s dtt f d L n nn =一般形式 }}∑∫∫∫∫∫∫∫∫∫∫∫==+−===+=++=+=nk t n n k n n n n t t t dt t f ss s F dt t f L sdt t f s dt t f s s F dt t f L sdt t f s s F dt t f L 101022022]))(([1)(])()([]))(([])([)(]))(([])([)(])([个共个共L L M3积分定理初始条件为0时}nnn s s F dt t f L )(]))(([=∫∫个共L4 延迟定理(或称t 域平移定理))()](1)([s F e T t T t f L Ts−=−− 5 衰减定理(或称s 域平移定理))(])([a s F e t f L at +=−6 终值定理 )(lim )(lim 0s sF t f st →∞→=7 初值定理 )(lim )(lim 0s sF t f s t ∞→→=8 卷积定理)()(])()([])()([21021021s F s F d t f t f L d f t f L tt =−=−∫∫τττττ4202.表A-2 常用函数的拉氏变换和z 变换表 序号 拉氏变换E(s)时间函数e(t) Z 变换E(z)1 1δ(t)12 Ts e −−11∑∞=−=0)()(n T nT tt δδ 1−z z3 s1 )(1t 1−z z 421s t2)1(−z Tz5 31s 22t32)1(2)1(−+z z z T6 11+n s!n t n )(!)1(lim 0aTn n n a e z z a n −→−∂∂− 7 as +1ate −aTe z z−− 8 2)(1a s + atte− 2)(aT aT e z Tze −−−9 )(a s s a +ate−−1 ))(1()1(aT aT e z z z e −−−−− 10 ))((b s a s ab ++− btate e−−−bTaT e z z e z z −−−−− 11 22ωω+st ωsin 1cos 2sin 2+−T z z Tz ωω12 22ω+s st ωcos1cos 2)cos (2+−−T z z T z z ωω 13 22)(ωω++a s t eatωsin −aTaT aT eT ze z T ze 22cos 2sin −−−+−ωω 14 22)(ω+++a s a st e at ωcos −aTaT aTe T ze z T ze z 222cos 2cos −−−+−−ωω15aT s ln )/1(1−T t a/az z −4213. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

拉普拉斯变换公式大全

拉普拉斯变换公式大全

拉普拉斯变换公式大全1.原始函数的拉普拉斯变换F(s)=L{f(t)}2.常数的拉普拉斯变换对于任意实常数A,其拉普拉斯变换为:L{A}=A/s3.单位冲激函数的拉普拉斯变换单位冲激函数δ(t)的拉普拉斯变换为:L{δ(t)}=14.时延定理时延定理指出,当原始函数向右延时T秒时,其拉普拉斯变换会乘以e^(-sT)。

具体公式如下:L{f(t-T)}=e^(-sT)F(s)5.缩放定理缩放定理指出,当原始函数的变量变为原来的α倍时,其拉普拉斯变换会变为原来的1/α倍。

具体公式如下:L{f(αt)}=1/αF(s/α)6.积分定理积分定理指出,对于原始函数的积分,其拉普拉斯变换可以通过将变换域上的变量s除以s平方。

具体公式如下:L{∫f(t)dt} = 1/sF(s)7.乘积定理乘积定理指出,对于原始函数的乘积,其拉普拉斯变换可以通过将变换域上的变量s替换为s减去相应函数的变换。

具体公式如下:L{f(t)g(t)}=F(s)*G(s)8.指数函数的拉普拉斯变换指数函数e^(at)的拉普拉斯变换为:L{e^(at)} = 1/(s-a)9.幂函数的拉普拉斯变换幂函数t^n的拉普拉斯变换为:L{t^n}=n!/(s^(n+1))10.正弦函数的拉普拉斯变换正弦函数sin(ωt)的拉普拉斯变换可通过欧拉公式和拉普拉斯变换公式进行变换。

具体公式如下:L{sin(ωt)} = ω/(s^2 + ω^2)以上是拉普拉斯变换的一些重要公式。

通过应用这些公式,我们可以将原始函数在时域上的操作转换为变换域上的操作,从而解决各种线性常微分方程、控制系统和信号处理问题。

基本函数的拉氏变换

基本函数的拉氏变换

基本函数的拉氏变换引言:在探索基本函数的拉普拉斯变换之前,首先需要了解什么是拉普拉斯变换以及其在数学和工程学中的应用。

拉普拉斯变换是一种数学方法,用于解决微分方程。

它将一个函数从时间域转换到复频域,从而让我们可以更轻松地处理微分方程的操作。

它提供了一个重要的数学工具,用于求解控制系统和信号处理等应用中的许多问题。

本文将阐述基本函数的拉普拉斯变换,主要包括单位阶跃函数、单位冲击函数、指数函数和正弦函数的拉普拉斯变换表达式及其应用。

一、单位阶跃函数的拉普拉斯变换单位阶跃函数一般表示为u(t),表示斜坡从0到1的标准阶跃,如图1所示。

阶跃函数在控制系统中具有重要的作用。

单位阶跃函数通常被用作激励输入来测试系统的性能。

拉普拉斯变换后,单位阶跃函数的表达式为:$$\mathscr{L}\{u(t)\}={1\over s}$$二、单位冲击函数的拉普拉斯变换单位冲击函数一般表示为δ(t),表示在t=0时刻的无穷大脉冲信号,如图2所示。

冲击函数在控制系统中也具有重要的作用。

在线性系统中,冲击响应又称为单位脉冲响应或简称脉冲响应。

拉普拉斯变换后,单位冲击函数的表达式为:$$\mathscr{L}\{\delta(t)\}=1$$三、指数函数的拉普拉斯变换指数函数一般表示为e-at,其中a为常数,表示一个衰减的曲线,如图3所示。

指数函数在控制系统和信号处理中常常用于表示衰减或增加的信号。

拉普拉斯变换后,指数函数的表达式为:$$\mathscr{L}\{e^{-at}\}={1\over s+a}$$当a>0时,指数函数随时间的增长而不断衰减。

而当a<0时,指数函数随时间的增长而不断增加。

四、正弦函数的拉普拉斯变换正弦函数一般表示为sin(ωt),其中ω为常数,描述一个振荡信号,如图4所示。

正弦函数在控制系统和信号处理领域中也广泛应用。

拉普拉斯变换后,正弦函数的表达式为:$$\mathscr{L}\{\sin\omega t\}={\omega\over s^2+\omega^2}$$这里我们用欧拉公式将正弦函数转换为指数函数的形式,即:$$\sin\omega t={e^{j\omega t}-e^{-j\omega t}\over 2j}$$用欧拉公式可以对任意角频率的函数进行拉普拉斯变换。

拉普拉斯变换实验总结

拉普拉斯变换实验总结

拉普拉斯变换实验总结拉普拉斯变换实验总结拉普拉斯变换实验是电子工程等专业中的一项基础实验,用来研究信号的频域特性,对于电路分析和控制系统设计等方面都有重要意义。

此次实验,我们按照拉普拉斯变换的不同类别进行了实验,包括一阶和二阶低通滤波器、一阶和二阶高通滤波器、一阶和二阶带通滤波器。

一、低通滤波器低通滤波器是指只允许低于截止频率的信号通过的滤波器,实际应用中常用于从信号中提取低频成分。

我们制作了一阶和二阶低通滤波器,使用示波器测量其传递函数和幅频响应曲线,以验证其截止频率的正确性。

在实验过程中,我们发现低通滤波器能够有效地降低高频分量,滤波效果良好。

二、高通滤波器高通滤波器则是只允许高于截止频率的信号通过的滤波器,因此被广泛应用于去除低频噪声和直流偏移。

我们制作了一阶和二阶高通滤波器,并利用示波器测量响应曲线,验证其截止频率。

实验结果表明,高通滤波器能够有效地去除低频噪声和直流偏移,保留高频有用信息。

三、带通滤波器带通滤波器则是只允许特定频率范围内的信号通过的滤波器,常用于从信号中提取特定频率成分。

我们制作了一阶和二阶带通滤波器,并利用示波器测量响应曲线。

实验结果表明,带通滤波器能够有效地滤除非特定频率范围内的分量,实现了信号的频率选择。

总的来说,拉普拉斯变换实验是一项在电子工程等专业中非常重要的基础实验。

通过实验,我们深刻理解了不同种类的滤波器的工作原理和性能特点,为日后的电路设计和控制系统开发提供了基础。

同时,也思考到滤波器的实际应用中,滤波器的截止频率、阻带带宽等参数的精准控制对于滤波器的实际效果也至关重要。

因此,我们必须更加重视滤波器实验,并持续深入探究滤波器的性能和优化技术,以提高实际应用的准确性和可靠性。

8种常见的拉普拉斯变换,想搞不懂都难!

8种常见的拉普拉斯变换,想搞不懂都难!

8种常见的拉普拉斯变换,想搞不懂都难!拉普拉斯变换(拉⽒变换)是⼀种解线性微分⽅程的简便运算⽅法,是分析研究线性动态系统的有⼒数学⼯具。

简单点说,我们可以使⽤它去解线性微分⽅程,⽽控制⼯程中的⼤多数动态系统可由线性微分⽅程去描述,因此拉⽒变换是控制⼯程领域必不可少的基础。

什么是拉⽒变换呢?⾸先,我们来看⼀下拉⽒变换的定义——设时间函数为f(t),t>0,则f(t)的拉普拉斯变换定义为:其中,f(t)称为原函数,F(s)称为象函数。

⼀个函数可以进⾏拉⽒变换的充要条件为:(1)在t<0时,f(t)=0;(2)在t≥0的任⼀有限区间内,f(t)是分段连续的;(3)当t→﹢∞时,f(t)的增长速度不超过某⼀指数函数,即:接下来为⼤家介绍⼏种常见的时间常数拉⽒变换,⼤家在看下⾯⼏种时间常数拉⽒变换的时候可将⼏个时间常数与这三个条件⼀⼀对应,有助于理解记忆。

1、单位脉冲函数单位脉冲函数数学表达式为:其对应的图像为:我们来看⼀个脉冲信号:从图中可看出,脉冲函数就像脉冲信号⼀样,在时间的⼀个微段dt内,信号强度快速增长,可达到⽆穷⼤,⽽单位脉冲函数指的是其微段dt与增长的⾼度的乘积为1,即h(dt)=1。

其拉⽒变换为:该函数有⼀个重要性质:f(t)为任意连续函数,当f(t)=e^(-st)时,该性质即可看为单位脉冲函数的拉⽒变换。

2、单位阶跃函数单位阶跃函数的数学表达式为:其函数图像为:其拉⽒变换为:3、单位斜坡函数单位斜坡函数的数学表达式为:函数图像为:其拉⽒变换为:其被积函数为幂函数与指数函数乘积,使⽤分部积分法求解(反对幂三指),这只是推到过程,我们使⽤的时候只需记住t的拉⽒变换为1/s^2即可。

4、单位加速度函数单位加速度函数的数学表达式为:其函数图像为:其拉⽒变换为:求解过程与单位斜坡函数的拉⽒变换求解过程相同,这⾥只需记住1/2T^2的拉⽒变换为1/s^3。

5、指数函数指数函数的数学表达式为:其函数图像为:其拉⽒变换为:求解过程为凑微分法。

积分拉普拉斯变换公式表

积分拉普拉斯变换公式表

积分拉普拉斯变换公式表一、拉普拉斯变换的定义。

设函数f(t)在t≥slant0上有定义,若广义积分F(s)=∫_0^+∞f(t)e^-stdt(s是一个复参量)在s的某一区域内收敛,则称F(s)为f(t)的拉普拉斯变换,记为F(s)=L[f(t)],而f(t)称为F(s)的拉普拉斯逆变换,记为f(t)=L^- 1[F(s)]。

二、一些常见函数的拉普拉斯变换。

1. 单位阶跃函数u(t)- 定义:u(t)=<=ft{begin{array}{ll}0, t < 0 1, t≥slant0end{array}right.- 拉普拉斯变换:L[u(t)]=∫_0^+∞1× e^-stdt=(1)/(s),(s > 0)2. 指数函数f(t)=e^at(a为常数)- 拉普拉斯变换:L[e^at]=∫_0^+∞e^ate^-stdt=∫_0^+∞e^-(s - a)tdt=(1)/(s - a),(s > a)3. 正弦函数f(t)=sin(ω t)(ω为常数)- 拉普拉斯变换:- 已知sin(ω t)=frac{e^iω t-e^-iω t}{2i}- L[sin(ω t)]=(1)/(2i)<=ft((1)/(s - iω)-(1)/(s + iω))=(ω)/(s^2)+ω^{2},(s>0)4. 余弦函数f(t)=cos(ω t)(ω为常数)- 拉普拉斯变换:- 已知cos(ω t)=frac{e^iω t+e^-iω t}{2}- L[cos(ω t)]=(1)/(2)<=ft((1)/(s - iω)+(1)/(s + iω))=(s)/(s^2)+ω^{2},(s > 0)三、拉普拉斯变换的性质及相关公式。

1. 线性性质。

- 若L[f_1(t)] = F_1(s),L[f_2(t)]=F_2(s),a,b为常数,则L[af_1(t)+bf_2(t)]=aF_1(s)+bF_2(s)2. 微分性质。

常见的拉普拉斯变换公式

常见的拉普拉斯变换公式

常见的拉普拉斯变换公式拉普拉斯变换公式是数学中的一种重要工具,它在信号与系统、电路分析、控制理论等领域有着广泛的应用。

通过将一个函数或信号从时间域转换到复频域,拉普拉斯变换可以简化复杂的微分方程求解和系统分析问题。

以下是常见的拉普拉斯变换公式及其应用。

1. 原函数定义公式:拉普拉斯变换的第一个公式是原函数定义公式,用于将一个函数从时间域表示转换为复频域表示。

假设函数为f(t),其拉普拉斯变换为F(s),则原函数定义公式为:F(s) = L{f(t)} = ∫[0,∞] f(t)e^(-st) dt其中,s为复变量,表示函数在复频域的频率。

2. 常见的拉普拉斯变换公式:拉普拉斯变换公式包括了一系列常见函数的变换结果,以下是其中的几个常见公式及其应用:- 常数函数:L{1} = 1/s,常数函数在拉普拉斯变换后变为1除以复变量s。

- 单位阶跃函数:L{u(t)} = 1/s,单位阶跃函数在拉普拉斯变换后变为1除以复变量s。

- 指数函数:L{e^(at)} = 1/(s-a),指数函数在拉普拉斯变换后变为1除以复变量s减去常数a。

- 正弦函数:L{sin(at)} = a/(s^2 + a^2),正弦函数在拉普拉斯变换后变为常数a除以复变量s的平方加上a的平方。

- 余弦函数:L{cos(at)} = s/(s^2 + a^2),余弦函数在拉普拉斯变换后变为复变量s除以复变量s的平方加上a的平方。

3. 拉普拉斯变换的性质:拉普拉斯变换具有一系列的性质,这些性质可以方便地应用于信号处理和系统分析中。

以下是常见的拉普拉斯变换性质:- 线性性质:L{af(t) + bg(t)} = aF(s) + bG(s),其中a和b为常数,f(t)和g(t)为函数,F(s)和G(s)为它们的拉普拉斯变换。

- 平移性质:L{f(t-a)u(t-a)} = e^(-as)F(s),其中a为常数,f(t)为函数,u(t)为单位阶跃函数,F(s)为f(t)的拉普拉斯变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用拉普拉斯变换总结
1、指数函数
000)(≥<⎩⎨⎧=-t t Ae
t f t α,其中,A 和a 为常数。

α
ααα+===⎰⎰∞+-∞
---s A t e A t e Ae Ae L t s st t t 0)(0d d ][ 2、阶跃函数
000)(><⎩⎨⎧=t t A
t f ,其中,A 为常数。

s
A t Ae A L st =
=⎰∞
-0d ][ 3、单位阶跃函数
4、斜坡函数 ,其中,A 为常数。

⎰⎰∞-∞
-∞----==000d d ][t s
Ae s e At t Ate At L st st st
A =1时的斜坡函数称为单位斜坡函数,发生在t=t 0时刻的单位斜坡函数写成r (t-t 0)
5、单位斜坡函数
000)(≥<⎩⎨⎧=t t t t f
001
0)(><⎩⎨⎧=t t t u s t e t u L st 1d )]([0==
⎰∞-000)(≥<⎩⎨⎧=t t At
t f 20d s
A t e s A st ==⎰∞
-
⎰⎰
∞-∞-∞----==000d d ][t s e s e t t te t L st st st
2
01d 1s t e s st ==⎰∞- 6、正弦函数
00sin 0)(≥<⎩⎨⎧=t t t
A t f ω,其中A 为常数。

根据欧拉公式:
拉式变换为: 2
20
1212d )(2]sin [ωωωωωωω+=+--=-=⎰∞--s A j s j A j s j A t e e e j A t A L st t j t j 同理余弦函数的拉式变换为:2
2]cos [ωω+=
s As t A L 7、脉动函数 t t t t t t A t f <<<<⎪⎩⎪⎨⎧=000,000)(,其中,A 和t 0为常数。

脉动函数可以看做是一个从t =0开始的高度为A /t 0的阶跃函数,与另一个从t =t 0开始的高度为A /t 0的负阶跃函数叠加而成。

)()()(00
0t t u t A t u t A t f --= )1()()()]([00000000st st e s
t A e s t A s t A t t u t A L t u t A L t f L ---=-=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡= )
(t f t 图2.3正弦函数和余弦函数
)(t f t
(a)(b)
00)(21sin t j t j e e j
t ωωω--=
8、脉冲函数
脉冲函数是脉动函数的一种特殊极限情况。

t t t A t g <∆<∆<<⎪⎩⎪⎨⎧∆=→∆,000lim )(0
[]
()A s As s e A e s A t g L s s ==∆∆-∆=⎥⎦
⎤⎢⎣⎡-∆=∆-→∆∆-→∆d d )1(d d lim )1(lim )]([00 9、单位脉冲函数
当面积A =1的脉冲函数称为单位脉冲函数,或称为狄拉克(Disac)函数,
1
d )(0
)(-000
0=-⎩⎨⎧=∞≠=-⎰∞
∞t t t t t t t t t δδ
量值为无穷大且持续时间为零的脉冲函数纯属数学上的一种假设,而不可能在物理系统中发生。

但是,如果系统的脉动输入量值很大,而持续时间与系统的时间常数相比较非常小时,可以用脉冲函数去近似地表示脉动输入。

当描述脉冲输入时,脉冲的面积大小是非常重要的,而脉冲的精确形状通常并不重要。

脉冲输入量在一个无限小的时间内向系统提供能量。

单位脉冲函数)(0t t -δ可以看作是单位阶跃函数u (t-t 0)在间断点t=t 0上的导数,即 )(d d )(00t t u t
t t -=-δ 相反,如若对单位脉冲函数)(0t t -δ积分:
)(d )(000t t u t t t t
t -=-⎰δ 积分的结果就是单位阶跃函数 u (t-t 0)
利用脉冲函数的概念,我们可以对包含不连续点的函数进行微分,从而得到一些脉冲,这些脉冲的量值等于每一个相应的不连续点上的量值。

10、加速度函数
000
)(2
<≥⎩⎨⎧=t t At t f ,其中,A 为常数。

拉氏变化为:
300
202212d 2d ][s A
t te e t s A t e At At L st st st =⎥⎦⎤⎢⎣⎡-==⎰⎰∞-∞-∞- 当A=2
1时称之为单位加速度函数,用a (t )表示,发生在t=t 0时刻的加速度函数通常写成)(0t t a -,图像如下: 11、单位加速度函数: 00210)(2≥<⎪⎩⎪⎨⎧=t t t t a )
t 00t 图单位加速度函数(a)(b) 8
6
4
2
123430020221d 211d 2
1)(21s t te e t s
t e t t u t L st st st =
⎥⎥⎦⎤⎢⎢⎣⎡-==⎥⎦⎤⎢⎣⎡⋅⎰⎰∞-∞-∞
-。

相关文档
最新文档