《组合数学》课程简介.
组合数学--组合数学第一章

1.2排列与组合
定义:从n个不同元素中取r个不重复的元 素组成一个子集,而不考虑其元素的顺序, 称为从n个中取r个的无重组合。 组合的个数用C(n,r)表示。
1.2排列与组合
从n个中取r个的排列的典型例子是从n 个不同的球中,取出r个,放入r个不同的 盒子里,每盒1个。第1个盒子有n种选择, 第2个有n-1种选择,······,第r个有nr+1种选择。
例:长度为n的0,1符号串的数目为多少?
一一对应原理
• “一一对应”概念是一个在计数中极为 基本的概念。一一对应既是单射又是满 射。
• 如我们说A集合有n个元素 |A|=n,无非 是建立了将A中元与[1,n]元一一对应的 关系。
• 在组合计数时往往借助于一一对应实现 模型转换。
• 比如要对A集合计数,但直接计数有困难, 于是可设法构造一易于计数的B,使得A 与B一一对应。
1.2排列与组合
例 有5本不同的日文书,7本不同 的英文书,10本不同的中文书。 1)取2本不同文字的书; 2)取2本相同文字的书; 3)任取两本书
1.2排列与组合
解 1) 5×7+5×10+7×10=155; 2) C(5,2)+C(7,2)+C(10,2) =10+21+45=76; 3) 155+76=231=( 5+27+10)
1.7 若干等式及其组合意义
1.7 若干等式及其组合意义
1.7 若干等式及其组合意义
• 证2 从n个元素中取偶数个数的组合数
(包含0),等于取奇数个数的组合数。
• r为偶数的组合和r为级数的组合之间建 立一一对应即可。
• 举例说明
1.7 若干等式及其组合意义
组合数学主要内容

组合数学主要内容全文共四篇示例,供读者参考第一篇示例:组合数学是数学的一个分支领域,主要研究对象是离散的结构和对象之间的组合关系。
它涉及到许多领域,如排列、组合、图论、离散概率等,对于解决各种计数问题和优化问题具有重要的意义。
组合数学在计算机科学、统计学、密码学、算法设计等领域都有极其广泛的应用。
组合数学的研究对象主要有排列和组合两种。
排列是指从若干对象中按照一定规则选取一定数量的对象,再按照一定的顺序排列。
组合是指从若干对象中按照一定规则选择一定数量的对象,而不考虑排列的顺序。
排列和组合是组合数学中最基本的概念,也是解决组合问题的基础。
排列和组合的计算方法在组合数学中有很多种,常用的有数学归纳法、递推法、生成函数法、容斥原理等。
这些方法各有特点,适用于不同类型的组合问题。
对于排列问题,常用的方法是使用数学归纳法和递推法,而对于组合问题则常用生成函数法和容斥原理。
除了排列和组合外,组合数学还涉及到很多与其相关的概念和问题,如二项式系数、多重集合组合、斯特林数、分块数等。
这些概念和问题在解决复杂的组合问题时起到了重要的作用,为组合数学的发展提供了丰富的研究内容。
组合数学还与概率统计密切相关。
在概率统计中,常常涉及到对一定数量的事件进行计数,并推导出它们的概率分布或期望值。
组合数学中的排列和组合问题可以提供这种计数方法,帮助解决概率统计中的问题。
组合数学还在密码学和信息安全领域有着重要的应用。
密码学是研究保护信息安全的科学,其中使用了很多组合数学工具来设计加密算法和破解密码。
组合数学的方法可以保障密码的安全性,防止信息泄露。
组合数学是一门重要的数学分支,它不仅在数学领域有着广泛的研究内容和应用,还在各种其他学科中有着深远的影响和作用。
掌握组合数学的基本原理和方法,可以帮助人们更好地理解计算问题和优化问题,提高问题解决的效率和准确性。
希望未来组合数学能够得到更多的关注和研究,为人类社会的发展做出更大的贡献。
组合数学第一讲

决策树
在决策树中,通过计算每 个分支的概率来评估每个 决策的优劣。
05 组合优化
组合优化的定义和性质
定义
组合优化是研究在一定约束条件下, 从给定的组合对象中选取出满足某种 特定条件的对象,使得某种度量达到 最优的问题。
性质
组合优化问题具有离散性、约束性、 最优化和可行解多样性等性质。
组合优化的计算方法
在计算机科学中,排列可以用于生成 不同的算法和数据结构,提高程序的 效率和稳定性。
在密码学中,排列可以用于生成加密 密钥,提高信息的安全性。
04 组合概率
概率的基本概念
01
02
03
事件
在特定条件下可能发生或 可能不发生的结果。
概率
衡量事件发生可能性的数 值,取值范围为0到1,其 中0表示事件不可能发生, 1表示事件一定会发生。
组合数学的应用领域
计算机科学
算法设计、数据结构、 离散概率论等都涉及到
组合数学。
统计学
样本空间、概率分布、 决策理论等都与组合数
学紧密相关。
信息理论
编码理论、数据压缩、 信息熵等都运用了组合
数学的概念。
运筹学
组合数学在图论、最优 化理论、线性规划等领
域有广泛应用。
组合数学的基本概念
01
02
03
04
排列数的计算方法
计算公式
排列数表示为Amn=n!/(n-m)!,其中"!"表示阶乘,即n!=n×(n-1)×(n2)×...×3×2×1。
举例
A53=5×4×3=60。
排列的应用实例
体育比赛
在体育比赛中,如乒乓球、羽毛球等, 参赛选手需要按照一定的顺序进行比 赛,排列的应用就十分重要。
《组合数学》课程教学大纲

《组合数学》课程教学大纲一、教学大纲说明(一)课程的地位、作用和任务组合数学是高等师范院校数学及计算机专业的专业选修课之一,是专业主干课。
随着计算机的广泛使用,对计算机的算法的研究变得日益重要。
其中组合算法解决搜索、排序、组合优化等问题,而它的数学基础就是组合数学。
本课程主要学习组合计数的各种方法和技巧,有包含排斥原理的应用,递推关系和生成函数法等。
通过该课程的学习,使学生正确理解组合数学的基本概念,深入掌握基本理论和主要方法,为学习组合优化、图论等后继课程打下基础。
通过该课程的学习,可以训练学生提高分析问题和初步解决某些实际问题的能力。
(二)课程教学的目的和要求通过本课程的学习,理解组合理论的基本概念,掌握组合理论的基本方法和技巧,了解一些简单算法,为深入研究组合数学打好基础。
课程要求掌握排列组合原理、鸽巢原理和包含排斥原理、组合恒等式、生成函数与递推关系,并能应用这些方法解决某些实际问题。
掌握:鸽巢原理、集合及多重集的排列和组合、二项式定理、组合恒等式、非降路径问题、牛顿二项式定理、多项式定理、包含排斥原理、多重集的组合数、错位排列、有限制条件及有禁区的排列问题、Fibonacci数列、递推关系的求解、生成函数与多重集的组合数、指数生成函数与多重集的排列数。
理解:鸽巢原理的加强形式、Ramsey定理、用生成函数求解递推关系、Catalan数和Stirling数。
了解:Poly定理。
(三)课程教学方法与手段根据学生的实际情况,因地制宜。
讲授为主,占总课时80%,习题课占20%。
尽量结合实际问题,激发学生学习的兴趣。
(四)课程与其他课程的联系本课程与数学系的基础课程数学分析、线性代数有一定联系,是后继学科如组合优化、图论等的重要基础。
(五)教材与教学参考书教材:曹汝成编,《组合数学》,华南理工大学出版社,2005年参考书: 1、卢开澄编,《组合数学算法与分析》(上册),清华大学出版社2、刘振宏编著,《应用组合论》,高教出版社二、课程的教学内容、重点和难点第一章引言组合数学背景、基本概念(组合数学、存在性问题、组合计数问题、优化问题)、通过实例介绍组合学特有的技巧和方法重点:背景与基本概念;难点:通过实例介绍组合学特有的技巧和方法。
第三部分组合数学简介

组合数学简介
组合数学中的著名问题(续 组合数学中的著名问题 续)
任务分配问题(也称婚配问题):有一些员工要完成一些任务。 任务分配问题(也称婚配问题):有一些员工要完成一些任务。 ):有一些员工要完成一些任务 各个员工完成不同任务所花费的时间都不同。 各个员工完成不同任务所花费的时间都不同。每个员工只分配 一项任务。每项任务只被分配给一个员工。 一项任务。每项任务只被分配给一个员工。怎样分配员工与任 务以使所花费的时间最少?这是线性规划的问题。 务以使所花费的时间最少?这是线性规划的问题。 是否存在稳定婚姻的问题:假如能找到两对夫妇(如张(男)-是否存在稳定婚姻的问题:假如能找到两对夫妇(如张( 和赵( )),如果张 如果张( 李(女)和赵(男)--王(女)),如果张(男)更喜欢王 王 ),而王 而王( 也更喜欢张( ),那么这样就可能有潜 (女),而王(女)也更喜欢张(男),那么这样就可能有潜 在的不稳定性。组合数学的方法可以找到一种婚姻的安排方法, 在的不稳定性。组合数学的方法可以找到一种婚姻的安排方法, 使得没有上述的不稳定情况出现(当然这只是理论上的结论)。 使得没有上述的不稳定情况出现(当然这只是理论上的结论)。 一个实际的用途: 这种组合数学的方法却有 一个实际的用途:美国的医院在确定 录取住院医生时,他们将考虑申请者的志愿的先后次序, 录取住院医生时,他们将考虑申请者的志愿的先后次序,同时 也给申请排序。 也给申请排序。按这样的 次序考虑出的总的方案将没有医院和 申请者两者同时后悔的情况。 申请者两者同时后悔的情况。
组合数学简介
漳州师范学院计算机科学与工程系
组合数学简介
组合数学, 也称组合分析或组合学, 是近年来发展很快的一门数学分支, 组合数学 也称组合分析或组合学 是近年来发展很快的一门数学分支 是离散数学的重要组成部分. 它主要研究的是离散对象的组合问题, 包括: 是离散数学的重要组成部分 它主要研究的是离散对象的组合问题 包括
组合数学主要内容

组合数学主要内容组合数学是数学的一个分支,主要研究集合的组合和排列问题,以及相关的概率、图论、数论等数学结构。
以下是组合数学的一些主要内容:1.排列与组合:•排列(Permutations):研究从给定元素集合中取出一定数量元素,按照一定的次序进行排列的方式。
•组合(Combinations):研究从给定元素集合中取出一定数量元素,不考虑排列次序的方式。
2.二项式定理与多项式展开:•二项式定理:表示两个数的幂的展开公式。
•多项式展开:将一个多项式表示为若干单项式的和,是二项式定理的推广。
3.组合恒等式与恒等式证明:•组合恒等式:包含组合数的等式,通常用于证明一些数学恒等式。
•恒等式证明:利用组合数学方法证明数学等式的过程。
4.递推关系:•递推关系(Recurrence Relations):描述一个数列中的每一项与它前面的一些项之间的关系。
在组合数学中,递推关系常用于求解组合数。
5.图论与排列组合:•图论中的组合方法:研究图的组合性质,如图的着色问题、匹配问题等。
•排列组合与图同构:将排列组合的方法应用于图的研究,探讨图的同构关系。
6.生成函数:•生成函数(Generating Functions):是一种将序列转换为多项式的工具,用于处理组合数学中的序列和递推关系。
7.概率与组合数学:•概率与组合:研究概率论与组合数学的交叉点,如概率分布中的组合计数问题、随机图等。
8.数论与组合数学:•数论中的组合数学:研究数论中与组合数学相关的问题,如整数拆分、二项式定理的数论应用等。
组合数学的应用领域非常广泛,涵盖了数学的多个分支,并在计算机科学、统计学、物理学等领域有着重要的应用。
《组合数学》课程大纲

课程基本信息(Course Information)
课程代码
(Course Code)
MA4115/MA
414
*学时
(Credit Hours)
48
*学分
(Credits)
3
*课程名称
(Course Name)
(中文)组合数学
(英文)Combinatorics
课程性质
(Course Type)
computer science ,coding and cryptography.
课程教学大纲(course syllabus)
*学习目标(Learning Outcomes)
1.掌握基本的组合数学工具,如容斥原理,鸽笼原理等以及在实际研究中的应用。A4,A5
2.掌握概率方法的基本思想,数学期望法,局部引理法以及在现代组合数学中的具体应用。A4,A5,B2,B3
*课程简介(Description)
《组合数学》研究的内容主要涉及离散类对象,是计算机出现后迅速发展的一个数学分支,在代数,几何,计算机科学,编码与密码等领域有着重要作用。本课程主要研究组合结构的存在性问题,计数问题,构造问题以及组合最优化问题,重点介绍本学科前沿的概率方法,线性代数方法等。通过本课程的学习,让学生掌握组合数学中的基本研究方法与工具,为从事组合数学,代数,理论计算机科
(1)考试,占总成绩的60%。
(2)课程大作业成绩,占20%。
(3)作业成绩(课堂报告+出勤),占20%。
*教材或参考资料(Textbooks& Other
Materials)
Extremal Combinatorics: with applications in computer science, Stasys Jukna, Springer, 2011, 2ed, ISBN: 9783642173646
组合数学课程

初等计数方法,组合恒等式,生成函数理论,形式幂级数,普通生成函数,指数型生成函数,Dirichlet生成函数,容斥原理,M\"obius反演,偏序集上的M\"obius反演,递归,生成函数与容斥原理,鸽笼原理及其应用,Ramsey理论,相异代表系与Hall定理,置换与置换群,Burnside引理,P?lya计数原理,特殊计数序列,Catlan数,Schroeder数,第一、二类Sterling数,分拆理论,*凸集和线性规划,*算法问题。
三、图论简介(12学时)
图和子图,邻接矩阵,圈和路,Sperner引理,树,割集和边割集,连通度和边连通度,Menger定理,完全匹配,独立与覆盖,Euler图和Hamilton图,中国邮路问题,点着色和边着色,点色数和边色数,Vizing定理,应用问题,平面图的刻划,五色定理,四色定理,完美图介绍,超图的概念和简单性质。
*二、组合设计(9学时)
区组设计,t-设计的定义及初等性质,Bruck-Ryser-Chowla定理,存在性问题简介,陆家羲定理,对称设计,差集,乘子定理,Hadamard设计和Hadamard矩阵,有限域上的射影几何和仿射几何,有限几何作为设计,Singer定理,有限射影平面,编码理论,码对设计的应用,密码学简介。
四、代数及概率方法(11学时)
集合相交的经典结果,多项式空间,初等例子,线Hale Waihona Puke 与修补,二阶矩,Lovász局部定理。
教材与参考书:
1、J.H. van Lint and R. Wilson, A Course in Combinatorics, Cambridge University Press, 1992.
开课院系
数学科学学院
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《组合数学》课程简介
06191350 组合数学 3
Combinatorics 3-0
预修课程:数学分析(微积分)、高等代数(线性代数)、近世代数
面向对象:三、四年级本科生
内容简介:
《组合数学》是计算机出现以后迅速发展起来的一门数学分支。
组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。
本课程主要介绍组合数学中涉及组合计数、组合设计和编码理论的基本原理、基本问题和基本方法,主要包括:排列与组合、母函数与递推关系、容斥原理、反演公式、鸽巢原理、Pólya计数定理、区组设计与编码理论等内容。
通过该课程的学习,使学生了解和掌握《组合数学》的基本内容和基本方法,培养学生的应用意识,为学生在今后的教学或科研活动中可能的应用作准备。
推荐教材或主要参考书:
《组合数学》(第三版)卢开澄,卢华明编著,清华大学出版社,2003
《组合数学》教学大纲
06191350 组合数学 3
Combinatorics 3-0
预修课程:数学分析(微积分)、高等代数(线性代数)、近世代数
面向对象:三、四年级本科生
一、教学目的和基本要求:
《组合数学》是一门应用广泛的学科。
它在计算机科学、信息论、管理科学以及其它现代科技领域都有着重要的应用。
本课程主要介绍组合数学中涉及组合计数、组合设计和编码理论的基本原理、基本问题和基本方法。
通过该课程的学习,使学生了解和掌握《组合数学》的基本内容和基本方法,培养学生的应用意识,为学生在今后的教学或科研活动中可能的应用作准备。
二、主要内容及学时分配:
(1)引言2学时
(2)排列与组合8学时
(3)母函数与递推关系12学时
(4)容斥原理3学时
(5)反演公式3学时
(6)鸽巢原理3学时
(7)Pólya计数定理5学时
(8)区组设计6学时
(9)编码理论6学时
三、教学方式:课堂讲授
四、相关教学环节安排:
五、考试方式及要求:笔试
六、推荐教材或主要参考书:
《组合数学》(第三版)卢开澄,卢华明编著,清华大学出版社,2003
七、有关说明:。