线段垂直平分线与角平分线练习题

合集下载

线段的垂直平分线和角平分线专题训练及答案

线段的垂直平分线和角平分线专题训练及答案

线段的垂直平分线和角平分线专题训练及答案一、选择题(本大题共7小题,共21.0分)1.如图是一块三角形草坪,现要在草坪上建一个凉亭供大家休息.若要使凉亭到草坪三条边的距离都相等,则凉亭应建在三角形草坪()A. 三条角平分线的交点处B. 三条中线的交点处C. 三条高的交点处D. 三条边的垂直平分线的交点处2.下列说法错误的是()A. 等腰三角形底边上的高所在的直线是它的对称轴B. 等腰三角形底边上的中线所在的直线是它的对称轴C. 等腰三角形顶角的平分线所在的直线是它的对称轴D. 等腰三角形一个内角的平分线所在的直线是它的对称轴3.如图,在Rt△ABC中,∠A=90°,BD是角平分线,DE垂直平分BC,AD=3,则AC的长为()A. 9B. 5C. 4D. 3√34.如图,在△ABC中,AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,∠BAC=124°,则∠DAE的度数为()A. 68°B. 62°C. 66°D. 56°5.如图,在△ABC中,CD平分∠ACB,交AB于点D,DE⊥AC于点E,若BC=2m+6,DE=m+3,则△BCD的面积为()A. 2m2−18B. 2m2+12m+18C. m2+9D. m2+6m+96.如图,P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,则下列结论:①PM=PN;②AM=AN;③△APM≌△APN;④∠PAN+∠APM=90°.其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个7.如图所示,在△ABC中,AB=AC,AD是BC边上的高线,E,F是AD的三等分点,若△ABC的面积为12,则图中△BEF的面积为()A. 2B. 3C. 4D. 6二、解答题(本大题共10小题,共80.0分)8.直线OA,OB表示两条相互交叉的公路,点M,N表示两个蔬菜种植基地.现要建一个蔬菜批发市场P,要求它到两条公路的距离相等,且到两个蔬菜基地的距离也相等,请用尺规作图说明市场的位置.9.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,交BC于点D,DE⊥AB于点E.已知AB=10cm,求△DEB的周长.10.如图,已知AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,且BE=CF,试判断BD和CD的数量关系,并说明理由.11.如图,要在街道旁修建一个奶站,向居民区A,B提供牛奶.奶站应建在什么地方才能使A,B到它的距离相等?12.A,B,C这3个村庄的位置如图所示,每两个村庄之间有公路相连,村民希望共同投资建一个货运中转站,使中转站的位置到3个村庄的距离相等.请你利用尺规作图确定中转站的位置.13.如图,四边形ABCD为矩形台球桌面,现有一白球M和黑球N,应怎样去打白球M,才能使白球M撞击桌边AB后反弹击中黑球N?请你画出白球M经过的路线.14.如图,在△ABC中,AB=AC,M是BC的中点,D,E分别是AB,AC边上的点,且BD=CE.试说明MD=ME.15.如图,在Rt△ABC中,∠C=90°,BC=3.∠CAB的平分线交BC于点D,DE是AB的垂直平分线,垂足为E.(1)求∠B度数.(2)求DE的长.16.如图,已知∠ABC,射线BC上一点D.求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等(保留作图痕迹,但不要求写作法).17.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①作∠ACB的平分线,交斜边AB于点D;②过点D作AC的垂线,垂足为点E.(2)在(1)作出的图形中,若CB=4,CA=6,则DE=______.答案和解析1.【答案】A【解析】[分析]本题主要考查的是角平分线的性质在实际生活中的应用.由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到角两边的距离相等,可知是三角形三条角平分线的交点.由此即可确定凉亭位置.[详解]解:∵凉亭到草坪三条边的距离相等,∴凉亭应建在三角形草坪的三条角平分线的交点处.故选A.2.【答案】D【解析】[分析]本题考查了等腰三角形的性质,属于基础题,解题的关键是了解对称轴是一条直线,难度不大.根据等腰三角形性质分别判断后即可确定正确的选项.[详解]解:A.等腰三角形底边上的高所在的直线是对称轴,正确;B.等腰三角形底边上的中线所在的直线是对称轴,正确;C.等腰三角形顶角的平分线所在的直线是对称轴,正确;D.等腰三角形顶角的平分线所在的直线是对称轴,如果这个内角是底角,不一定是它的对称轴,错误.故选D.3.【答案】A【解析】[分析]根据角平分线性质得出AD=DE,证明Rt△ADB≌Rt△EDB(HL),得BE=AB,由DE 是BC的垂直平分线,得BC=2AB,所以∠C=30°,可得CD的长,从而得AC的长.本题考查了直角三角形的性质,线段垂直平分线的性质,角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.[详解]解:∵BD是角平分线,DE⊥BC,∠A=90°,∴DE=AD=3,在Rt△ADB和Rt△EDB中,∵{AD=DEBD=BD,∴Rt△ADB≌Rt△EDB(HL),∴BE=AB,∵DE是BC的垂直平分线,∴CE=BE,∴BC=2AB,∴∠C=30°,∴CD=2DE=6,∴AC=CD+AD=6+3=9,故选:A.4.【答案】A【解析】[分析]根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.[详解]解:∠B+∠C=180°−∠BAC=56°,∵AB的垂直平分线交BC于D,∴DA=DB,∴∠DAB=∠B,∵AC的垂直平分线交BC于E,∴EA=EC,∴∠EAC=∠C,∴∠DAE=∠BAC−(∠DAB+∠EAC)=124°−56°=68°.故选A.5.【答案】D【解析】[分析]过点D作DF⊥BC交CB的延长线于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形面积公式列式,然后根据多项式乘多项式法则进行计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出BC边上的高线是解题的关键.[详解]解:如图,过点D作DF⊥BC交CB的延长线于F,∵CD平分∠ACB,DE⊥AC,∴DE=DF,∴△BCD的面积=12·BC·DF=12(2m+6)(m+3)=m2+6m+9.故选D.6.【答案】A【解析】[分析]利用角平分线的性质结合全等三角形的判定与性质分析得出答案.此题主要考查了角平分线的性质,全等三角形的判定与性质,正确得出△APM≌△APN 是解题关键.[详解]解:∵P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,∴∠MAP=∠NAP,∠AMP=∠ANP=90°,PM=PN,故①正确在△APM和△APN中{∠MAP=∠NAP ∠AMP=∠ANP AP=AP,∴△APM≌△APN(AAS),故③正确,∴AM=AN,故②正确,∠APM=∠APN,∵∠PAN+∠APN=90°,∴∠PAN+∠APM=90°,故④正确,综上所述:正确的有4个.故选A.7.【答案】A【解析】[分析]本题考查了等腰三角形的性质及轴对称性质;利用对称发现并利用△ABD和△ACD的面积相等是正确解答本题的关键.由图,根据等腰三角形是轴对称图形知,△ABD和△ACD的面积相等,再根据点E、F,依此即可求解.是AD的三等分点,可得△BEF的面积为△ACD的面积的13[详解]解:∵在△ABC中,AB=AC,AD是BC边上的高,S△ABC=12,BC,S△ABD=6,∴BD=CD=12∵点E、F是AD的三等分点,AD,∴EF=13S△BEF=1S△ABD=2.2故选A.8.【答案】解:如图:P为所求做的点.【解析】本题考查了基本作图,理解角的平分线以及线段的垂直平分线的作图是关键.连接MN,先画出∠AOB的角平分线,然后再画出线段MN的中垂线.这两条直线的交点即为所求.9.【答案】解:∵AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,∴CD=DE.又∵AD=AD,∴Rt△ACD≌△RtAED.∴AE=AC,∴△DEB的周长=DE+DB+EB=CD+DB+BE=BC+BE=AC+BE=AE+BE=AB=10cm.【解析】本题主要考查的是全等三角形的判定及性质,角平分线的性质等有关知识,由题意根据AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,得到CD=DE,然后利用全等三角形的判定及性质得到AE=AC,最后利用三角形的周长公式进行求解即可.10.【答案】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠E=∠DFC=90°.在△BED和△DFC中,DE=DF,∠E=∠DFC,BE=CF,∴△BED≌△DFC(SAS),∴BD=CD.【解析】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应边、对应角相等)是解题的关键.由角平分线的性质可得DE=DF,再结合条件可证明Rt△BED≌Rt△CFD,即可求得BE=CF.11.【答案】解:连接AB,作AB的垂直平分线,与街道的交点为P,点P即为所求作的点.【解析】本题考查线段垂直平分线的性质,根据线段垂直平分线上的点到线段两端点的距离相等,可知此点P在AB的垂直平分线上即可解答,12.【答案】解:如图,【解析】此题主要考查了应用设计与作图,正确掌握线段垂直平分线的性质是解题关键.利用线段垂直平分线的性质进而得出AB,AC的垂直平分线进而得出交点,得出M即可.13.【答案】解:如图所示,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.【解析】此题考查了轴对称作图,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.14.【答案】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中点,∴BM=CM.在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.【解析】本题主要考察等腰三角形的性质和全等三角形的判定与性质.根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.15.【答案】解:(1)∵DE是AB的垂直平分线,∴DA=DB,∴∠B=∠DAB.∵AD平分∠CAB,∴∠CAD=∠DAB.∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∴∠B=30°;(2)∵AD平分∠CAB,DE⊥AB,CD⊥AC,BD,∴CD=DE=12∵BC=3,∴CD=DE=1.【解析】本题主要考查线段垂直平分线的性质,熟悉掌握是关键.(1)由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°;(2)根据角平分线的性质即可得到结论.16.【答案】解:如图,△PBD即为所求作的三角形【解析】【分析】本题考查尺规作图.根据角平分线的性质及线段垂直平分线的性质作图即可.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.【解答】解:∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上,∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点.17.【答案】解:(1)如图所示;(2)解:∵DC是∠ACB的平分线,∴∠BCD=∠ACD,∵DE⊥AC,BC⊥AC,∴DE//BC,∴∠EDC=∠BCD,∴∠ECD=∠EDC,∴DE=CE,∵DE//BC,∴△ADE∽△ABC,∴DEBC =AEAC,设DE=CE=x,则AE=6−x,∴x4=6−x6,解得:x=125,即DE=125,故答案为:12.5【解析】本题考查了角的平分线的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,基本作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)以C为圆心,任意长为半径画弧,交BC,AC两点,再以这两点为圆心,大于这两点的线段的一半为半径画弧,过这两弧的交点与C在直线交AB于D即可,根据过直线外一点作已知直线的垂线的方法可作出垂线即可;(2)根据平行线的性质和角平分线的性质推出∠ECD=∠EDC,进而证得DE=CE,由DE//BC,推出△ADE∽△ABC,根据相似三角形的性质即可推得结论.。

垂直平分线与角平分线综合 练习题(带答案))

垂直平分线与角平分线综合 练习题(带答案))

垂直平分线与角平分线综合 题集一、垂直平分线(1)(2)1.如图,中,,垂直平分,交于点,交于点,且.若,求的度数.若周长,,求长.【答案】(1)(2)..【解析】(1)(2)∵垂直平分,垂直平分,∴,∴,∵,∴,∴.∵周长,,∴,即,∴.【标注】【知识点】作三角形的高,中线和角平分线(1)(2)2.的两边和的垂直平分线分别交于点、.若,求的周长.若,求.【答案】(1)(2)..【解析】(1)(2)∵边、的垂直平分线分别交于、,∴,,∴的周长.∵的两边,的垂直平分线分别交于,,∴,,∴,.∵,①∴.∵,∴,即.②由①②组成的方程组.解得,故答案为:.【标注】【知识点】三角形的周长与面积问题3.在中,,,的垂直平分线交于,的垂直平分线交于.求证:.【答案】证明见解析.【解析】连接、,∵,,∴,∵的垂直平分线交于,的垂直平分线交于,∴,,∴,,,∵,∴,∴是等边三角形,∴,∴.【标注】【知识点】等边三角形的构造4.已知中,是的平分线,的垂直平分线交的延长线于.求证:.【答案】证明见解析.【解析】∵是的平分线,∴,∵是的垂直平分线,∴,,∵,,∴.【标注】【能力】推理论证能力【知识点】线段的垂直平分线的性质定理【知识点】角分线性质定理5.中,是线段的垂直平分线,垂足为点,是上一点,.求证:点在线段的垂直平分线上.【答案】(1)证明见解析.【解析】(1)连接,是线段的垂直平分线,,,,在的垂直平分线上.【标注】【知识点】线段的和差的证明【知识点】线段的垂直平分线的性质定理【知识点】线段的垂直平分线的判定定理【知识点】等边三角形的性质【思想】数形结合思想【能力】运算能力【能力】推理论证能力6.如图,四边形中,的垂直平分线与的垂直平分线交于点,且.求证:点一定在的垂直平分线上.【答案】证明见解析.【解析】连接、,∵点是、的垂直平分线的交点,∴,,又∵,∴,∴点一定在的垂直平分线上.【标注】【知识点】作线段的垂直平分线(1)(2)7.如图,已知等腰三角形中,,点、分别在边、上,且,连接、,交于点.判断与的数量关系,并说明理由.求证:过点、的直线垂直平分线段.【答案】(1)(2)相等,证明见解析.证明见解析.【解析】(1)(2).在和中,,∴≌,∴.∵,∴,由()可知,∴,∴,∵,∴点、均在线段的垂直平分线上,即直线垂直平分线段.【标注】【知识点】线段的垂直平分线的性质定理【知识点】SAS【知识点】全等三角形的对应边与角【能力】推理论证能力二、角平分线8.如图,平分,于,于,,.若,则.【答案】【解析】∵平分,,,∴,∵,,∴,即,解得.故答案为:.【标注】【知识点】角分线性质定理9.如图,在中,,平分,,,则点到的距离为.【答案】【解析】∵,,∴.∵平分,,∴点到的距离等于,即点到的距离等于.【标注】【知识点】角分线性质定理A. B. C. D.10.如图,的三边、、的长分别,,,是三条角平分线的交点,则( ).【答案】C 【解析】∵是三条角平分线的交点,∴点到各边的距离相等,即、、的高相等,∵、、的长分别,,,∴,故答案为.【标注】【知识点】与中线或等分线有关的等积变换A.B.C.D.11.如图,三条公路把、、三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( ).在、两边高线的交点处在、两边中线的交点处在、两内角平分线的交点处在、两边垂直平分线的交点处【答案】C 【解析】内角平分线上的点到,距离相等,内角平分线上的点到,距离相等,∴要到三条公路距离相等,应在,内角平分线交点处满足到,,距离相等.故选.【标注】【知识点】角分线性质定理A. B. C. D.12.如图,点是的两外角平分线的交点,下列结论:①;②点到、的距离相等;③点到的三边的距离相等;④点在的平分线上.以上结论正确的个数是().【答案】C【解析】如图,过点作于,作于,作于,∵点是的两外角平分线的交点,,,∴点在的平分线上,故②③④正确,只有点是的中点时,,故①错误,综上所述,正确的是②③④.【标注】【知识点】角分线性质定理【知识点】角平分线判定定理三、角分线的角度模型(1)(2)(3)(4)13.完成下列各题:如图 ,、分别是中和的平分线,则与的关系是 (直接写出结论).如图 ,、分别是两个外角和的平分线,则与的关系是 ,请证明你的结论.如图 ,、分别是一个内角和一个外角的平分线,则与的关系是 ,请证明你的结论.利用以上结论完成以下问题:如图,已知:,点 、 分别是射线、上的动点,的外角的平分线与角的平分线相交于点,猜想的大小是否变化?请证明你的猜想.图图图图【答案】(1)(2)(3)(4). ..的大小没有变化,证明见解析.【解析】(1)理由如下:如图 ,∵ ,,分别是,的角平分线,∴ ,∴.(2)(3)(4)图如图 ,∵ 平分 ,∴ ,同理可证: ,∴ ,∵ ,∴,∴ .图∵ 平分 , 平分 ,∴ ,∵ 是 的外角,∴ ,∵ 是 的外角,∴ ,∴.根据⑶可得: ,∵ ,∴ ,∴ 的大小不会变化始终为 .【标注】【知识点】三角形-内角角分线;三角形-外角角分线;三角形-内外角角分线(1)(2)(3)14.回答下列问题.探索发现:如图,在中,点是内角和外角的角平分线的交点,试猜想与之间的数量关系,并证明你的猜想.图迁移拓展:如图,在中,点是内角和外角的等分线的交点,即,,试猜想与之间的数量关系,并证明你的猜想.图应用创新:已知,如图,、相交于点,、、的角平分线交于点,,,则 .图【答案】(1),证明见解析.(2)(3),证明见解析.【解析】(1)(2)(3)∵点是内角和外角的角平分线的交点,∴,,∵是的外角,∴,∴∴∵是的外角,∴,∴.∵是的外角,∴,∴,∵,,∴,∵是的外角,∴,∴.∵、、的角平分线交于点,∴由()的结论知,,,∴,故答案为:.【标注】【知识点】三角形-内外角角分线(1)15.阅读下面的材料,并解决问题:已知在中,.如图(1),、的角平分线交于点,则可求得.如图(2),、的三等分线交于点、,则 .如图(3),、的等分线交于点、、……,则.;(用含的代数式)(2)(3)图图图如图,,、的三等分线交于点、,若,,求的度数;(要求写出解答过程)如图,,的三等分线分别与的平分线交于点,,若,,求的度数为 (不要求写出解答过程).【答案】(1)(2)(3); ;.【解析】(1)(2)(3)是的外角,,、是的三等分线,,在中,,又是的平分线,,.只需抓住加.则等分,下面两个小角之和为,.【标注】【知识点】三角形-内角角分线。

垂直平分线与角平分线典型题

垂直平分线与角平分线典型题

垂直平分线与角平分线典型题----d542b8a4-6ead-11ec-9974-7cb59b590d7d线段的垂直平分线与角平分线1.如图1所示△ ABC,BC=8cm,AB的垂直平分线在点D处与AB相交,相交边AC在点E处。

如果△ BCE等于18cm,AC的长度等于()a.6cmb。

8厘米2.如图3,在△abc中,∠c=90,ad平分∠bac,de⊥ab于e,则下列结论:①ad平分∠cde;②∠bac=∠bde;③de平分∠adb;④be+ac=ab。

其中正确的有3.已知1)如图所示,ab=AC=14cm,ab的垂直平分线在点D处与ab相交,在点E处与AC相交。

如果△ EBC是24厘米,然后是BC=2)如图,ab=ac=14cm,ab的垂直平分线交ab于点d,交ac于点e,如果bc=8cm,那么△ebc的周长是3)如图所示,ab=AC,ab的垂直平分线在点D处与ab相交,在点E处与AC相交。

如果∠ 那么a=28度∠ EBC是b4.在△ ABC,ab=AC,由ab的垂直平分线与边缘AC所在的直线相交形成的锐角为50°,以及底角的大小∠ B的△ ABC是。

5.已知线段ab外两点p、q,且pa=pb,qa=qb,则直线pq与线段ab的关系是_________.6.∠aob的平分线上一点m,m到oa的距离为1.5cm,则m到ob的距离为_________.7.如图所示,在△ 美国广播公司,∠ C=90°,ad是角平分线,de⊥ AB在E中,de=3厘米,BD=5厘米,然后BC=1厘米。

8.如图所示△ 美国广播公司,∠ ACB=90°,被平分∠ 美国广播公司⊥ D中的AB,如果AC=3cm,那么AE+de等于()ceec?c.10cmd.12cm阿德卡问题4ba问题5db一10.在△abc中,ab=ac,ab的垂直平分线与ac所在直线相交所得的锐角为40°,则底角b的大小为________________。

线段的垂直平分线和角的平分线中考真题

线段的垂直平分线和角的平分线中考真题

线段的垂直平分线和角的平分线中考真题1(2016黄石)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50° B.100° C.120° D.130°2(2016广州)已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()(A)3 (B)4 C、4.8 (D)53(2016荆州)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.44(2016天门)如图,在△ABC中,AB=BC,∠ABC=110.AB的垂直平分线DE交AC于点D,连接BD,则∠ABD = ▲度.5(2016毕节)到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B. 三条角平分线的交点C.三条中线的交点D. 三条边的垂直平分线的交点6、(2016长沙)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.8(2016西宁)如图6,OP平分AOBPD⊥于点D,4PC=AOP,PC∥OA,OA∠,︒=∠15则=PD.9(2016常德)如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA 的距离为.10(2016怀化)如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD11(2016淮安)、如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD=4,AB=15,则△ABD 的面积是( )A .15 B .30 C .45D .6012(2016铜仁)如图,已知∠AOB =30°,P 是∠AOB 平分线上一点,CP ∥OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于( )A. 1 B. 2 C. 4 D. 813(2016湖州)如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD=8,则点P 到BC 的距离是( )A .8 B .6 C .4 D .214(2016莆田)如图,OP 是∠AOB 的平分线,点C ,D 分别在角的两边OA ,OB 上,添加下列条件,不能判定△POC ≌△POD 的选项是( )A .PC ⊥OA ,PD ⊥OB B .OC=ODC .∠OPC=∠OPD D .PC=PD15(2016台湾)证明命题“角的一部分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程. 下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC ,点P 在OC 上. _____________________________________. 求证:______________________.请你补全已知和求证,并写出证明过程.(第9题图)。

垂直平分线与角平分线典型题

垂直平分线与角平分线典型题

垂直平分线与角平分线典型题Prepared on 24 November 2020线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:图1图2若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm课堂笔记:针对性练习: 已知:1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果△EBC 的周长是24cm ,那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3)如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC 是例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。

角平分线与线段垂直平分线(学生版)

角平分线与线段垂直平分线(学生版)

第二节:角平分线与垂直平分线二、题型分析题型一:等距离转化问题例1.如图,点P是∠AOB的平分线OC上一点,PD⊥OA,垂足为D,若PD=2,则点P到边OB的距离是()A.4 B.C.2 D.1例2.如图,AD是∠BAC的平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=4,则AC的长是()A.5 B.6 C.8 D.7例3.如图,△ABC中,AD是角平分线,BE是△ABD中的中线,若△ABC的面积是24,AB=5,AC=3,则△ABE的面积是()A.15 B.12 C.7.5 D.6例4.如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F (1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.例5.△ABC中,∠C=90°,∠BAC的平分线交BC于D,且CD=15,AC=30,求AB的长.针对练习:1.在△ABC中,∠B=90°,AB=BC,CD平分∠ACB交AB于点D,DE⊥AC于E,且AC=8cm,则△ADE的周长为()A.6cm B.8cm C.10cm D.不能确定2.如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP 长的最小值为()A.1 B.6 C.3 D.123.如图,在Rt△ABC中,BD是角平分线,若CD=4,AB=12,则△ABD的面积是()A.48 B.24 C.16 D.124.如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②S△PAC:S△PAB=PC:PB;③BP垂直平分CE;④∠PCF=∠CPF.其中正确的有()A.①②④B.①③④C.②③④D.①③5.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24 B.30 C.36 D.426.如图,△ABC中,AB=8,BC=10,BD是△ABC的角平分线,DE⊥AB于点E,若DE=4,则三角形ABC的面积为.7.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=10cm,△ABD的面积为20cm2,则CD的长为cm.8.如图,在△ABC中,∠B=90°,点O是∠CAB、∠ACB平分线的交点,且BC=4cm,AC=5cm,则点O到边AB的距离为()A.1cm B.2cm C.3cm D.4cm9.如图,在Rt△ABC中,∠BAC=90°,AB=6,BC=10,AD⊥BC于D,BF平分∠ABC交AC于F,AD于E,则线段AE的长为()A.3 B. C.1.8 D.410.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是.11.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分线交边AC于点D,延长BD至点E,且BD=2DE,连接AE.(1)求线段CD的长;(2)求△ADE的面积.题型二:角平分线判定与角度数计算问题例1.如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为()A.54°B.50°C.48°D.46°例2.已知,如图,点B、C分别在射线OA、OD上,AB=CD,△PAB的面积等于△PCD的面积求证:OP平分∠AOD.针对练习:1.如图所示,已知∠ADC+∠ABC=180°,DC=BC.求证:点C在∠DAB的角平分线上.2.在△ABC中,AE、BF是角平分线,交于O点.(1)如图1,AD是高,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度数.(2)如图2,若OE=OF,AC≠BC,求∠C的度数.(3)如图3,若∠C=90°,BC=8,AC=6,S△CEF=4,求S△AOB.3.在平面直角坐标系中,OA=OB,P A⊥PB.(1)如图1,当P在第一象限时,求证:OP平分∠BP A.(2)如图2,当P在第四象限时,直接写出∠OP A的度数.4.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.题型三:三角形的角平分线及三角形内心例1.点O是△ABC中∠BCA,∠ABC的平分线的交点,已知△ABC的面积是12,周长是8,则点O到边BC的距离是()A.1B.2C.3D.4例2.如图,在△ABC中,AB=8,AC=6,O为△ABC角平分线的交点,若△ABO的面积为20,则△ACO的面积为()A.12B.15C.16D.18针对练习:1.如图所示,等腰Rt△ABC中,∠C=90°,AD平分∠CAB,交BC于D,过D作DE⊥AB于E,若CD=b,BD =a,那么AB的长度是()A.a+b B.a+2b C.2a+b D.2a+2b2.在△ABC中,∠ABC与∠ACB的角平分线BO,CO相交于点O,连接AO,过点O作EF∥BC交AB,AC于点E,F,AB=5,AC=4(1)求△AEF的周长;(2)若点O到BC距离为4,且三角形ABC的周长比三角形OBC周长多4,求△OAB的面积.3.在△ABC中,AD是它的角平分线.(1)如图1,求证:S△ABD:S△ACD=AB:AC=BD:CD;(2)如图2,E是AB上的点,连接ED,若BD=3,BE=CD=2,AE=2CD,求证:△BED是等腰三角形;(3)在图1中,若3∠BAC=2∠C,∠ADB>∠B>∠BAD,直接写出∠BAC的取值范围.4.如图,在Rt△ABC中,∠ACB=90°,BD是△ABC的一条角平分线.点O是BD上一点,过点O分别作AC、BC的垂线,垂足分别为F、E,连接OC、OA,若∠FCO=45°,求证:点O在∠BAC的平分线上.5.(1)如图1,在△ABC中,AD平分∠BAC交BC于D,DE⊥AB于E,DF⊥AC于F,则有相等关系DE=DF,AE=AF.(2)如图2,在(1)的情况下,如果∠MDN=∠EDF,∠MDN的两边分别与AB、AC相交于M、N两点,其它条件不变,那么又有相等关系AM+=2AF,请加以证明.(3)如图3,在Rt△ABC中,∠C=90°,∠BAC=60°,AC=6,AD平分∠BAC交BC于D,∠MDN=120°,ND∥AB,求四边形AMDN的周长.6.如图,在△ABC中,AB=AC,∠A=90°,BD平分∠ABC交AC于点D,过点D作DE∥BC交AB于点E,过点E作EF⊥BD交BD于点G,交BC于点F.(1)若BE=4,求AD的长;(2)求证:FC=2AD.7.已知:如图,四边形ABCD中,对角线AC,BD相交于点O,AB=AC=AD,∠DAC=∠ABC.(1)求证:BD平分∠ABC;(2)若∠DAC=45°,OA=1,求OC的长.8.如图,在△ABC中,AD平分∠BAC,则=吗?请说明理由.题型四:角平分线几种模型例1.(1)如图(a)所示,BD、CE分别是△ABC的外角平分线,过点A作AD⊥BD,AE⊥CE,垂足分别为D、E,连接DE,求证:DE=(AB+BC+AC);(2)如图(b)所示,BD、CE分别是△ABC的内角平分线,其他条件不变,DE与△ABC三边有怎样的数量关系?并证明这个数量关系;(3)如图(c)所示,BD为△ABC的内角平分线,CE为△ABC的外角平分线,其他条件不变,DE与△ABC 三边又有怎样的数量关系?并证明这个数量关系.例2.如图,已知AC∥BD,AE,BE分别平分∠CAB和∠DBA,点E在线段CD上.(1)求∠AEB的度数;(2)求证:CE=DE.针对练习:1.如图,已知在Rt△ABC中,∠ACB=90°,BD是△ABC的角平分线,E是AB上一点,且AE=AD,连接ED,作EF ⊥BD于F,连接CF.则下面的结论:①CD=CF;②∠EDF=45°;③∠BCF=45°;④若CD=4,AD=5,则S△ADE=10.其中正确结论的个数是()A.1个B.2个C.3个D.4个2.已知:如图,在△ODC中,∠D=90°,CE是∠DCO的角平分线,且OE⊥CE,过点E作EF⊥OC于点F,猜想:线段EF与OD之间的数量关系,并证明.3.等腰直角三角形ABC中,∠A=90°,∠B的平分线交AC于D,过点C向BD作垂线,并与BD延长线交于点E,求证:BD=2CE.题型四:线段垂直平线与线段例1.如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10B.12C.14D.16例2.如图所示,线段AB,AC的垂直平分线相交于点P,则PB与PC的关系是()A.PB>PC B.PB=PC C.PB<PC D.PB=2PC例3.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE的延长线于点E,则DE的长为()A.B.C.D.例4.如图,BD垂直平分AG于D,CE垂直平分AF于E,若BF=1,FG=3,GC=2,则△ABC的周长为.例5.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,AE=5,CE=3,线段CB的长为.例6.如图,四边形ABCD中,∠A=∠B=90°,AB=25cm,DA=15cm,CB=10cm.动点E从A点出发,以2cm/s的速度向B点移动,设移动的时间为x秒.(1)当x为何值时,点E在线段CD的垂直平分线上?(2)在(1)的条件下,判断DE与CE的位置关系,并说明理由.针对练习:1.如图,Rt△ABC中,∠C=90°,AB边上的中垂线分别交BC、AB于点D、E,若BC=7cm,AC=4cm,△ADC的周长为cm.2.如图所示,DE、FG分别是△ABC两边AB、AC的中垂线,分别交BC于E、G.若BC=12,EG=2,则△AEG 的周长是.3.如图,在△ABC中,∠C=90°,∠B=22.5°,AB的垂直平分线交AB于点D,交BC于点E,若CE=3,则AC=.4.如图所示,在△ABC中,∠C=90°,DE垂直平分AB,交BC于点E,垂足为点D,BE=6cm,∠B=15°,则AC等于()A.6cm B.5cm C.4cm D.3cm5.如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D是线段CE的中点,AD⊥BC于点D.若∠B=36°,BC=8,则AB的长为.6.如图,Rt△ABC中,∠ACB=90°,D是AB上一点,BD=BC,过点D作AB的垂线交AC于点E,求证:BE 垂直平分CD.7.如图,△ABC中,AB>AC,AD是BC边上的高,F是BC的中点,EF⊥BC交AB于E,若BE:AB=3:4,则BD:DC=.8.如图,△ABC中,AC的垂直平分线DE分别交BC于点E,交AC于点D,连接BD,AB=AD,∠CED=45°+∠BAC,△ABD的面积为54,则线段BD的长为.9.如图,在△ABC中,∠C=90°,点P在AC上运动,点D在AB上,PD始终保持与P A相等,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断DE与DP的位置关系,并说明理由;(2)若AC=6,BC=8,P A=2,求线段DE的长.题型五:线段垂直平分线与角度问题例1.如图,在△ABC中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,∠BAC=124°,则∠DAE的度数为()A.68°B.62°C.66°D.56°例2.如图,在△ABC中,点D在BC边上,DE垂直平分AC边,垂足为点E,若∠B=70°且AB+BD=BC,则∠BAC的度数是()A.65°B.70°C.75°D.80°例3.如图,OE,OF分别是AC,BD的垂直平分线,垂足分别为E,F,且AB=CD,∠ABD=120°,∠CDB=38°,求∠OBD的度数.例4.如图,已知△ABC,AB、AC的垂直平分线的交点D恰好落在BC边上.(1)判断△ABC的形状;(2)若点A在线段DC的垂直平分线上,求的值.例5.已知:如图,AF平分∠BAC,BC垂直平分AD,垂足为E,CF上一点P,连结PB交线段AF相交于点M.(1)求证:AB∥CD;(2)若∠DAC=∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.针对练习:1.如图,在△ABC中,AB,AC的垂直平分线DF,EG交于点M,点F,G在BC上.若∠GAF=46°,则∠M的度数为()A.67°B.65°C.55°D.45°2.如图,已知△ABC中,DE、FG分别是AB,AC边上的垂直平分线,∠BAC=100°,AB>AC,则∠EAG的度数是()A.10°B.20°C.30°D.40°3.如图,在△ABC中,DE是AB的垂直平分线,且分别交AB、AC于点D和E,∠A=50°,∠C=60°,则∠EBC为()A.30°B.20°C.25°D.35°4.如图,AD垂直平分BC,连接AB,∠ABC的平分线交AD于点O,连接CO并延长交AB于E,若∠AOC=125°,则∠ABC=°.5.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ACF =48°,则∠ABC的度数为=.6.如图,在△ABC中,AB、AC的垂直平分线交BC于E、F,垂足分别为点M、N,若∠BAC+∠EAF=144°,则∠BAC的度数为.7.如图,在△ABC中,∠ABC=90°,∠C=25°,DE是边AC的垂直平分线,连结AE,则∠BAE等于.8.如图,在△ABC中,AD平分∠BAC,点E在AC的垂直平分线上.(1)若AB=5,BC=7,求△ABE的周长;(2)若∠B=57°,∠DAE=15°,求∠C的度数.9.如图,已知△ABC中,边AB、AC的垂直平分线分别交BC于E、F,若∠EAF=90°,AF=3,AE=4.(1)求边BC的长;(2)求出∠BAC的度数.10.如图,△ABC中,CE、AD分别垂直平分AB、BC,求△ABC各内角的大小.11.已知,在△ABC中,DE垂直平分AB,垂足为点D,交直线BC于点E.MN垂直平分AC,垂足为点M,交直线BC于点N,连接AE,AN.(1)如图①,若∠BAC=100°,求∠EAN的大小;(2)如图②,若∠BAC=70°,求∠EAN的大小;(3)若∠BAC=α(α≠90°),用含α的式子表示∠EAN的大小(直接写出结果即可).题型六:尺规作图例1.在Rt△ABC中,∠C=90°,AC=6,BC=8.在CB上找一点E,使EB=EA(利用尺规作图,保留作图痕迹),并求出此时CE的长.例2.作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)针对练习1.a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留痕迹.2.如图,直线m表示一条公路,A、B表示两所大学.要在公路旁修建一个车站P使到两所大学的距离相等,请在图上找出这点P.3.如图所示,一辆汽车在笔直的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄,当汽车行驶到哪个位置时,与村庄M,N的距离相等.4.已知∠AOB及射线OA边上的点M(如图),请用尺规过点M作OB的平行线EF,不写作法,保留作图痕迹.5.如图,∠MON内有定点P.(1)在射线OM上找点A,使点A到点P和点O的距离相等(保留作图痕迹);(2)在射线ON上找点B,使△ABP周长最短(保留作图痕迹).6.如图,已知△ABC,请用直尺和圆规依次完成下列操作.(1)在线段AC上找一点M,使点M到AB和BC的距离相等;(2)在射线BM上找一点N,使NB=NC.7.如图,已知△ABC.(1)画AC边上的高线(不限工具);(2)尺规作图:①∠BAC的平分线;②在∠BAC的平分线上作一点P,使PB=PC.11.如图,点M和点N在∠AOB内部.(1)请你作出点P,使点P到点M和点N的距离相等,且到∠AOB两边的距离也相等(保留作图痕迹,不写作法);(2)请说明作图理由.。

线段的垂直平分线、角平分线经典习题及答案

线段的垂直平分线、角平分线经典习题及答案

3.线段的垂直平分线4.角平分线例1:(1)在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M ,∠A =040,求∠NMB 的大小(2)如果将(1)中∠A 的度数改为070,其余条件不变,再求∠NMB 的大小(3)你发现有什么样的规律性?试证明之.(4)将(1)中的∠A 改为钝角,对这个问题规律性的认识是否需要加以修改例2:在△ABC 中,AB 的中垂线DE 交AC 于F ,垂足为D ,若AC=6,BC=4,求△BCF 的周长。

ECFA D B例3:如图所示,AC=AD ,BC=BD ,AB 与CD 相交于点E 。

求证:直线AB 是线段CD 的垂直平分线。

AC DEBA B C NM AB C N M AB CN M例4:如图所示,在△ABC 中,AB=AC ,∠BAC=1200,D 、F 分别为AB 、AC 的中点,DE AB FG AC ⊥⊥,,E 、G 在BC 上,BC=15cm ,求EG 的长度。

AD FB E G C例5::如图所示,Rt △ABC 中,,D 是AB 上一点,BD=BC ,过D 作AB 的垂线交AC 于点E ,CD 交BE 于点F 。

求证:BE 垂直平分CD 。

CEA DB F例6::在⊿ABC 中,点O 是AC 边上一动点,过点O 作直线M N ∥BC ,与 ∠ACB 的角平分线交于点E ,与∠ACB 的外角平分线交于点F ,求证:OE=OF例7、如图所示,AB>AC ,∠A 的平分线与BC 的垂直平分线相交于D ,自D 作DE AB ⊥于E ,DF AC F ⊥于,求证:BE=CF 。

AEB M CFD21 AO F E CB M N答案如下:例1:解:(1)∵∠B= 1/2(180°-∠A)=70°,∴∠M=20°;(2)同理得,∠M=35°;(3)规律是:∠M的大小为∠A大小的一半,即:AB的垂直平分线与底边BC 所夹的锐角等于∠A的一半.证明:设∠A=α,则有∠B= 1/2(180°-α),∠M=90°- 1/2(180°-α)= 1/2α.(4)改为钝角后规律成立.上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.例2:解:连接BF,由线段的垂直平分线的性质可得,FB=FA又因为AC=AF+CF =6,所以BF+CF=6△BCF的周长=BC+CF+BF=4+6=10例3:证明:因为AC=AD所以A在线段CD的垂直平分线上又因为BC=BD所以B在线段CD的垂直平分线上所以直线AB是线段CD的垂直平分线例4:解:作AH⊥BC于H,HC=15/2∵等腰∴∠ACB=∠ABC=30°∴AC=2EC/根号3EC=5根号3∵F为AC中点∴FC=5/2根号3∵FG⊥AC∴CG=5同理,BE=5∴EG=5例5:证明:∵DE⊥AB,∠ACB=90∴∠BDE=∠ACB=90∵BD=BC,BE=BE∴△BCE≌△BDE (HL)∴∠CBE=∠DBE∵BF=BF∴△BCF≌△BDF (SAS)∴∠BFC=∠BFD,CF=DF∵∠BFC+∠BFD=180∴∠BFC=∠BFD=90∴BE⊥CD∴BE垂直平分CD例6:解:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又已知CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF═∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.例7:证明:连接DC,DB∵点D在BC的垂直平分线上∴DB=DC∵D在∠BAC的平分线上∴DE=DF∵∠DFC=∠DEB∴△DCF≌△DEB∴CF=BE【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

线段垂直平分线与角平分线练习题

线段垂直平分线与角平分线练习题

线段垂直平分线与角平分线练习题线段的垂直平分线和角的平分线是三角形中常见的概念。

下面是一些与此相关的选择题。

1.在三角形ABC中,AD平分∠CAE,∠B=30°,∠CAD=65°,则∠ACD等于()A。

50° B。

65° C。

80° D。

95°2.在三角形ABD中,AD=4,AB=3,AC平分∠BAD,则S△A。

3:4 B。

4:3 C。

16:19 D。

不能确定3.在三角形ABC中,∠C=90°,AD平分∠BAC,DE⊥XXX于E,则下列结论正确的有()A。

2个 B。

3个 C。

4个 D。

1个4.在四边形ABCD中,AD∥BC,∠D=90°,AP平分∠DAB,PB平分∠ABC,点P恰好在CD上,则PD与PC的大小关系是()A。

PD>PC B。

PD<PC C。

PD=PC D。

无法判断除了选择题,还有以下问题:5.在三角形内部,有一点P到三角形三个顶点的距离相等,则点P一定是什么?6.已知△ABC的三边的垂直平分线交点在△ABC的边上,则△ABC的形状是什么?7.在三角形ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD于E,F在BC上,并且BF=AB,则下列四个结论正确的有()A。

①②③④ B。

①③ C。

②④ D。

②③④8.在直角三角形ABC中,AC=4㎝,AB=7㎝,AD平分∠BAC交BC于D,DE⊥AB,则EB的长度是多少?A。

3㎝ B。

4㎝ C。

5㎝ D。

不能确定9.XXX的爸爸想在本镇的三条相互交叉的公路建一个加油站,要求它到三条公路的距离相等,可供选择的地址有几个?A。

1 B。

2 C。

3 D。

410.到三角形三条边的距离都相等的点是这个三角形的什么?A。

三条中线的交点 B。

三条高的交点线段的垂直平分线和角的平分线是三角形中常见的概念。

以下是与此相关的选择题和问题。

1.在三角形ABC中,AD平分∠CAE,∠B=30°,∠CAD=65°,求∠ACD的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段的垂直平分线与角的平分线
一、选择题 1.如图1,在△ABC 中,AD 平分∠CAE ,∠B=30︒,∠CAD=65︒,则∠ACD 等于 ( ) A .50︒ B .65︒ C .80︒ D .95︒ 2.如图2,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则:ABC ACD S S ∆∆= ( ) A .3:4 B .4:3 C .16:19 D .不能确定
3.如图3,在△ABC 中,∠C=90︒,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ; ②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB 。

其中正确的有 ( )
A .2个
B .3个
C .4个
D .1个 4.如图4,AD ∥BC ,∠D=90︒,AP 平分∠DAB ,PB 平分∠ABC ,点P 恰好在CD 上,则PD 与PC
的大小关系是 ( )
A .PD>PC
B .PD<P
C C .PD=PC
D .无法判断 。

5、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是
( )
A 、三角形三条角平分线的交点;
B 、三角形三条垂直平分线的交点;
C 、三角形三条中线的交点;
D 、三角形三条高的交点。

6、已知△ABC 的三边的垂直平分线交点在△ABC 的边上,则△ABC 的形状为
( )
A 、锐角三角形;
B 、直角三角形;
C 、钝角三角形;
D 、不能确定
7、如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE 平分∠ABC 交AD 于E ,F 在BC 上,并且BF =AB ,则下列四个结论:①EF ∥AC ,②∠EFB =∠BAD ,③AE =EF ,④△ABE ≌△FBE ,其中正确的结论有 ( )
A 、①②③④
B 、①③
C 、②④
D 、②③④
7题图 8题图 9题图
F D
E
C B
A
D
E C B A P
D C
B
A
E
D
C
B A D
C
B A
E D C
B
A
图3 图4
图1
图2
c b a
O
C
B A
D
P
8、如图所示,在ABC ∆中,∠C =90°, AC =4㎝,AB =7㎝,AD 平分∠BAC 交BC 于D ,DE
⊥AB ,则EB 的长是 ( )
A 、3㎝
B 、4㎝
C 、5㎝
D 、不能确定
9、随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有( )处。

A 、1
B 、2
C 、3
D 、4
10、到三角形三条边的距离都相等的点是这个三角形的 ( )
A.三条中线的交点 B.三条高的交点
C.三条边的垂直平分线的交点 D.三条角平分线的交点 二、填空题。

1. 如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是 cm .
2.如图,在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,若BD=10,则CD=
3.如图,△ABC 中,AB=AC ,DE 是AB 的垂直平分线, AB=8,BC=4,∠A=36°,则∠DBC= ,△BDC 的周长C △BDC = .
4.如图,∠1=50°,∠2=80°,DB=AB ,CE=CA ,则∠D= ,∠DAE= . 5.如图,ΔABC 的三边AB 、BC 、CA 的长分别是20、30、40、其中三条角平分线将ΔABD 分为三个三角形,则S ABO ∆:S BCO ∆:S CAO ∆等于______. 三、解答题
1.如图所示,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,求PD 的长.
第5题
第4题
第2题
第3题
第1题
B
2.已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.
3.如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .
4.如图所示,∠BAC =105°,若MP 和NQ 分别垂直平分AB 和AC .求∠PAQ 的度数.
5、如图所示,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F , 求证:(1)AE=AF ,(2)DA 平分∠EDF
D
E
C
B A
O
M B A N C
Q P
6、如图,在△ABC 中,AB=AC ,D 是BC 边上的一点,DE ⊥AB ,DF ⊥AC ,垂足 分别为E 、F ,添加一个条件,使DE= DF , 并说明理由.
7、如图,已知:AD 平分BAC ∠,EF 垂直平分AD ,交BC 延长线于F ,连结AF 。

求证:CAF B ∠=∠。

8、如图,AD ∥BC ,点E 在线段AB 上,∠ADE=∠CDE ,∠DCE=∠ECB.
求证:CD=AD+BC.
9、△ABC 中,AB=AC ,∠BAC=120°,D 为BC 上一点,DA ⊥AB ,AD=24,求BC.
A
D
B
C
E。

相关文档
最新文档