数值分析
数值分析 知识点总结

数值分析知识点总结一、数值分析的基本概念1. 数值分析的对象数值分析的对象是现实生活中的数字数据和信息。
这些数据和信息可以来自各个领域,包括自然科学、社会科学、技术工程等。
例如,物理实验中测得的实验数据、经济管理中的统计信息、天气观测中的气象数据等,都是数值分析的对象。
2. 数值分析的目的数值分析的主要目的是通过对数值数据和信息的定量分析,发现其中的规律,提取有用的信息,做出科学的预测和决策。
例如,通过对某种药物的临床试验数据进行数值分析,可以得出这种药物的疗效和毒性情况,为临床医生的治疗决策提供依据。
3. 数值分析的方法数值分析采用数学和计算机科学的方法对数值数据和信息进行处理和分析。
它涉及的具体方法包括数值计算、插值与逼近、数值微分和积分、常微分方程数值解、数值线性代数等。
二、数值分析的基本内容1. 数值计算数值计算是数值分析的基本方法之一,它包括离散化、数值稳定性、误差分析等内容。
离散化是将连续问题转化为离散问题,这是数值计算的基本工作方式。
数值稳定性研究的是数值方法对误差的敏感程度,是评价数值方法好坏的重要指标。
误差分析则研究数值计算中产生的误差的成因和大小。
2. 插值与逼近插值与逼近是数值分析的重要内容之一,它研究如何通过已知的数值数据估计未知函数的值。
插值是通过已知的离散数据点构造一个连续函数,使得这个函数通过这些数据点;逼近则是通过已知的离散数据点构造一个近似函数,使得这个函数与原函数的差尽量小。
3. 数值微分和积分数值微分和积分是数值分析的又一重要内容,它研究如何通过已知的函数值计算函数的导数和定积分值。
数值微分是通过函数值计算函数的导数值;数值积分则是通过函数值计算函数的定积分值。
这两项工作在科学计算中有着广泛的应用。
4. 常微分方程数值解常微分方程数值解也是数值分析的重要内容之一,它研究如何通过数值方法计算常微分方程的近似解。
常微分方程是自然界和技术工程中经常出现的数学模型,因此其数值解的研究有着广泛的应用价值。
数值分析简明教程

数值分析简明教程
数值分析是一门传统的微分几何学和非经典分析学领域内的一种分析方法,属于计算数学的范畴。
它试图从数值来得出一个具有实用价值的结论或做出相当准确的预测。
比如,数值分析可以用于估计气象预报、计算复杂方程的解和模拟复杂非线性系统的行为。
数值分析的三个主要应用是数值积分、数值微分和解析解的数值求解,即数值分析简明教程。
数值积分是将一个复杂的连续函数的值积分为一个连续的总和的过程,可以用来计算力、时间、能量、体积等物理量。
数值微分是将一个复杂的连续函数的变化率进行离散评估的过程,有助于求解微分方程,如各种魔方样方程。
解析解的数值求解是求解复杂方程组的一种手段,通过根据函数方程来确定函数的极值并从此推导出方程的解。
数值分析简明教程由初级技术引导到高级知识,可以帮助学习者开发、优化和解决数值问题,并且能够提高对复杂系统的理解能力,从而降低采纳解决方案的成本。
目前,数值分析技术已经成为互联网上使用最为广泛的数值计算工具之一,用于预测、解决众多学术问题,比如深度学习和统计学等。
数值分析 pdf

数值分析 pdf简介:数值分析(Numerical analytical analysis)是通过计算机求解数学模型或计算机辅助设计的数值方法,是采用有限元法分析流体、电磁场、固体、声场和热场等物理量以及求解优化设计的数值方法。
从而得到相应的结果,或者输出这些结果的过程。
数值分析有许多种不同的类别,但主要可以归纳为两大类: 1.数值方法(Numerical method)研究如何将数字表示转换成数学模型的一般规则。
它由三个不同的领域组成,即代数方法(Functoral methods),微分方程(differential equations),以及积分方法(integral methods)。
内容介绍:基本概念和理论、微积分及其数值方法。
数值分析(数值方法)是数学中重要的分支之一,它与计算机科学密切相关,它被广泛地应用于许多领域,如金属力学性能、岩土力学性能、化学反应动力学、有限元法、流体力学、电磁场、声学、热传导等。
对于流体的力学性能的研究,一般都是将已知函数(对象)看成在时间上离散,然后利用分析手段处理成的数学模型来研究对象的各种物理性质,这就是数值方法的基本思想。
发展趋势:随着计算机技术、网络技术和控制工程等相关学科的迅速发展,国内外学者对数值分析进行了深入的研究,并取得了丰硕的成果,有关数值方法的新的研究成果层出不穷。
目前,数值方法正朝着有限差分法和有限元法两个方向发展。
1.有限差分法(有限元法)2.有限元法的几个基本原理3.有限差分法的分类4.边界条件的选取5.有限元法在实际工程中的应用6.有限差分法在边界元法中的应用7.边界元法简介8.数值分析方法的共同点8.1基本思想和计算原理(1)网格剖分; (2)节点位移、速度和加速度的分布;(3)自由度的确定(4)约束条件和约束反力;(5)载荷和约束的矩阵表示;(6)载荷、约束和单元刚度矩阵;(7)结构的内力分析。
《数值分析》课程教案

《数值分析》课程教案数值分析课程教案一、课程介绍本课程旨在介绍数值分析的基本概念、方法和技巧,以及其在科学计算和工程应用中的实际应用。
通过本课程的研究,学生将了解和掌握数值分析的基本原理和技术,以及解决实际问题的实用方法。
二、教学目标- 了解数值分析的基本概念和发展历程- 掌握数值计算的基本方法和技巧- 理解数值算法的稳定性和收敛性- 能够利用数值分析方法解决实际问题三、教学内容1. 数值计算的基本概念和方法- 数值计算的历史和发展- 数值计算的误差与精度- 数值计算的舍入误差与截断误差- 数值计算的有效数字和有效位数2. 插值与逼近- 插值多项式和插值方法- 最小二乘逼近和曲线拟合3. 数值微积分- 数值积分的基本原理和方法- 数值求解常微分方程的方法4. 线性方程组的数值解法- 直接解法和迭代解法- 线性方程组的稳定性和收敛性5. 非线性方程的数值解法- 迭代法和牛顿法- 非线性方程的稳定性和收敛性6. 数值特征值问题- 特征值和特征向量的基本概念- 幂迭代法和QR方法7. 数值积分与数值微分- 数值积分的基本原理和方法- 数值微分的基本原理和方法四、教学方法1. 理论讲授:通过课堂授课,讲解数值分析的基本概念、原理和方法。
2. 上机实践:通过实际的数值计算和编程实践,巩固和应用所学的数值分析知识。
3. 课堂讨论:组织学生进行课堂讨论,加深对数值分析问题的理解和思考能力。
五、考核方式1. 平时表现:包括课堂参与和作业完成情况。
2. 期中考试:对学生对于数值分析概念、原理和方法的理解程度进行考查。
3. 期末项目:要求学生通过上机实验和编程实践,解决一个实际问题,并进行分析和报告。
六、参考教材1. 《数值分析》(第三版),贾岩. 高等教育出版社,2020年。
2. 《数值计算方法》,李刚. 清华大学出版社,2018年。
以上是《数值分析》课程教案的概要内容。
通过本课程的研究,学生将能够掌握数值分析的基本原理和技术,并应用于实际问题的解决中。
数值分析的所有知识点总结

数值分析的所有知识点总结一、数值分析的基本概念1.1 数值分析的定义和作用数值分析是研究利用计算机对数学问题进行数值计算的一门学科。
它旨在发展和分析数值计算方法,以解决实际问题中出现的数学模型。
数值分析的主要作用在于加快科学研究和工程设计的速度,提高计算精度和可靠性,以及发现新的科学规律和工程技术。
1.2 数值计算的基本步骤数值计算通常包括以下基本步骤:建立数学模型、选择适当的数值方法、编写计算程序、进行计算和分析结果。
其中,建立数学模型是数值计算的基础,它将实际问题抽象为数学公式或方程组的形式;选择适当的数值方法是指根据具体问题的特点,选择合适的数值计算方法进行求解;编写计算程序是指将选择的数值方法用计算机程序的形式实现;进行计算和分析结果是指利用计算机进行数值计算,并分析计算结果的准确性和可靠性。
1.3 数值分析的应用范围数值分析广泛应用于科学、工程、经济、金融等领域。
在科学研究中,数值分析常用于数学建模、实验数据处理、科学计算等方面;在工程领域,数值分析常用于工程设计、结构分析、流体力学、传热传质等方面;在经济金融领域,数值分析常用于风险评估、金融工程、市场预测等方面。
二、数值计算方法2.1 插值法插值法是利用已知的离散数据(如实验数据、观测数据)推导出未知的数据值的一种数值计算方法。
常用的插值方法包括拉格朗日插值、牛顿插值、分段插值等。
2.2 数值微分与数值积分数值微分是指利用离散数据计算函数的导数值的数值计算方法。
常用的数值微分方法包括差商法、中心差商法等。
数值积分是指利用离散数据计算函数的积分值的数值计算方法。
常用的数值积分方法包括复合梯形法、复合辛普森法等。
2.3 数值线性代数数值线性代数是研究线性代数问题的数值计算方法。
它涉及到线性方程组的求解、线性方程组的特征值和特征向量的计算、矩阵的LU分解、矩阵的QR分解等内容。
2.4 非线性方程求解非线性方程求解是研究非线性方程的数值计算方法。
数值分析简述及求解应用

数值分析简述及求解应用数值分析是数学中的一个重要分支,它研究如何通过数值计算方法来求解各种数学问题。
数值分析的基本任务是通过近似方法,利用计算机或其他计算设备来对数学问题进行求解。
它广泛应用于科学计算、工程技术、金融投资、物理模拟等领域,对现代科学技术的发展起到了重要的推动作用。
数值分析主要包括数值逼近、数值微积分、数值代数和数值方程等几个方面。
数值逼近是指用函数逼近方法来接近所求函数值,主要包括插值多项式、最小二乘拟合、傅里叶级数等。
数值逼近可以用来对实际问题进行模拟和预测,比如天气预报、大气污染预测、经济增长预测等。
数值微积分是数值分析中的重要内容,主要包括数值积分和数值解微分方程。
数值积分是通过数值方法来计算函数积分值,可以应用于对函数面积、体积、积分方程求解等问题的求解。
数值解微分方程则是通过数值方法来求解各种微分方程,可以用来模拟各种实际问题,比如天体力学、流体力学、传热传质等。
数值代数是数值分析的另一个重要分支,主要研究线性代数和矩阵计算的数值方法。
线性方程组的求解、特征值和特征向量的计算、最小二乘问题的求解等都是数值代数的研究内容。
数值代数广泛应用于科学计算、工程计算和金融计算等领域,为实际问题的求解提供了数值计算的手段。
数值方程是数值分析中的另一个重要领域,主要研究非线性方程、微分方程和偏微分方程的数值求解方法。
非线性方程的数值求解是一个非常重要的研究方向,广泛应用于各种实际问题。
微分方程和偏微分方程的数值求解则可以用来模拟各种科学和工程问题,包括天气预报、地震模拟、流体力学模拟等。
数值分析的应用非常广泛,几乎涵盖了所有科学和工程领域。
比如在物理学中,可以用数值方法求解各种物理方程,包括力学方程、热力学方程、电磁学方程等。
在工程学中,可以用数值方法求解各种工程问题,包括结构分析、流体力学、电磁场分布等。
在金融学中,可以用数值方法计算各种金融模型,包括期权定价、风险评估等。
在计算机科学中,可以用数值方法来进行图像处理、数据挖掘等。
数值分析教案

数值分析教案数值分析教案是一份旨在帮助学生深入理解数值分析概念和原理的教学计划。
通过数值分析教案的学习,学生将能够掌握数值计算方法,理解数值误差分析和算法设计等重要内容。
本教案将分为以下几个部分进行讨论与学习:一、数值分析概述数值分析是一门研究用数值方法解决数学问题的学科。
其主要目的是通过数值计算的方法,得到数学、物理或工程问题的近似解。
数值分析的应用领域非常广泛,涵盖了数学、计算机科学、工程等多个学科领域。
二、数值误差分析在进行数值计算时,往往会产生误差。
这些误差可能来源于测量精度、舍入误差、截断误差等多个方面。
了解不同类型的误差对于正确理解数值计算结果至关重要。
三、插值和逼近插值和逼近是数值分析中的重要内容。
插值是指通过一组已知数据点,构造一个多项式函数,使得该函数在已知数据点处与原函数取值相同;而逼近则是通过多个已知数据点,构造一个函数来近似原函数。
四、数值积分与微分方程数值积分和微分方程是数值分析中的另外两大重要内容。
数值积分是对函数在一定区间上的积分进行数值计算,而微分方程则是研究描述变化的物理现象的数学方程。
五、算法设计算法设计是数值分析中一个至关重要的环节。
一个高效、准确的算法可以大大提高数值计算的效率和精度。
学生需要学会设计和实现各种数值计算算法。
通过本教案的学习,相信学生将对数值分析有更为深入的了解,掌握数值计算方法,提高数学建模和问题求解的能力。
数值分析作为一门重要的学科,对于理工科学生的学习和研究具有重要的指导意义。
愿本教案能够帮助学生打下坚实的数值分析基础,为未来的学习和工作打下良好的基础。
数值分析解决实际问题

数值分析解决实际问题数值分析是一门研究利用计算机对数学问题进行数值计算的学科,它通过数值方法来解决实际问题,广泛应用于工程、科学、经济等领域。
数值分析的方法包括插值法、数值积分、常微分方程数值解、线性代数方程组求解等,这些方法在解决实际问题时发挥着重要作用。
本文将介绍数值分析在实际问题中的应用,并探讨其在解决实际问题中的重要性和价值。
一、插值法插值法是数值分析中常用的方法之一,它通过已知数据点之间的插值多项式来估计未知数据点的值。
在实际问题中,插值法常用于数据的平滑处理、曲线拟合等方面。
例如,在气象学中,我们需要根据已知的气温数据点来预测未来某一时刻的气温变化,这时可以利用插值法来进行数据的预测和分析。
二、数值积分数值积分是数值分析中的另一个重要方法,它通过数值逼近来计算定积分的近似值。
在实际问题中,数值积分常用于计算曲线下面积、求解物理学中的力学问题等。
例如,在工程学中,我们需要计算某一形状的曲线或曲面的面积或体积,这时可以利用数值积分方法来进行计算。
三、常微分方程数值解常微分方程数值解是数值分析中的重要内容之一,它通过数值方法来求解常微分方程的数值解。
在实际问题中,常微分方程数值解常用于模拟物理系统、生态系统等的动态行为。
例如,在生态学中,我们需要研究种群数量随时间的变化规律,这时可以利用常微分方程数值解来模拟和预测种群数量的变化趋势。
四、线性代数方程组求解线性代数方程组求解是数值分析中的重要内容之一,它通过数值方法来求解线性代数方程组的解。
在实际问题中,线性代数方程组求解常用于工程、经济等领域的优化问题。
例如,在工程优化中,我们需要确定某一系统的最优参数配置,这时可以利用线性代数方程组求解来进行优化计算。
综上所述,数值分析在解决实际问题中发挥着重要作用,它通过插值法、数值积分、常微分方程数值解、线性代数方程组求解等方法来对实际问题进行数值计算和分析,为工程、科学、经济等领域的发展提供了重要支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硕士研究生学位课
主讲:胡钢讲师
西安理工大学应用数学系
二OO八年十一月
第一章 绪论与误差分析
§1 §2 §3 §4 §5 计算数学研究的对象和内容 误差的来源和分类 误差的表示 误差的传播 算法设计的若干原则
2013-7-9
第一章 绪论与误差分析
2
本章内容安排
1. 目的意义:了解计算数学的背景知识;掌握误 差的基本知识 2.重 点:误差来源、误差表示、误差传播 及算法设计原则 3.难 点:有效数字 4.内容分配: 第 1 次:§1 计算数学研究的对象和内容 第
2013-7-9 第一章 绪论与误差分析 7
二、计算数学研究的对象和任务
根据数学模型提出的问题,建立求解问题的数值计算 方法并进行方法的理论分析,再编制出算法程序上机计算 并对计算结果进行分析,这一过程就是计算数学研究的对 象和任务。因此,计算数学就是研究用计算机解决数学问 题的数值计算方法及其理论。 计算数学是数学学科的一个分支,但它不象纯数学那 样只研究数学本身的理论,而是把理论与计算紧密结合, 着重研究面向计算机的,能够解决实际问题的数值方法及 其理论,具体地说,数值分析研究的内容包括: 1.构造可在计算机上求解数学问题的数值计算方法 2.分析方法的可靠性,即按此方法计算得到的解是否 可靠,与精确解之差是否很小,以确保计算解的有效性。
2013-7-9 第一章 绪论与误差分析 5
今天计算在科学和工程研究中几乎已无所不在,计算 数学正是这许多交叉学科的纽带和共同基础。不同的学科、 不同的工程应用会提出不同的实际问题,但他们往往又是 归结为若干类典型的数学问题。 不同的计算方法可能是用于解决不同类型的科学问题。 一方面要寻找更加有效更能发挥计算机功能的新型算法解 决老问题,另一方面,针对科学研究的和工程技术不断提 出的新问题需要设计新的高性能算法。 各应用领域对科学计算的需求越来越多,要求越来越 高,计算机也在不断发展、更新换代,这些都要求不断地 发展计算方法。 计算方法是科学和工程计算的核心,构造好的计算方 法与研制高性能计算机及高效率软件同等重要,计算的功 效是计算机工具的能力与计算方法的效率之乘积。
2013-7-9 第一章 绪论与误差分析 4
计算克服了理论分析及实验手段的局限,这是自伽利 略、牛顿以来科学方法论的最伟大的进步,推动着科学实 践中一场深刻的不可逆转的变革。 在科学和工程的许多领域有了计算才能获得重大的研 究成果和完成高度复杂的工程设计。科学计算的方法和理 论作为新的研究手段以及新的设计和制造技术的理论基础, 正在并将继续推动当代科学和高新技术的发展。 当前科学计算正在向大规模和高性能发展,要达到 “全物理、全系统、三维、高分辨、高逼真”的数值模拟, 发展高效的计算方法与发展高性能的计算机同等重要。 数十年来在自然科学和工程科学中,先后产生了计算 物理、计算力学、计算化学、计算生物、计算经济学等一 系列计算性的分支学科。
§2 误差的来源和分类 2 次:§3 误差的表示 §4 误差的传播 §5 算法设计的若干原则
第一章 绪论与误差分析 3
2013-7-9
§1 计算数学研究的对象和内容
一、计算数学的产生与发展
数值分析是科学计算数研究领域的一门专业基础课, 是研究科学计算中各种数学问题数值计算方法的基础。 科学计算的兴起是二十世纪后半叶最重要的科技进步之 一,是伴随着电子计算机的出现而迅速发展并获得广泛 应用的新型交叉学科,是数学及计算机实现其在高科技 领域应用的必不可少的纽带和工具。 许多重大的科学技术问题根本无法求得理论解,也 难以应用实验手段解决,但却可以借助于计算机进行计 算。科学计算与理论研究、科学实验并列,已成为当今 世界科学活动的第三种手段。
对给定的 x ,要计算函数值 ex 时,可采用近似公式 x2 xn x e 1 x 2! n! 那么此近似公式的截断误差为
2013-7-9
x n 1 θ x R( x ) e , 0θ 1 ( n 1)!
第一章 绪论与误差分析
14
4.舍入误差(计算误差)
由于计算机的字长有限,参加运算的数据以及计算结 果在计算机上存放时,计算机会按舍入原则舍去每个数据 字长之外的数字,从而产生误差,这种误差称为舍入误差 或计算误差。 例如,在十进制十位的限制下,会出现 (1.000002)2-1.000004=0
则有误差限 |x-x*|≤1= εx ,
虽然εy是εx 的3倍,但在1000内差3显然比10内差1更精确 些。这说明一个近似值的精确程度除了与绝对误差有关 外,还与精确值的大小有关,所以这时可以用相对误差 来比较这两个近似数的准确度。
2013-7-9 19
第一章 绪论与误差分析
e x x* 定义1 .2 记 er x x 则称其为近似值 x *的相对误差。 由于 x 未知, 实际使用时总是将 x * 的相对误差取为
p3 ( x ) a3 x 3 a2 x 2 a1 x a0 直接计算需要6次乘法,3次加法。如果作如下改变: p3 ( x ) a3 x 3 a2 x 2 a1 x a0
((a3 x a2 ) x a1 ) x a0
只有3次乘法,3次加法。这个算法称作:秦九绍算法。
2013-7-9 第一章 绪论与误差分析 10
三、数值分析的学习内容
1 . 数值逼近 (1). 代数插值:Lagrange、Newton、Spline插值 (2). 最佳逼近: 最佳一致逼近、最佳平方逼近(最小二乘法) (3). 数值微积分:等距节点求积公式、Gauss型求积公式 2 . 数值代数 (1). 线性方程组求解
五、计算实习报告写法
1.实习题目 3.目的意义 5.算法 7.数值算例 9.参考文献
2013-7-9 第一章 绪论与误差分析 12
2. 班级姓名 4. 数学模型(数学公式) 6.(流程图) 程序 8. 对计算结果进行分析评价
§2 误差的来源和分类
在科学和工程计算中,估计计算结果的精确度是十分重要 的,而影响精确度的是各种各样的误差。所谓误差就是一个 物理量的真实值与近似值之间的差。误差按照它们的来源 可分为模型误差、观测误差、截断误差和舍入误差四种。 1.模型误差 在建立数学模型时,往往要忽略许多次要因素,由此而 产生的误差称为模型误差。如忽略空气阻力、摩擦力等。 2.观测误差 数学模型中包含的一些物理参数,它们的值往往是通 过观测和试验得到的,难免带有误差。这种观测数据与实 际数据之间的误差称为观测误差。如单摆运动的绳长 l 及 重力加速度 g等。
2013-7-9 第一章 绪论与误差分析 9
对于给定的数学问题,常常可以提出各种各样的数值 计算方法。如何评价这些算法的优劣呢?一般来说,一个 好的方法应具有如下的特点: (1).结构简单,易于计算机实现; (2).有可靠的理论分析,理论上可保证方法的收敛性 和数值稳定性; (3).计算效率高,时间效率高是指计算速度快,节省 时间,空间效率高是指节省存储量; (4).经过数值试验检验,即一个算法除了理论上要满 足上述三点外,还要通过数值实验来证明是行之有效的。 在学习数值分析时,我们要注意掌握数值方法的基本原 理和思想,要注意方法处理的技巧及其与计算机的结合, 要重视误差分析、收敛性及稳定性的基本理论。此外,还 要通过应用数值方法编程计算具体例子,以提高使用各种 数值方法解决实际问题的能力。
2013-7-9 第一章 绪论与误差分析 15
例1.1求单摆角的变化规律 解:(1).建模:根据Newton定律得到 d 2 ml 2 mg sin dt (2). 测量 l 、g 的值 g 2 (3). 模型求解 ,令 得到: l 2 d 2 sin 0(*) dt 2 d 2 再 令 sin 得到 2 0 dt 2 解得:(t)=Acost+Bsin t
2013-7-9 第一章 绪论与误差分析 6
计算数学一方面是数学,其研究手段包括数学推导、 分析、论证和计算,其成果将促进学科自身的发展。但另 一方面,计算数学又有广泛的应用背景,其研究对象往往 涉及许多其它学科,其研究成果则可以应用于实际计算并 通常带有数值实验的结果。 推动纯粹数学发展的动力主要来自自身提出的问题, 而计算数学发展的主要动力则来自于解决科学和工程中的 计算问题的需要。计算数学的发展离不开计算机,计算方 法的改进将能使计算机的作用得到充分的发展,而计算数 学提出的要求也将对计算机的发展与更新换代提供新的推 动力。 科学和工程计算的能力与发展水平是一个国家综合国 力的重要标志。世界发达国家都极其重视这一研究领域, 并以大量资金投入加以支持。美国在此领域长期处于领先 地位,目前有每秒万亿次的计算机用于科学计算。
2013-7-9 第一章 绪论与误差分析 8
3.分析方法的效率。分析比较求解同一问题的各种方 法的计算速度和存储量,以便使用者根据各自的情况采用 高效率的方法,节省人力、物力和时间,这样的分析是数 值分析的一个重要部分。应当指出,数值方法的构造和分 析是密切相关不可分割的。
例如:计算3次多项式 的函数值
2013-7-9
l
mg
非线性微分方程(*)的求解也可以采用数值解法。
第一章 绪论与误差分析 16
以上内容介绍了误差的来源及分类,误差有四类:
(1). 模型误差 (2). 观测误差 (3). 方法误差(截断误差) (4). 计算误差(舍入误差)
知道了误差产生的根源,在进行理论分析时,需要将 误差量化,以便于推理分析,因此下面我们将引入是 (1.000002)2-1.000004 =1.000004000004-1.000004=4×10-12 这里所产生的误差就是计算舍入误差。 在数值分析中,一般总假定数学模型是准确的,因而 不考虑模型误差和观测误差,主要研究截断误差和舍入误 差对计算结果的影响。
(2). 矩阵的特征值、特征向量计算
(3). 非线性方程求根、非线性方程组求解 3 . 微分方程求解 (1). 常微分方程数值解:欧拉折线法和龙格库塔法 (2). 偏微分方程数值解 :差分法、有限元法