人教版圆锥的体积

合集下载

人教版六年级下册数学第三单元第2课时 圆锥的体积【教案】

人教版六年级下册数学第三单元第2课时 圆锥的体积【教案】

教学笔记第2课时圆锥的体积教学内容教科书P33~34例2、例3,完成教科书P35“练习六”中第4~7题。

教学目标1.掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

2.经历“直觉猜想——实验探索——合作交流——得出结论——实践运用”的探索过程,理解圆锥体积的推导过程和学习的方法。

3.培养学生勇于探索的求知精神,让学生感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流和独立思考的良好习惯。

教学重点圆锥体积公式的理解,并能运用公式求圆锥的体积。

教学难点圆锥体积公式的推导。

教学准备课件,若干同样的圆柱形容器,若干与圆柱等底等高的圆锥形容器,少数不等底等高的圆锥形容器,沙子和水。

教学过程一、提出问题,导入新课师:求这堆沙子的体积就是求什么?【学情预设】学生会说出求圆锥的体积。

师:你有没有办法求出这个圆锥形沙堆的体积呢?【学情预设】预设1:转化成长方体。

预设2:转化成正方体。

预设3:转化成圆柱。

(可能还有学生说出圆锥体积的计算公式,教师可以问问他是怎么知道的。

)师:大家都想到了运用转化的方法来解决问题,但这样做似乎比较麻烦,想不想找到一种简单而又科学合理的方法计算出圆锥的体积呢?今天我们就来研究这个问题。

(板书课题:圆锥的体积) 【设计意图】以生活中的数学的形式导入,激发学生的好奇心和求知欲。

二、自主探究,推导圆锥体积的计算公式1.猜想。

师:你觉得圆锥的体积可能与哪种图形的体积有关?【学情预设】学生可能会说圆锥的体积与圆柱的体积有关,因为它们的底面都是圆形。

师:(举起等底等高的圆柱、圆锥教具,把圆锥套在透明的圆柱里)想一想它们的体积之间会有什么样的关系?【学情预设】学生猜测等底等高的圆柱的体积可能是圆锥的2倍、3倍、4倍或其他。

师:我们的猜测到底对不对呢?下面请大家一起来验证吧!2.探究验证。

(1)开展实验收集数据。

师:圆柱与圆锥的体积之间有什么关系呢?我们一起来做实验。

人教版六年级下册数学圆锥的体积教案

人教版六年级下册数学圆锥的体积教案
①、引导学生观察用来实验的圆锥、圆柱的特点。
其实老师已经准备好了材料,在你们的小组长手中,看一看,比一比,有什么特点吗?
②、学生实验:
你想怎么实验?(小组可以议一议)(老师指导:倒一下)
请大家以小组为单位进行实验,在实验中,注意思考三个问题:(大屏幕出示这三个问题)(学生读一读思考题)
A:你们小组是怎样进行实验的?
(学生发现等底等高)
生:我们把圆锥装满水,倒入这个圆柱体当中,正好倒了3次倒满,得出圆锥的体积等于这个圆柱的体积的1/3,因为圆柱的体积v=sh,所以圆锥的体积v =1/3sh
设计意图:这个实验验证的活动是解决本节课教学重点和突破本节课教学难点的关键所在,我把全班的同学分成了十二个小组,为了节约课堂宝贵的时间,每一组就发了一个圆锥、一个圆柱,有两个小组是等高不等底的,有两个小组是等底不等高的,其余的小组都是等底等高的。为了能从多方面来进行验证,有的小组用水来进行实验,有的小组用沙子来进行验证。实验的过程学生参与的积极性很高,能在数学课上摸一摸沙子,装一装水可想而知是多么开心的一件事。
强调:圆锥的体积等于与它等底等高的圆柱的体积的1/3。
这节课你有什么收获?
生:把圆柱的底面分成许多相等的小扇形,然后把圆柱切开,就拼成了一个近似的长方体。这个长方体的底面积等于圆柱的底面积,高就是圆柱的高。因为长方体的体积等于底面积乘高,所以圆柱的体积也等于底面积乘高。
老师提供了实验用具,拿出来看看:(有圆柱,有圆椎,有沙子,有水)
上节课我们还认识了圆锥体,圆锥的体积怎样计算呢?他又是怎样推导出来了呢?你们想不想知道?这节课我们就来研究这个问题。
1、引导学生借助圆柱,探讨圆锥的体积公式。
①、猜:圆锥的体积怎样计算呢?大胆猜一下。真的是这样吗?

人教版小学六年级数学下册《圆锥的体积》

人教版小学六年级数学下册《圆锥的体积》

拓展延升:
谁做的房子的体积大呢?
明明 聪聪
(S=12.5c㎡
h=9cm)
(s=6c㎡ h=6.3cm)
1 V1= ___ ×12.5×9=37.5(立方厘米) V = 2 6×6.3=37.8(立方厘 3
米)
因为:v 1
< v2
所以:聪聪做的房子的体积大。
课后小结:
通过本节的学习,你有哪些 收获呢?
你有什么 发现?
活动二: 实验验证我最棒
等底、等高的圆柱体和圆锥体: 1.实验时,把圆锥体里的水倒入圆柱里。 2.实验时,把圆柱里的水倒入圆锥体里。 底和高不相等的圆柱体和圆锥体: 1.实验时,把圆锥体里的水倒入圆柱里。 2.实验时,把圆柱里的水倒入圆锥体里。
活动三: 实践应用我也会
3
活动三: 达标测评我第一
我自信 我成功 我进步观察下面两组数据: 底面积 高 体积 圆柱 5c㎡ 3cm 15cm³ 圆锥 5c㎡ 3cm 5cm³ 圆柱 3d㎡ 9dm 27dm³ 圆锥 3d㎡ 9dm 9cm³ 1.两组数据中圆柱与圆锥的底面积和高有什么特征?
2.两组数据中圆柱与圆锥的体积有什么关系? 3.你能得出什么结论?
解决问题:
1.一堆大米,近似于圆锥形,量得底面周 长是9.42厘米,高5厘米。它的体积是多少立方 厘米? 2.把一个棱长是6厘米的正方体木块,加工 成一个最大圆锥体,圆锥的体积是多少立方厘 米? 3.把一块长6厘米,宽4厘米,高5厘米的铁 块熔铸成一个高15厘米的圆锥,这个圆锥的底 面积是多少平方厘米?
1 3
填空:
1.等底等高的圆柱体和圆锥体,圆柱体的体积是 这个圆锥体体积的( )倍。 2.一个圆柱体和一个圆锥体等底等高。已知圆柱 体的体积是2.7立方米,圆锥的体积( )立方米。 3.一个圆锥的体积是6立方分米。和这个圆锥的 底面直径相等,高也相等的圆柱的体积是( )立 方分米。 4.把一个圆柱体木块削成一个和它同底等高的圆 锥体,体积减少了( )。

(人教版)六年级数学下册课件_圆锥的体积_4

(人教版)六年级数学下册课件_圆锥的体积_4
3 2
1.2 米 4米
×3.14×(4 ÷ 2)×1.2 × )
3
1) = 3.14×(4 ÷ 2)×(1.2 ×—) × )
=12.56 ×0.4 = 5.024(立方米) (立方米) 735×5.024 ≈ 3693 (千克) × 千克) 答:这堆小麦大约有3693千克 这堆小麦大约有 千克
解决问题: 解决问题:
体积等于圆柱体积的— 体积等于圆柱体积的 3
用字母表示: 用字母表示: 1 V= Sh 3
已知: 已知:等底等高的圆锥和圆柱
根据左图体积填写右图体积: 根据左图体积填写右图体积: (1) ) (2)
90立方厘米 立方厘米

30)立方厘米
80立方厘米 立方厘米 ( )立方厘米 240
例1:一个圆锥的零件,底面积是 :一个圆锥的零件, 19平方厘米,高是 厘米。这个零 平方厘米, 厘米。 平方厘米 高是12厘米 件的体积是多少? 件的体积是多少?
圆锥的体积
实验小学
情景引入: 情景引入: 谁做的房子的体积大呢? 谁做的房子的体积大呢?
明明说: 明明说:我做的房子的底面比你做的 房子的底面大,高也比你的高, 房子的底面大,高也比你的高,所以 我做的房子的体积大。 我做的房子的体积大。
(s=6 h=6.3)
(S=12.5 h=9)
聪聪说:我做的房子上下一样粗呀, 聪聪说:我做的房子上下一样粗呀, 而你做的房子却越向上越细呀, 而你做的房子却越向上越细呀,所 以我做的房子的体积大。 以我做的房子的体积大。
已知圆锥的底面半径r h,如 1.已知圆锥的底面半径r和高h,如 已知圆锥的底面半径 和高h, 何求体积V? 何求体积V? 2 1
S=π
r

人教版数学六年级下册圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册圆锥的体积教学设计(推荐3篇) 人教版数学六年级下册圆锥的体积教学设计【第1篇】2、思考:求圆锥的体积,还可能出现那些情况?(如果已知圆锥的高和底面半径如果已知圆锥的高和底面半径(或直径、周长),怎样求圆锥的体积呢?)练一练3、求下面的体积。

(只列式不计算)(1)底面半径是2 厘米,高3厘米。

3.14×22×3(2)底面直径是6分米,高6分米。

3.14×(6 ÷2)2 ×6(3)底面周长是12.56厘米,高是6厘米3.14×(12.56 ÷6.28)2 ×62、求下面各圆锥的体积如图(单位厘米)(1)底面直径是8分米,高9分米(2)底面半径3分米和高7分米通过公式我们发现计算圆锥的体积所必须的条件可以是底面积和高a、底面积和高b、底面半径和高c、底面直径和高d、底面周长和高三、巩固练习1、判断:⑴、圆锥的体积等于圆住体积的1/3。

()⑵把一个圆柱切成一个圆锥,这个圆锥的体积是圆柱体积的1/3 ()⑶圆柱的体积比和它等底等高圆锥的体积大2倍。

()⑶一个圆柱与一个圆锥的底面积和体积相等,那么圆锥的高是圆柱高的2、填空⑴一个圆锥与一个圆柱等底等高,已知圆锥的体积是 18 立方米,圆柱的体积是()。

⑵一个圆锥与一个圆柱等底等体积,已知圆柱的高是 12 厘米,圆锥的高是()。

⑶一个圆锥与一个圆柱等高等体积,已知圆柱的底面积是 314 平方米,圆锥的底面积是()。

3、拓展练习工地上有一些沙子,堆起来近似于一个圆锥,通过测量它的直径是4厘米高是1.2厘米,这堆沙子大约多少立方米?(得数保留两位小数) (引导学生说出怎样测量沙堆的底面的周长、直径、和高。

)用两根竹竿平行地放在沙堆两侧,测得两根竹竿间的距离,就是直径。

将一根竹竿过沙堆的顶部水平位置,另一根竹竿竖直与水平竹竿成直角即可量得高。

人教版数学六年级下册圆锥的体积教学设计【第2篇】教学目标:1、知识与技能理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

六年级下册数学说课稿-《圆锥的体积》(人教版)

六年级下册数学说课稿-《圆锥的体积》(人教版)
3.重点难点解析:在讲授过程中,我会特别强调圆锥体积的计算公式V=1/3πr²h和圆锥与圆柱体积的关系这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆锥体积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,用沙土堆成圆锥体,演示圆锥体积的计算过程。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆锥体积在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.教学难点
(1)圆锥体积计算公式的推导:理解圆锥体积公式V=1/3πr²h的推导过程。
(2)空间想象能力的培养:在解决圆锥体积问题时,能够根据实际情况进行空间想象,正确判断圆锥的底面半径和高。
(3)解决实际问题时,如何将现实情境抽象为数学模型:将现实生活中的圆锥体积问题转化为数学计算问题。
举例:
-在推导圆锥体积公式时,通过引导学生观察圆锥与等底等高圆柱体积的关系,解释圆锥体积为1/3圆柱体积的原因。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆锥体积的基本概念。圆锥体积是指圆锥形状的物体所占空间的大小。它是几何体积计算中的一个重要部分,广泛应用于工程、建筑等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用圆锥体积的计算公式解决实际问题,如计算沙堆的体积。

人教版数学六年级下册圆锥的体积教案(推荐3篇)

人教版数学六年级下册圆锥的体积教案(推荐3篇)人教版数学六年级下册圆锥的体积教案【第1篇】教材分析《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。

本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。

为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。

学情分析六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。

学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。

因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。

但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。

教学目标1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。

2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。

3、体会数学与生活的密切联系,感受探究成功的快乐。

教学重点和难点重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。

难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。

教学过程一、复习准备1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?2、圆锥有什么特点?(同时出示幻灯)3、在这个圆锥体中,几号线段是圆锥体的高。

4、引入:看来,同学们对于圆锥体的特征掌握得很好。

你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。

2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。

3.学生手势出示4.想复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。

三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

上课解决方案教案设计教学目标知识与技能1.理解并掌握圆锥的体积计算公式,能正确地计算圆锥的体积。

2.能运用圆锥的体积计算公式解决有关的实际问题。

过程与方法经历自主探究圆锥的体积计算公式的过程,增强操作能力,体验观察、比较、分析、总结、归纳等学习方法。

情感、态度与价值观通过实验,培养学生勇于探索的求知精神,感受发现知识的快乐,体会数学与生活的密切联系,能积极参与数学活动,自觉养成与人合作交流和独立思考的良好习惯。

重点难点重点:掌握圆锥的体积计算公式,能运用公式解决简单的实际问题。

难点:理解圆锥的体积计算公式的推导过程。

课前准备教师准备PPT课件铅锤学生准备等底、等高的圆柱形和圆锥形容器沙子水教学过程板块一激发兴趣,问题导入1.提问激趣:怎样计算这个铅锤的体积?(出示铅锤)生:可以用排水法。

把铅锤全部浸入盛水的量杯中(水未溢出),升高那部分水的体积就是铅锤的体积。

2.追问:怎样求出沙堆的体积?(课件出示教材33页例3)工地上有一堆沙子,其形状近似于一个圆锥(如右图),这堆沙子的体积大约是多少?如果每立方米沙子大约重1.5 t,这堆沙子大约重多少吨?预设生1:用排水法好像不行。

生2:改变圆锥形沙堆的形状,堆成正方体,测出它的棱长后,计算它的体积。

生3:改变圆锥形沙堆的形状,堆成长方体,测出它的长、宽、高后,计算它的体积。

生4:改变圆锥形沙堆的形状,堆成圆柱,测出它的底面周长和高后,计算它的体积。

3.导入新知:大家都想到了用转化法求沙堆的体积,但如果我们在计算沙堆的体积时,必须把沙子重新堆放成以前学过的几何图形,这样做既麻烦又不容易成功,看来我们还需要寻求一种更普遍、更科学、更便利的求圆锥的体积的方法。

(板书课题:圆锥的体积) 操作指导通过提出问题,引发学生的认知冲突,激发学生的求知欲,培养学生自主探究的意识,感受学习数学的必要性。

板块二动手操作,探究新知活动1观察猜想,确定方向1.猜一猜:圆锥的体积可能与哪种立体图形的体积有关?(学生大胆猜想,可能与圆柱的体积有关)2.交流:探究圆锥的体积要借助一个什么样的圆柱呢?明确:探究圆锥的体积要借助一个与这个圆锥等底、等高的圆柱。

人教版六年级数学圆锥的体积教案

人教版六年级数学圆锥的体积教案
教学目标
1. 了解圆锥以及与其他立体形状的区别。

2. 掌握圆锥的体积计算公式。

3. 引导学生能够运用圆锥的体积公式进行实际问题的解答。

教学准备
1. 教师课前准备好教材《人教版六年级数学》。

2. 确保教室里有足够的座位、黑板和粉笔。

3. 准备好有关圆锥的实物或图片,便于学生观察。

教学步骤
1. 导入:通过展示圆锥的实物或图片,向学生介绍圆锥的形状和特点。

让学生观察并讨论,引导学生发现圆锥的顶点、侧面、底面等部分。

2. 研究:教师板书圆锥的表示方法以及圆锥的体积计算公式:体积 = 底面积 ×高 ÷ 3。

3. 操作:教师通过解答一道圆锥的体积计算题目,引导学生应用公式进行计算。

然后,布置几道练题,让学生独立完成。

4. 总结:与学生一起回顾研究的内容,并提醒学生在实际问题中如何应用圆锥的体积公式。

5. 拓展:引导学生思考,如何计算一个圆锥的高度,如果已知圆锥的体积和底面积。

教学评价
1. 在操作环节中,观察学生是否能够正确运用圆锥的体积公式进行计算。

2. 在总结环节中,检查学生对所学知识的掌握情况,并及时给予指导和反馈。

3. 在拓展环节中,观察学生思维的拓展和创新能力。

教学延伸
1. 鼓励学生进一步探索圆锥的特性和应用场景。

2. 带领学生进行实际测量活动,计算不同圆锥的体积,并比较结果。

参考资料
- 人教版六年级数学教材
- 数学教学视频或动画辅助资料。

人教版数学六年级下册圆锥的体积说课稿(推荐3篇)

人教版数学六年级下册圆锥的体积说课稿(推荐3篇)人教版数学六年级下册圆锥的体积说课稿【第1篇】大家上午好!今天,我说课的题目是《圆锥的体积》,下面我将从教材分析、学情分析、教学目标、教学重难点、教法学法、教学过程,板书设计这几个方面展开我的说课。

一、说教材《圆锥的体积》这部分内容是小学阶段几何知识的重难点部分,在学生学习了立体图形——长方体、正方体、圆柱的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。

教材突出了探索体积公式的过程,引导学生在装沙和装米的实验基础上进行公式推导。

二、说学情本节课是学生在学习了长方体、正方体、圆柱这三种立体图形以及认识了圆锥特征的基础上进行的,学生已经具有了一定的“转化思想”和“类推能力”。

在展开研究中,学生分组操作,通过量一量、倒沙子的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。

三、说教学重难点根据对教材和学情的分析,我制定以下三维教学目标:知识与技能目标:掌握圆锥的体积公式,并能应用公式解决简单的.实际问题。

过程与方法目标:通过观察、操作、猜测、验证等数学活动,发展学生的推理能力。

情感态度与价值观目标:在体积公式的推导过程中,渗透转化的数学思想。

四、说教学重难点教学重点:理解并掌握圆锥体积的计算方法,并能解决简单的实际问题。

教学难点:理解圆锥体积公式的推导过程。

说教法学法为了突出重点突破难点,在教法上,我选择以动手操作法为主,以引导发现法、设疑激趣法、多媒体辅助法为辅,让学生全面、全程地参与教学的每一个环节。

学法上:我充分发挥学生的主体作用,以小组合作学习为主要形式,让学生全面参与新知的发生、发展和形成的过程。

说教学过程课堂教学是学生获取数学知识,发展能力的重要途径,结合“学.学.导.练”的教学模式,我设计了以下四个教学环节:第一环节:自主学习第二环节合作学习第三环节:教师讲导第四环节:精练强化五、说板书设计圆锥的体积=×圆柱的体积=×底面积×高S=sh人教版数学六年级下册圆锥的体积说课稿【第2篇】教学内容:第25-26页,例2及练习四的第3、4题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 V=3
sh
1 ×19×12=76(立方厘米) 3
答:这个零件的体积是76立方厘米。
丰收的喜悦
一堆大米,近似于圆锥形,量得 底面周长是9.42厘米,高5厘米。 它的体积是多少立方厘米?
思考题:
把一个棱长是6厘米的正方体木块, 加工成一个最大的圆锥体,圆锥的 体积是多少立方厘米?
课堂小结:
V圆柱=sh
1 sh V圆锥=3
例3:工地上有一些沙子,堆起来近似 于一个圆锥,这堆沙子大约多少立方 米?(得数保留两位小数.)
1.2m
4m
1.2m
4m
4 2 沙堆底面积:3.14×( 2 )
=3.14×4 =12.56(㎡)
沙堆的体积: 3 =5.024(m ) ≈5.02(m 3 )
1 3 ×12.56×1.2
学习了这节课你有什么收获呢?
谢 谢
制作:秦华先
计算下面各圆锥的体积.
3dm 3.6m 8cm 12cm
s 9m
2
8dm
圆锥的体积
圆 锥 在 生 活 中 的 应 用
圆 锥 在 生 活 中 的 应 用
1、圆锥的体积和圆柱的体积有什么 关系呢? 2、你们小组是怎么实验(讨论)的? 3、根据这个关系怎么求出圆锥的体积? 用字母怎么表示?
准备等底等高的圆柱形容器和 的圆柱体积的三分之一
答:这堆沙子大约有5.02立方米.
智慧城堡
加油啊!
认真思考、细心判断: 1、圆柱体的体积一定比圆锥体的体积大( × )
1 √ 2、圆锥的体积等于和它等底等高圆柱体积的3。(

3、正方体、长方体、圆锥体的体积都等于 底面积乘以高。 (× ) (√ )
4、一个圆柱的体积是27立方米,和它等底等高 的圆锥的体积是9立方米。
相关文档
最新文档