数学:人教版九年级上-25.2-概率的简单计算教案
人教版数学九年级上册25.2.2《用列举法求概率》教学设计

人教版数学九年级上册25.2.2《用列举法求概率》教学设计一. 教材分析人教版数学九年级上册25.2.2《用列举法求概率》是概率论的一个基本内容,主要让学生了解列举法求概率的基本步骤和应用。
通过本节课的学习,学生能够理解列举法求概率的原理,掌握列举法求概率的基本方法,并能够应用列举法解决一些简单的实际问题。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率论的基本概念有一定的了解。
但是,对于列举法求概率的具体操作步骤和方法,学生可能还不够熟悉。
因此,在教学过程中,需要引导学生逐步理解列举法求概率的原理,并通过大量的练习来巩固所学知识。
三. 教学目标1.知识与技能:让学生掌握列举法求概率的基本步骤和方法,能够应用列举法解决一些简单的实际问题。
2.过程与方法:通过学生的自主探究和合作交流,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 教学重难点1.重点:列举法求概率的基本步骤和方法。
2.难点:如何引导学生理解列举法求概率的原理,并能够灵活运用。
五. 教学方法1.引导法:通过教师的问题引导,让学生自主探究和发现列举法求概率的原理和方法。
2.互动法:教师与学生之间的提问和回答,学生与学生之间的讨论和交流,以提高学生的参与度和积极性。
3.练习法:通过大量的练习题,让学生巩固所学知识,并能够灵活运用。
六. 教学准备1.教学课件:制作精美的教学课件,以吸引学生的注意力,并帮助学生更好地理解和记忆。
2.练习题:准备一些有关列举法求概率的练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)通过一个简单的实例,让学生思考如何求解该事件的概率,从而引出列举法求概率的方法。
2.呈现(10分钟)教师通过课件呈现列举法求概率的原理和方法,并进行讲解和演示。
3.操练(10分钟)学生分组进行练习,每组选择一道题目,应用列举法求解概率,并互相交流解题过程和方法。
人教版数学九年级上册25.2.1《用列举法求概率》教案

人教版数学九年级上册25.2.1《用列举法求概率》教案一. 教材分析《用列举法求概率》是人教版数学九年级上册第25章第二节的第一课时,本节课主要内容是让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。
教材通过引入实际问题,引导学生用列举法列出所有可能的结果,再找出符合条件的结果,从而计算概率。
本节课的内容对于学生来说比较抽象,需要通过大量的练习来理解和掌握。
二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,如随机事件、必然事件等,并掌握了用树状图法求概率的方法。
但是,由于九年级学生的逻辑思维能力和空间想象能力还在发展阶段,对于用列举法求概率的方法可能会感到困惑。
因此,在教学过程中,教师需要耐心引导,让学生逐步理解和掌握列举法求概率的方法。
三. 教学目标1.知识与技能目标:让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。
2.过程与方法目标:通过学生自主探究、合作交流,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:用列举法求概率的方法。
2.难点:如何引导学生理解和掌握用列举法求概率的方法,以及如何解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.互动教学法:通过学生之间的合作交流,培养学生解决问题的能力。
3.引导发现法:教师引导学生发现列举法求概率的步骤和方法,培养学生自主学习的能力。
六. 教学准备1.教学课件:制作课件,展示相关例题和练习题。
2.练习题:准备一些实际问题,让学生课后练习。
七. 教学过程1.导入(5分钟)教师通过引入一些实际问题,如抛硬币、抽奖等,引导学生思考如何求解这些问题。
让学生意识到用列举法求概率的重要性。
2.呈现(10分钟)教师展示一些简单的例题,如抛硬币两次,求正正、正反、反正、反反的概率。
人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率》是学生在学习了统计学基础知识之后,进一步了解和掌握概率学的基本概念和简单计算方法。
本节内容主要包括概率的定义、条件概率以及独立事件的概率计算。
通过本节课的学习,学生能够理解概率的概念,掌握利用树状图和列表法求解概率的方法,为后续深入学习概率论打下基础。
二. 学情分析学生在学习本节内容之前,已经掌握了统计学的一些基本知识,如平均数、中位数、众数等。
在思维方式上,学生已经具备了一定的逻辑分析能力和抽象概括能力。
但概率概念较为抽象,学生理解起来可能存在一定的困难。
因此,在教学过程中,教师需要运用生动具体的实例,帮助学生直观地理解概率的概念,引导学生运用已有的知识解决新问题。
三. 教学目标1.知识与技能:使学生理解概率的概念,掌握利用树状图和列表法求解概率的方法。
2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习概率的兴趣,培养学生的合作交流意识。
四. 教学重难点1.重点:概率的定义,条件概率,独立事件的概率计算。
2.难点:概率公式的灵活运用,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解概率的概念。
2.合作学习法:分组讨论,培养学生团队合作精神。
3.问题驱动法:设置问题,激发学生思考,引导学生主动探究。
六. 教学准备1.教学素材:准备与概率相关的实例,如抽奖、投篮等。
2.教学工具:多媒体课件,黑板,粉笔。
3.学生活动:提前分组,准备进行合作学习。
七. 教学过程1.导入(5分钟)教师通过一个简单的抽奖实例,引导学生思考:如何计算抽中一等奖的概率?从而引出本节课的主题——概率。
2.呈现(10分钟)教师讲解概率的定义,通过PPT展示概率的符号表示方法,如P(A)、P(B)等。
同时,介绍条件概率和独立事件的概率计算方法,并用具体的例子进行说明。
人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计

人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计一. 教材分析人教版九年级数学上册第25.2.2节《用列举法求概率(2)》主要讲述了如何运用列举法求解概率问题。
这部分内容是学生在学习了概率的基本概念、列举法求概率的基础上,进一步深化对概率计算方法的理解和运用。
通过本节课的学习,学生将能够掌握列举法求概率的技巧,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率的基本概念和列举法求概率已有初步的认识。
但在运用列举法解决实际问题时,部分学生可能会存在列举不全面、思路不清晰等问题。
因此,在教学过程中,教师需要关注学生的个体差异,引导他们建立正确的解题思路,提高他们运用概率知识解决实际问题的能力。
三. 教学目标1.知识与技能:使学生掌握列举法求概率的方法,能够运用列举法解决实际问题。
2.过程与方法:通过小组合作、讨论交流等方式,培养学生的合作意识和团队精神,提高他们运用概率知识解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神风貌。
四. 教学重难点1.重点:列举法求概率的方法及运用。
2.难点:如何引导学生运用列举法解决实际问题,避免列举不全面、思路不清晰等问题。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.小组合作学习:引导学生分组讨论,培养学生的团队协作能力。
3.启发式教学:教师引导学生思考,让学生在探索中掌握知识。
4.反馈与评价:及时给予学生反馈,鼓励他们积极思考,不断提高。
六. 教学准备1.教学课件:制作课件,展示相关实例和练习题。
2.练习题:准备一些相关练习题,用于巩固所学知识。
3.教学素材:收集一些生活中的实例,用于引导学生在实际情境中运用概率知识。
七. 教学过程1.导入(5分钟)教师通过展示一个生活中的实例,如抽奖活动,引导学生思考如何计算中奖的概率。
人教版九年级数学上册(教案)25.2第1课时 用列表法求概率 教案

25.2用列举法求概率第1课时用列表法求概率教学目标1.会用列举法(直接列举、列表法)求简单事件的概率,进一步培养随机观念.2.感受分步分析对思考较复杂问题时起到的作用.教学重点用列表法求简单随机事件的概率.教学难点如何使用列表法.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景明确目标1.掷一枚质地均匀的硬币有几种可能的结果?它们的可能性相等吗?正面向上的概率是多少?2.“把掷一枚质地均匀的硬币”改为“同时掷两枚质地均匀的硬币”有几种可能的结果?它们的可能性相等吗?两个硬币全部正面向上的概率是多少?问题2与问题1相比,条件发生了哪些变化?如何解答?二、自主学习指向目标1.自读教材第136至137页.2.学习至此:请完成学生用书“课前预习”部分.三、合作探究达成目标探究点一用列举法求概率活动一:出示教材第136页例1,思考下列问题:(1)使用两枚硬币作抛掷硬币试验,理解“所有可能的结果共有4种,并且这4种结果出现的可能性相等”;(2)“正反”与“反正”是相同的结果吗?(3)随机事件“一枚硬币正面朝上,一枚硬币反面朝上”包含哪几种结果?【展示点评】当第一枚硬币正面向上,第二枚硬币有正、反两种情况;同理,第一枚硬币为反面的情况下,第二枚有正、反两种情况,所有的结果共有4个,并且这4个结果的可能性相等.【小组讨论】两枚硬币可以编上序号以示区分,再完成例2中的3个问题,看与例2解答有何区别?【反思小结】“同时掷两枚硬币”与“先掷一枚硬币再掷一枚硬币”这两种试验所出现的结果是一样的.有的随机事件发生的概率可以转化成与之发生概率相同的随机事件进行研究.【针对训练】见学生用书“当堂练习”知识点一探究点二用列表法求概率活动二:出示教材第136页例2,思考下列问题:(1)当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重复不遗漏地列举出所有可能的结果,通常用什么办法?(2)例2中的表左边的一列表示第二个骰子的点数共有几种等可能的结果?上边一行表示第一个骰子的点数共有几种等可能的结果?其他部分像(1,6)这样的单元格共有多少种情况?【展示点评】由表可以得到:两个骰子点数相同的结果有:________________________________________________________________________;两个骰子点数和是9的结果有:________________________________________________________________________;至少有一个骰子点数为2的结果有:________________________________________________________________________.【小组讨论】如果把例2中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果共有多少种?试用列表法分析.【反思小结】用列表法求概率的前提是一次试验涉及的因素只有两个,并且各种结果出现的可能性都相等.求符合列表法求概率的等可能随机事件的概率的几个基本步骤:一列表;二描述表中可能出现的结果的总数n及各种结果出现的可能性相等;三统计满足某种随机事件发生的结果的数目m,并列举出来;四用公式P=m,n计算概率.【针对训练】见学生用书“当堂练习”知识点二四、总结梳理内化目标1.在一次试验中,当可能出现的结果只有________个,且各种结果出现的可能性大小________时,我们可以用________试验结果的方法,求出随机事件发生的概率.2.列举法求概率目前学到两种方法:一是直接列举法;二是通过表格列举法.3.用表格列举法求概率的步骤:(1)列表;(2)分析表中的结果的特征:有多少种可能出现的结果,并且各种结果出现的可能性相同;(3)计算概率:用公式P=m,n计算.五、达标检测反思目标1.李进有红、黄、白3件运动上衣和白、黑2条运动短裤,若任意组合穿着,则穿着“衣裤同色”的概率是__1,6__.2.(2015·衡阳)某校学生会正筹备一个“庆毕业”文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,求选出的两名主持人“恰好为一男一女”的概率__2,3__.3.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( A )A.1,3 B.1,4 C.1,6 D.2,12六、布置作业巩固目标1.上交作业:教材第140页第3,5,7题.2.课后作业:见学生用书的“课后作业”部分.教学反思。
25.2 用列举法求概率(第一课时)(教学设计)九年级数学上册同步备课系列(人教版)

25.2 用列举法求概率(第一课时)一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十五章“概率初步”25.2 用列举法求概率(第一课时列表法求概率),内容包括:用列举法(列表法)求简单随机事件的概率.2.内容解析在一次试验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫做列举法. 当每次试验涉及两个因素时,为了更清晰、不重不漏地列举出试验的所有结果,教科书给出了以表格形式呈现的列举法——列表法.这种方法适合列举每次试验涉及两个因素,且每个因素的取值个数较多的情形.相对于直接列举法,用表格列举体现了分步分析对思考较复杂问题时起到的作用.将试验涉及的一个因素所有可能的结果写在表头的横行中,另一个因素所有可能的结果写在表头的竖列中,就形成了不重不漏地列举出这两个因素所有可能结果的表格.这种分步分析问题的方法,将在下节课树状图法中进一步运用.基于以上分析,确定本节课的教学重点是:用列表法求简单随机事件的概率.二、目标和目标解析1.目标1)会用直接列举法、列表法列举所有可能出现的结果.2)用列举法(列表法)计算简单事件发生的概率.2.目标解析达成目标1)的标志是:对于结果种数有限且每种结果等可能的随机事件,可以用列举法求概率;当每次试验涉及两个因素,且每个因素的取值个数较多时,相对于直接列举,采用表格的方式更有利于将试验的所有结果不重不漏地表示出来.达成目标2)的标志是:掌握列表法求概率的步骤:1)列表;2)通过表格计数,确定所有等可能的结果数n和符合条件的结果数m的值;,计算出事件的概率.3)利用概率公式P(A)=mn三、教学问题诊断分析学生已经理解了列举法求概率的含义,但对于涉及两个因素的试验,如何不重不漏地列举出试验所有可能的结果这对学生而言是一种考验,如何设计出一种办法解决这个较复杂问题,“分步”分析起到了重要作用.基于以上分析,本节课的教学难点是:掌握列表法求概率的步骤.四、教学过程设计(一)复习巩固【提问】简述概率计算公式?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾上节课所学内容,为接下来学习利用列表法求概率打好基础.(二)探究新知【问题一】老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,学生赢. 你们觉得这个游戏公平吗?师生活动:教师提出问题,学生尝试思考.【设计意图】通过现实生活中的实际问题,激发学生学习数学的兴趣.【问题二】同时掷两枚硬币,求下列事件的概率:1)两枚硬币两面一样.2)一枚硬币正面朝上,一枚硬币反面朝上.3)问题一中的游戏公平吗?师生活动:教师提出问题,先要求学生说出可能出现的情况.部分学生认为:上述三个事件恰好代表了抛掷两枚硬币的所有可能的结果,故概率分别为13;另一位学生认为:出现结果为:正正、正反、反正、反反,其中“正反”与“反正”应分别算作两种可能的结果,故上述事件的概率分别为14,14和12.教师强调:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫做列举法.师:你觉得问题一中的游戏公平吗?师生活动:学生通过刚才的结论得出:学生赢的概率与教师赢的概率相等,所以该游戏是公平的. 教师补充说明:上述这种列举法我们称为直接列举法(枚举法)并给出使用直接列举法的注意事项.【设计意图】让学生掌握用列举法求概率的使用条件:①所有可能出现的结果是有限个.②每个结果出现的可能性相等.【问题三】“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?由此你发现了什么?师生活动:教师共同作答,得出:同时掷两枚硬币,会出现:两正、两反,一正一反和一反一正;先后两次掷一枚硬币,也会出现:两正、两反,一正一反和一反一正.所以这两种实验的所有可能的结果一样.教师指出:“两个相同的随机事件同时发生”与“一个随机事件先后两次发生”的结果是一样的,因此作此改动对所得结果没有影响.当试验涉及两个因素时,可以“分步”对问题进行分析.【设计意图】让学生理解当试验涉及两个因素时,可以“分步”对问题进行分析.(三)典例分析与针对训练例1 小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是_________【针对训练】1. 从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为____________2. 如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为______________3.(2020·江苏南通·统考中考真题)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:1)写出这三辆车按先后顺序出发的所有可能结果;2)两人中,谁乘坐到甲车的可能性大?请说明理由.4.(2022·江苏南京·统考中考真题)甲城市有2个景点A、B,乙城市由3个景点C、D、E,从中随机选取景点游览,求下列事件的概率:(1)选取1个景点,恰好在甲城市;(2)选取2个景点,恰好在同一个城市.【设计意图】巩固用列举法求概率.(四)探究新知【问题三】同时投掷两个质地均匀的骰子,观察向上一面的点数,求下列事件的概率.1)两个骰子的点数相同.2)两个骰子点数的和是9.3)至少有一个骰子的点数为2.师生活动:师生分析得出,与问题二类似,问题三的试验也涉及两个因素(第一枚骰子和第二枚骰子),但这里每个因素的取值个数要比问题二多(抛一枚硬币有2种可能的结果,但掷一枚骰子有6种可能的结果),因此试验的结果数也就相应要多很多.因此,直接列举会比较繁杂,可以使用列表法.列表法适合列举每次试验涉及两个因素,并且每个因素的取值个数较多的情形.师:如何列表?师生活动:学生分析,因为试验涉及两个因素(两枚骰子),可以分两步进行思考,将第1枚骰子的所有可能结果作为表头的横行,将第2枚骰子的所有可能结果作为表头的竖列,列出如下表格:由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相同.1)两枚骰子的点数相同(记为事件A)的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)= 636= 16 2)两枚骰子的点数相同(记为事件B)的结果有4种,即(3,6),(6,3),(5,4),(4,5) 所以P(B)= 436= 193)至少有一个骰子的点数为2(记为事件C)的结果有11种,即(1,2),(2,2),(3,2),(4,2),(5,2),(6,2) (2,1),(2,3),(2,4),(2,5),(2,6)所以P(B)= 1136【设计意图】明确列表法.【问题四】简述列表法求概率的步骤?师生活动:教师提出问题,学生尝试回答.教师引导与归纳得出:1)列表;2)通过表格计数,确定所有等可能的结果数n 和符合条件的结果数m 的值;3)利用概率公式P (A )=mn ,计算出事件的概率.【设计意图】让学生掌握列表法求概率的方法.(五)典例分析与针对训练例2 一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是_______________【针对训练】1. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行调查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是______________2.从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛.(1)若甲一定被选中参加比赛,再从其余3名学生中任意选取1名,恰好选中乙的概率是___________;(2)任意选取2名学生参加比赛,求一定有丁的概率.3.在一个不透明的口袋中装有大小材质完全相同的三个小球,分别标有数字3,4,5, 另有四张背面完全一样的卡片,卡片正面分别标有数字2,3,4,5,四张卡片背面朝上放在桌面上.小明先从口袋中随机摸出一个小球,记下小球上的数字为x,小红再从桌面上随机抽出一张卡片,记下卡片上的数字为y.(1)从口袋中摸出一个小球恰好标有数字3的概率是___________;(2)求点P(x,y)在直线y=x−1上的概率.【设计意图】巩固列表法求概率的方法.(六)直击中考1.(2023·安徽中考真题)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59 B.12C.13D.292.(2023·湖南中考真题)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是()A.16 B.14C.13D.123.(2023·黑龙江齐齐哈尔中考真题)某校举办文艺汇演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是()A.12 B.13C.14D.16【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点. (七)归纳小结1. 通过本节课的学习,你学会了哪些知识?2. 用列举法求概率应该注意哪些问题?3. 列表法适用于解决哪类概率求解问题?使用列表法有哪些注意事项?(八)布置作业P138:练习五、教学反思。
人教版九年级数学上册25.2.2用列表法和树状图法求概率教案
(2)树状图的绘制:难点在于如何引导学生正确绘制树状图,并从中找出所有可能的结果。
举例:一个盒子里有3个红球和2个蓝球,先随机取一个球,放回后再取一个球,求第二次取出的球是红色的概率。
(3)组合数的计算:难点在于如何让学生理解组合数在列表法和树状图法中的应用,并掌握计算方法。
3.重点难点解析:在讲授过程中,我会特别强调列表法的列出所有结果和树状图法的正确绘制这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与列表法和树状图法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示列表法和树状图法的基本原理。
3.培养直观想象素养:通过绘制树状图,使学生能够形象地把握事件之间的关系,培养直观想象和空间思维能力。
4.强化数学运算素养:在求解概率过程中,加强学生的数学运算能力,提高准确性,培养严谨的数学态度。
5.增进数据分析素养:引导学生对实际问题进行数据分析,培养从数据中提取信息、发现规律的能力,为解决更复杂问题奠定基础。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解列表法和树状图法的基本概念。列表法是通过列出所有可能的结果来计算概率的方法,而树状图法则通过图形化的方式展示事件之间的关系,帮助我们求解概率。这两种方法在解决实际问题时具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何运用列表法和树状图法求解实际问题的概率。
在实践活动方面,我发现学生们在解决实际问题时,对于如何将问题转化为数学模型还存在一定的困扰。针对这个问题,我将在后续的教学中,多提供一些案例,让学生们通过观察和模仿,逐步学会将实际问题抽象为数学模型。
人教版九年级数学上册25.2用列表法求概率一等奖优秀教学设计
人教版义务教育课程标准实验教科书九年级上册25.2用列举法求概率教学设计一、教材分析1、内容解析:在一次实验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举实验结果的方法,求出随机事件发生的概率。
当每次实验涉及两个因数时,为了更清晰、不重不漏的列举出实验的结果。
教科书给出了以表格形式呈现的列举法——列表法。
这种方法适合列举每次实验涉及两个因素,且每个因素的取值个数较多的情形。
相对于直接列举,用表格列举体现了分步分析对思考较复杂问题时所起到的作用。
将实验涉及的一个因素所有可能的结果写在表头的横行中,另一个因素所有可能的结果写在表头的竖列中。
就形成了不重不漏的列举出这两个因数所有可能结果的表格。
这种分步分析问题的方法将在下节课树状图法和高中分步乘法计算原理的学习中进一步运用。
另外,通过求概率,学生将进一步体会概率的意义,逐步培养随机观念。
2、目标和目标解析:(1)、目标:①用列举法求简单随机事件的概率,进一步培养随机观念。
②感受分步分析对思考较复杂问题时起到的作用。
(2)、目标解析:达成目标1的标志是:学生清晰的知道,对于结果种数有限且每种结果等可能的随机实验中的事件,可以用列举法求概率。
当每次实验涉及两个因数,且每个因素的取值个数较多时,相对于直接列举,采用表格的方式更有利于将实验的所有结果不重不漏的列举出来,学生能够利用列表法正确计算简单随机事件的概率。
结合具体问题进一步体会概率是如何定量地刻画随机事件发生可能性的大小。
目标2体现在学生探索、归纳列表法的过程中。
学生在问题的引导下思考如何才能将涉及两个因素实验的所有可能的结果不重不漏的表示出来。
将体会“分步”策略对分析复杂问题起到的作用。
3、教学重、难点教学重点:用列表法求简单随机事件的概率。
教学难点:列表格不重不漏的列举随机实验的所有结果。
突破难点的方法:让学生合作探究,自主学习,体验列举实验结果过程。
二、教学准备:多媒体课件、导学案。
人教版数学九年级上册25.2用列举法求概率用树状图求概率教案
一、教学内容
人教版数学九年级上册25.2用列举法求概率用树状图求概率教案:
1.理解概率的定义,掌握用列举法求简单事件发生的概率。
2.学习使用树状图表示事件发生的所有可能结果,并用树状图求概率。
3.解决实际问题,培养运用概率知识分析问题的能力。
另一个让我感到遗憾的是,课堂时间有限,未能让更多学生展示他们的讨论成果。为了提高课堂效率,我决定在接下来的课程中,尽量精简讲解内容,为学生的展示和互动环节留出更多时间。
在教学方法上,我也在思考如何更好地结合现代教育技术,例如使用多媒体课件和实物演示,来提高学生对概率知识的理解和记忆。同时,我还想尝试引入一些有趣的概率游戏,让学生在轻松愉快的氛围中学习,提高他们的学习兴趣。
然而,我也注意到在讲解列举法和树状图的过程中,部分学生对于如何避免遗漏和重复的结果存在一定的困难。在今后的教学中,我需要更加关注这一点,可以通过设计更多具有针对性的练习题,帮助学生巩固这方面的技能。
此外,学生在小组讨论环节表现出了很高的热情,他们能够将所学的概率知识应用到解决实际问题中。但在讨论过程中,我也发现了部分学生对于如何运用列举法和树状图求解概率仍然存在疑惑。为此,我计划在下一节课中增加一些互动环节,让学生在课堂上就能及时提问,并及时解答他们的疑惑。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何利用列举法和树状图求解概率。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
举例:掷两个骰子,求两个骰子的点数和为7的概率。
人教版九年级上册25.2用列举法求概率(第1课时)教学设计
3.教师引导:根据学生的回答,引导学生认识到解决此类问题需要用到概率知识,进而引出本节课的主题——用列举法求概率。
(二)讲授新知
1.列举法概念:介绍列举法的定义,即通过列出所有可能的结果,计算每种结果出现的概率。
2.步骤与方法:讲解列举法求解概率问题的步骤:
2.培养勇于探索、积极思考的学习态度,提高解决问题的自信心;
3.学会与他人合作,尊重他人意见,培养良好的团队协作精神;
4.感受概率知识在实际生活中的应用,增强将所学知识应用于实际问题的意识。
本节课的教学设计以列举法求解概率问题为主线,结合生活实例,让学生在探索中学习,在学习中应用。通过小组合作、问题解决等教学活动,培养学生的数学素养、合作意识和解决问题的能力。同时,注重情感态度与价值观的培养,使学生在学习过程中感受到数学的魅力和价值。
(3)在一个装有10个白球、5个黑球的袋子中,先后两次随机抽取一个球,求第二次抽到黑球的概率。
3.拓展题:
(1)小华有3件上衣、2条裤子,他随机选择一件上衣和一条裤子穿上,求他穿上的衣服颜色搭配是“红配蓝”的概率;
(2)一个密码锁由4位数字组成,每位数字可以是0到9中的任意一个,求设置的密码是“回文数”(即1234、4321这类数字)的概率;
1.重点:掌握列举法求解概率问题的步骤和方法,并能应用于实际问题。
2.难点:
(1)理解并运用列举法求解复杂概率问题,如组合问题、排列问题等;
(2)将实际问题转化为数学模型,运用列举法求解;
(3)在合作学习中,提高沟通协作能力,充分发挥团队作用。
(二)教学设想
1.教学方法:
(1)采用情境导入法,以生活实例引入本节课的内容,激发学生兴趣;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.2 用列举法求概率
教学内容
1.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事
件A包含其中的m种结果,那么事件A发生的概率为P(A)= m
n
.
2.利用上面的知识解决实际问题.教学目标
(1)理解P(A)= m
n
(在一次试验中有n种可能的结果,其中A包含m种)的意义.
(2)应用P(A)解决一些实际问题.
复习概率的意义,为解决利用一般方法求概率的繁琐,探究用特殊方法──列举法求概率的简便方法,然后应用这种方法解决一些实际问题.
重难点、关键
1.重点:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都
相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)= m
n
,•以及运用它解
决实际问题.
2.难点与关键:通过实验理解P(A)= m
n
并应用它解决一些具体题目.
教学过程
一、复习引入
(老师口问,学生口答)
1.什么叫概率?
2.P(A)的取值范围是什么?
3.在大量重复试验中,什么值会稳定在一个常数上?我们又把这个常数叫做什么? 4.A=必然事件,B是不可能发生的事件,C是随机事件,•请你画出数轴把这三个量表示出来.
老师点评:1.(口述)一般地,在大量重复试验中,如果事件A发生的频率m
n
会稳定在
某一个常数P附近,那么这个常数P就叫做事件A的概率,记为P(A)=P. 2.(板书)0≤P(A)≤1.
3.(口述)频率、概率.
4.(板书)如图所示.
二、探索新知
不管求什么事件的概率,我们都可以做大量的试验,求频率得概率,这是上一节课也是刚才复习的内容,它具有普遍性,但求起来确实很麻烦,•是否有比较简单的方法,这种方法就是我们今天要介绍的方法──列举法.
把学生分为10组,按要求做试验并回答问题.
1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根,抽出的号码有多少种?其抽到1的概率为多少?
2.掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1•的概率是多少?
老师点评:1.可能结果有1,2,3,4,5等5种;由于纸签的形状、大小相同,又是
随机抽取的,所以我们可以认为:每个号被抽到的可能性相等,都是1
5
,∴其概率=
1
5
.
2.有1,2,3,4,5,6等6种可能.由于骰子的构造相同质地均匀,又是随机掷出的,•所以我们可以断言:每个结果的可能性相等,都是,∴所求概率是.以上两个试验有两个共同的特点:
1.一次试验中,可能出现的结果有限多个;
2.一次试验中,各种结果发生的可能性相等.
对于具有上述特点的试验,•我们可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.
因此,一般地,如果在一次试验中,有n种可能的结果,•并且它们发生的可能性都相
等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)= m
n
.
例1.小李手里有红桃1、2、3、4、5、6,从中任取一张牌,观察其牌上的数字,•求下列事件的概率.
(1)牌上的数字为3;
(2)牌上的数字为奇数;
(3)牌上的数字为大于3且小于6.
分析:因为从6张牌子任抽取一张符合刚才总结的试验的两个特点,•所以可用P(A)=m n
来求解.
解:(1)任取一张牌子,其出现数字可能为1、2、3、4、5,共6种,这些数字出现的可能性相同.
(1)P(点数为3)=1
6
;
(2)P(点数为奇数)=3
6
=
1
2
;
(3)牌上的数字为大于3且小于6的有4,5两种.
∴P(点数大于3且小于6)=2
6
=
1
3
.
例2.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分
为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,
其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线
时,当作指向右边的扇形),求下列事件的概率:
(1)指针指向绿色;
(2)指针指向红色或黄色;
(3)指针不指向红色.
分析:转一次转盘,它的可能结果有4种──有限个,并且各种结果发生的可能性相
等.因此,它可以应用“P(A)=m
n
”问题,即“列举法”求概率.
解:(1)P(指针指向绿色)=1
4
;
(2)P(指针指向红色或黄色)=3
4
;
(3)P(指针不指向红色)=1
2
.
三、巩固练习
教材P154 练习1, P154 复习巩固1
四、应用拓展
例3.王老师、张老师退休在家,闲暇之余,经常下象棋消遣,已知一副象棋先都是正面朝下,王老师从中随意翻开一粒棋,是红色的概率是多大?是“帅”的概率又是多大?
分析:棋总共是32个是有限个并且每次翻开一粒棋翻到哪一粒都是等可能的,所以可用“列举法”求概率.
解:∵红色和黑色棋子各占一半;
∴P(红色)=1
2
,
∵“帅”有红帅和黑帅2粒,
∴P(“帅”)=21 3216
.
五、归纳小结
(学生总结,老师点评)
本节课应掌握:
1.用“列举法”求概率的两个条件;
2.用“列举法”求概率的方法:P(A)=m
n
(其中n结果总数,m是事件A的结果数).
六、布置作业
1.教材P154 复习巩固2、3, P155 综合运用4 拓广探索7.
2.选用课时作业设计.
第一课时作业设计
一、选择题.
1.抛掷一枚质地均匀的正方体骰子,结果出现点数是“3”的概率约为( ). A.33.3% B.17% C.16.6% D.20%
2.下列事件中,出现的概率不是1
2
的是( ).
A.在1,2,3,4,5,6,7,8,9,10这十个数中,任取一个数,其值不小于5
B.抛一枚均匀的硬币,正面朝上
C.抛一枚骰子,奇数点朝上
D.袋中4个球,其中2红1黄1蓝,从中任取一个是红色的球
二、填空题.
1.从5到9这5个自然数中任取一个,是3的倍数的概率是________.
2.任意抛掷一枚质地均匀硬币,会出现_______种结果,•这几种结果出现的概率是________.
三、综合提高题.
1.有一个均匀的小正方体,6个面上分别标有1,2,3,4,5,6,任意掷出这个小正方体.
(1)奇数朝上的机会是多少?
(2)如果这个小正方体不是均匀的,是否有这个结果?说说你的理由.
2.在分别写出1至20张小卡片,随机出一张卡片,试求以下事件的概率.
(1)该卡片上的数字是2的倍数,也是5的倍数;
(2)该卡片上的数字是4的倍数,但不是3的倍数;
(3)该卡片上的数不是完全平方数;
(4)该卡片上的数字除去1和自身外,还有3个约数.
答案:
一、1.B 2.A
二、
1.2
5
2.
1
2
三、
1.(1) 1 2
(2)无,它不符合列举法的两个条件中(2)条件一次试验中,•
各种结果发生的可能性相等
2.(1)
1141
(2)(3)(4) 105520。