2011届中考数学总复习教材过关测试题25

合集下载

2011年深圳中考数学试题与答案(word版)

2011年深圳中考数学试题与答案(word版)

深圳市2011年初中毕业生学业考试数学试卷1、说明,答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定位置上,将条形码粘贴好。

2、全卷分两部分,第一部分为选择题,第二部分为非选择题,共4页,满分100分,考试时间120分钟。

3、本卷试题,考生必须在答题卡上按规定作答;在试卷上、草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠。

第一部分 选择题(本部分共12小题,每题3分,共36分.每小题4个选项,只有一个是正确的)1、12-的相反数是 A. 12- B. 12 C. 2- D.22、如图1所示的物体是一个几何体,其主视图是3、今年我市参加中考的毕业生学业考试的总人数约为56000人,这个数据用科学计数法表示为 A.5.6×103 B.5.6×104 C.5.6×105 D.0.56×105 4、下列运算正确的是 A.235xx x += B.222()x y yx =++ C.236xx x⋅=D.()362x x =5、某校开展为“希望小学”捐书活动,以下是八名学生的捐书册数 2 3 2 2 6 7 5 5,这组数据的中位数是 A.4 B.4.5 C.3 D.26、一件服装标价200元,若以六折销售,仍可获利20℅,则这件服装进价是 A.100元 B.105元 C.108元 D.118元7、如图2,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是8、如图3是两个可以自由转动的转盘,转盘各被等分成三 个扇形,分别标上1、2、3和6、7、8这6个数字,如果同时转动这两个转盘各一次(指针落在等分线上重转),转盘停 止后,指针指向字数之和为偶数的是 A. 12 B. 29 C. 49 D. 139、已知a 、b 、c 均为实数,且a>b ,c ≠0,下列结论不一定正确的是 A. a c b c +>+ B. c a c b -<- C.22abcc>D. 22ab ab >>10、对抛物线y =-x 2+2x -3而言,下列结论正确的是A.与x 轴有两个交点B.开口向上C.与y 轴交点坐标是(0,3)D.顶点坐标是(1,2) 11、下列命题是真命题的有①垂直于半径的直线是圆的切线 ②平分弦的直径垂直于弦 ③若12x y =⎧⎨=⎩是方程x -ay=3的解,则a=-1 ④若反比例函数3y x =-的图像上有两点(12,y 1)(1,y 2),则y 1 <y 2 A.1个 B.2个 C.3个 D.4个12、如图4,△ABC 与△DEF 均为等边三角形,O 为BC 、EF 的中点,则AD :BE 的值为 A.3:1 B. 2:1 C.5:3 D.不确定第二部分 非选择题填空题(本题共4小题,每题3分,共12分)13、分解因式:a 3-a= .14、如图5,在⊙O 中,圆心角∠AOB=120º,弦AB=23cm ,则OA= cm. 15、如图6,这是边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,第n 个图形的周长为 .16、如图7,△ABC 的内心在y 轴上,点C 的坐标为(2,0),点B 的坐标为(0,2),直线AC 的解析式为112y x =-,则tanA 的值是 .解答题(本题共七小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分) 17、(5分)()013cos30520112π-+︒+---18、(6分)解分式方程:23211x x x +=+- 19、(7分)某校为了解本校八年级学生的课外阅读喜好,随即抽取部分该校八年级学生进行问卷调查(每人只选一种书籍),图8是整理数据后画的两幅不完整的统计题,请你根据图中的信息,解答下列问题(1)这次活动一共调查了 名学生. (2)在扇形统计图中,“其它”所在的扇形圆心角为 度. (3)补全条形统计图(4)若该校八年级有600人,请你估计喜欢“科普常识”的学生有 人.20、(8分)如图9,在⊙O 中,点C 为劣弧AB 的 中点,连接AC 并延长至D ,使CA=CD ,连接DB并延长交⊙O 于点E ,连接AE. (1)求证:AE 是⊙O 的直径;(2)如图10,连接CE ,⊙O 的半径为5,AC 长 为4,求阴影部分面积之和.(保留∏与根号)21、(8分)如图11,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图12,再折叠一次,使点D与点A重合,的折痕EN,EN角AD于M,求EM的长.22、(9分)深圳某科技公司在甲地、乙地分别生产了17台、15台相同型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台,运往B馆14台,运往A、B两馆运费如表1:(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费y(元)与x(台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最少,最少为多少元?22、(9分)如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.深圳市 2011 年初中毕业生学业考试 数 学 试 卷 参 考 答 案第一部分:选择题第二部分:填空题 13、(1)(1)a a a +-14、415、2n + 16、13解答题17、解:原式=618、解:方程两边同时乘以:(x +1)(x -1),得: 2x(x -1)+3(x +1)=2(x +1)(x -1) 整理化简,得 x =-5经检验,x =-5是原方程的根原方程的解为:x =-5(备注:本题必须验根,没有验根的扣2分)19、(1)200 (2)36 (3)如图1 (4)180(1)证明:如图2,连接AB 、BC , ∵点C 是劣弧AB 上的中点∴ CACB = ∴CA =CB又∵CD =CA ∴CB =CD =CA ∴在△ABD 中,CB=12AD ∴∠ABD =90° ∴∠ABE =90° ∴AE 是⊙O 的直径(22)解:如图3,由(1)可知,AE 是⊙O 的直径 ∴∠ACE =90°∵⊙O 的半径为5,AC =4 ∴AE =10,⊙O 的面积为25π在Rt △ACE 中,∠ACE =90°,由勾股定理,得:题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案BCBDAABCDDCACE=22221AB AC -=∴11422142122ACE S AC CE ∆=⨯⨯=⨯⨯= ∴112525421421222O ACE S S S ππ∆=-=⨯-=-⊙阴影21、(1)证明:如图4,由对折和图形的对称性可知, CD =C ′D ,∠C =∠C ′=90°在矩形ABCD 中,AB =CD ,∠A =∠C =90° ∴AB =C ’D ,∠A =∠C ’ 在△ABG 和△C ’DG 中,∵AB =C ’D ,∠A =∠C ’,∠AGB =∠C ’GD ∴△ABG ≌△C ’DG (AAS ) ∴AG =C ’G(2)解:如图5,设EM =x ,AG =y ,则有: C ’G =y ,DG =8-y , DM=12AD=4cm 在Rt △C ’DG 中,∠DC ’G =90°,C ’D =CD =6, ∴222''C G C D DG += 即:2226(8)y y +=- 解得: 74y = ∴C ’G =74cm ,DG =254cm 又∵△DME ∽△DC ’G∴DM ME DC CG =, 即:476()4x= 解得:76x =, 即:EM =76(cm )∴所求的EM 长为76cm 。

2011中考数学试题及答案

2011中考数学试题及答案

A第7题B A DC 2011年中考数学试题及答案班级 考号 姓名一、选择题(本大题共有8个小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卡相应.....位置..上) 1.下面四个数中比-2小的数是( )A .1B .0C .-1D .-3 2.下列计算正确的是( )A .a +a =x 2B .a ·a 2=a 2C .(a 2) 3=a 5D .a 2 (a +1)=a 3+1 3.如图所示的几何体的左视图是( )4.今年1季度,连云港市高新技术产业产值突破110亿元,同比增长59%. 数据“110亿”用科学记数可表示为( )A .1.1×1010B .11×1010C .1.1×109D .11×1095.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是( )A .①②B .②③C .②④D .①④6.今年3月份某周,我市每天的最高气温(单位:℃)12,9,10,6,11,12,17,则这组数据的中位数与极差分别是( ) A .8,11 B .8,17 C .11,11 D .11,17 7.如图,四边形ABCD 的对角线AC 、BD 互相垂直,则下列 条件能判定四边形ABCD 为菱形的是( )A .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD第8题第13题8.某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km 计算,甲汽车租凭公司每月收取的租赁费为y 1元,乙汽车租凭公司每月收取的租赁费为y 2元,若y 1、y 2与x 之间的函数关系如图所示,其中x =0对应的函数值为月固定租赁费,则下列判断错误..的是( ) A .当月用车路程为2000km 时,两家汽车租赁公司租赁费用相同B .当月用车路程为2300km 时,租赁乙汽车租赁公车比较合算C .除去月固定租赁费,甲租赁公司每公里收取的费用比乙租赁公司多D .甲租赁公司平均每公里收到的费用比乙租赁公司少二、填空题(本大题共10小题,每小题3分,共30分.不要写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.-3的倒数是___________.10.在数轴上表示-6的点到原点的距离为___________.11.函数y =1x +2中自变量的取值范围是___________.12.不等式组⎩⎨⎧>-<-21312x x 的解集是___________.13.一只自由飞行的小鸟,将随意地落在如图所示方格地面上(每个小方格都是边长相等的正方形),则小鸟落在阴影方格地面上的概率为___________. 14.化简:(a -2)·a 2-4a 2-4a +4=___________.15.若关于x 的方程x 2-mx +3=0有实数根,则m 的值可以为___________.(任意给出一个符合条件的值即可)16.如图,点A 、B 、C 在⊙O 上,AB ∥CD ,∠B =22°,则∠A =________°.外来务工人员专业技术状情况扇形统计图外来务工人员专业技术状情况条形统计图技术 技术技术 技术 术状况A 第18题 ABCB ’ DE P第17题ABC A 1 A 2 A 3B 1 B 2 B 3 17.如图,△ABC 的面积为1,分别取AC 、BC 两边的中点A 1、B 1,则四边形A 1ABB 1的面积为34,再分别取A 1C 、B 1C 的中点A 2、B 2,A 2C 、B 2C 的中点A 3、B 3,依次取下去….利用这一图形,能直观地计算出3 4+3 42+3 43+…+34n =________.18.矩形纸片ABCD 中,AB =3,AD =4,将纸片折叠,使点B 落在边CD 上的B ’处,折痕为AE .在折痕AE 上存在一点P 到边CD 的距离与到点B 的距离相等,则此相等距离为________.三、解答题(本大题共有10个小题,共96分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)计算:(1)(-2)2+3×(-2) -( 14 ) -2;(2)已知x =2-1,求x 2+3x -1的值20.(本题满分8分)随着我市经济发展水平的提高和新兴产业的兴起,劳动力市场已由体力型向专业技能型转变,为了解我市外来务工人员的专业技术状况,劳动部门随机抽查了一批外来务工人员,并根据所收集的数据绘制了两幅不完整的统计:(1)本次共调查了名外来务工人员,其中有初级技术的务工人员有__________人,有中级技术的务工人员人数占抽查人数的百分比是____________;(2)若我市共有外来务工人员15 000人,试估计有专业技术的外来务工人员共有多少人?21.(本题满分8分)从甲地到乙地有A1、A2两条路线,从乙地到丙地有B1、B2、B3三条路线,从丙地到丁地有C1、C2两条路线.一个人任意先了一条从甲地到丁地的路线.求他恰好选到B2路线的概率是多少?22.(本题满分8分)已知反比例函数y=kx的图象与二次函数y=ax2+x-1的图象相交于点(2,2)(1)求a和k的值;(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?A 第24题 BCBDCO23.(本题满分10分)在一次数学测验中,甲、乙两校各有100名同学参加测试.测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率=男(女)生优分人数男(女)生测试人数 ×100%,全校优分率=全校优分人数全校测试人数 ×100%)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.24.(本题满分10分)如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O 为AD 边的中点,若把四边形ABCD 绕着点O 顺时针旋转,试解决下列问题:(1)画出四边形ABCD 旋转后的图形; (2)求点C 旋转过程事所经过的路径长;(3)设点B 旋转后的对应点为B ’,求tan ∠DAB ’的值.ABE F QP25.(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y (件)与售价x (元)之间存在着如下表所示的一次函数关系.(利润=(售价-成本价)×销售量)(1)求销售量y (件)与售价x (元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40 000 元?26.(本题满分10分)如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km .(1)判断ABAE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3≈1.73,sin74°≈,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)E图1ABC D图227.(本题满分10分)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有________;(2)如图1,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S梯形ABCD=S△ABE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.28.(本题满分14分)如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为2.函数y=-x+2的图象与x轴交于点A,与y轴交于点B,点P为AB上一动点(1)连接CO,求证:CO⊥AB;(2)若△POA是等腰三角形,求点P的坐标;(3)当直线PO与⊙C相切时,求∠POA的度数;当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系,并写出t的取值范围.。

2011年中考初三数学专题复习试题答案

2011年中考初三数学专题复习试题答案

2011中考数学分类总复习检测题(一)一、选择题 二、填空题1112、3 13、()()22a b a b +- 14、1 15、 2 16、17 三、解答题17、解:原式=4283+⨯-=43+=1. 18、13+ 19、解:2212111(1)(1)(1)(1)a a a a a a a -+=+-++-+- 11(1)(1)1a a a a +==+--当3a =时,原式1111312a ===--. 20、1 21、选一:212()242x A B C x x x ⎛⎫-÷=-÷⎪--+⎝⎭=222x x x x x +⨯+-()()=12x -. 当3x =时,原式=1132=-. 选二:212242x A B C x x x -÷=-÷--+ 122222x x x x x+=-⨯-+-()() =122(2)x x x --- 题号 1 2 3 4 5 6 7 8 9 10 答案 ABBBCBCDBA=21(2)x x x x-=-.当3x =时,原式=13. 22、31-23、原方程可化为25265x x -=-.(下面请大家用配方法写出解此方程的详细过程) 解:(1)15x =,215x =; (2)21a a+(或1a a +);(3)二次项系数化为1,得22615x x -=-. 配方,得2222613131555x x ⎛⎫⎛⎫-+-=-+- ⎪ ⎪⎝⎭⎝⎭,213144525x ⎛⎫-=⎪⎝⎭. 开方,得131255x -=±. 解得15x =,215x =.经检验,15x =,215x =都是原方程的解24、4 25、(1)111n n -+ (2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n n n n +-+=)1(1+n n . (3)原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=.2011中考数学分类总复习检测题(二)一、选择题二、填空题11、6 12、100 13、2=x 14、10 15、 1 16、4 三、解答题 17、 3.x =18、⎩⎨⎧==515y x19、15138-=x 20、523x y ⎧⎪=⎨⎪=-⎩21、解:设甲种帐篷x 顶,乙种帐篷y 顶 依题意,得⎩⎨⎧=+=+2600001000800300y x y x解以上方程组,得x =200,y =100 答:甲、乙两种帐篷分别是200顶和100顶.22、成本价100元23、解:设一类门票的单价为x 元/张,二类门票的单价为y 元/张.则有25180061600x y x y +=⎧⎨+=⎩解得:400200x y =⎧⎨=⎩答:一类门票的单价为400元/张,二类门票的单价为200元/张24、解:(1)地面总面积为:(6x +2y +18)m 2;(2)由题意,得6221,6218152.x y x y y -=⎧⎨++=⨯⎩解之,得4,3.2x y =⎧⎪⎨=⎪⎩∴地面总面积为:6x +2y +18=6×4+2×32+18=45(m 2). ∵铺1m 2地砖的平均费用为80元,∴铺地砖的总费用为:45×80=3600(元).题号 1 2 3 4 5 67 8 9 10 答案A A C C D C BBAD25、解:(1)设8W 节能灯的价格为x 元,24W 节能灯的价格为y 元.则43292217x y x y +=⎧⎨+=⎩, ①. ②解之 3.55x y =⎧⎨=⎩,.答:该县财政补贴50%后,8W 节能灯的价格为3.5元,24W 节能灯的价格为5元. (2)全国一年大约可节约电费:2.3500013.5850⨯≈(亿元) 大约减排二氧化碳:43.55000255.9850⨯≈(万吨)2011中考数学分类总复习检测题(三)一、选择题二、填空题11、X=5 12、X=0或 X=2 13、10℅ 14、64m m >-≠-且 15、-2 16、5 三、解答题17、12x =-18、解:1a =,2b =-,1c =-224(2)41(1)8b ac -=--⨯⨯-=∴x =1282⨯±1=±2方程的解为:11x =21x =注:用配方法解同理给分.19、解:由题意可知 0= .即 2(4)4(1)0m ---=.解得 5m =.当5m =时,原方程化为2440x x -+=. 解得 122x x ==.所以原方程的根为 122x x ==. 20、解:设正方形观光休息亭的边长为x 米.依题意,有(1002)(502) 3 600.x x --=题号 1 2 3 4 5 6 7 89 10 答案C B B A B CD A BD整理,得2753500.x x -+= 解得12570.x x ==,7050x => ,不合题意,舍去, 5.x ∴=答:矩形花园各角处的正方形观点休息亭的边长为5米. 21、解:由题意得:05)1()1(2=-⨯-+-m 解得:4-=m当4-=m 时,方程为:0542=--x x 解得:11-=x ,52=x 所以方程的另一个根为:52=x22、设原计划每天生产x 吨纯净水,则依据题意,得:,35.118001800=-xx 整理,得:4.5x =900, 解之,得:x =200, 把x 代入原方程,成立, ∴x =200是原方程的解.答:原计划每天生产200吨纯净水.24、(1)略(2)5,5,221-==-=x x m25、解:(1)设乙独做x 天完成此项工程,则甲独做(30x +)天完成此项工程. 由题意得:20(3011++x x )=1整理得:2106000x x --= 解得:130x =,220x =-经检验:130x =,220x =-都是分式方程的解, 但220x =-不符合题意舍去答:甲、乙两工程队单独完成此项工程各需要60天、30天 (2)设甲独做a 天后,甲、乙再合做(20-3a)天,可以完成此项工程. (3)由题意得:1×(1 2.5)(20)643a a ++-≤解得:36a ≥答:甲工程队至少要独做36天后,再由甲、乙两队合作完成剩下的此项工程,才能使施工费不超过64万元.2011中考数学分类总复习检测题(四)一、选择题二、填空题11、1,2,3 12、2x <≤4 13、10 14、117 15、 -1 16、1<k 三、解答题17、解:3315>--x x 42>x2>x18、2 3.x <≤ 19、略20、59<<-x 21、3或32-a22、由题意得:⎪⎩⎪⎨⎧<---=--->--)3(0)5(4)4()2(0)7(4)6()1(0)3(4222b a b a b a 解之得:a=2 ,b=323、解:设选购B 种服装x 件,则选购A 种服装为(2x +4)件,由题意得⎩⎨⎧≤+≥++4842174032)42(25x x x解之得⎩⎨⎧≥≤2022x x∴20≤x ≤22∵x 为正整数 ∴x 1=20,x 2=21,x 3=22. ∴当x 1=20时,42+x =2×20+4=44, 当x 2=21时,42+x =2×21+4=46,当x 3=22时,42+x =2×22+4=48.∴老板有三种选购方案:购进B 种品牌服装20件,购进A 种品牌服装44件;购进B 种品牌服装21件,购进A 种品牌服装46件; 购进B 种品牌服装22件,购进A 种品牌服装48件24、解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人.(2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:题号 1 2 3 4 5 6 7 89 10 答案D D B A A C B C DC3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤,解这个不等式组,得111244y ≤≤.∵y 取正整数, ∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元.25、(1)3种(2)3264元2011中考数学分类总复习检测题(五)一、选择题 二、填空题11、1 12、 2 13、2>m 14、 -12 15、 2 16、 (12)--, 三、解答题 17、2,2-==b k 18、12+=x y 19、22-=x y 20、323-=x y21、(1) )1,2(- )1,2( )1,0(- (2) 略 22、(1) 900 (2) 慢车75 快车 150 (3) 略23、证明:解:(1)设反比例函数解析式为ky x = ,点()14A ,在反比例函数的图象上 441kk ∴=∴=∴,,反比例函数的解析式为4y x =(2)设直线AB 的解析式为()00y ax b a b =+>>,题号1 2 3 4 5 6 7 8 9 10 答案 DDABCADBCB联立2440y ax bx xy ax b⎧=⎪⇒+-=⎨⎪=+⎩(★)y ax b =+ 过点()1A ,4 4a b ∴+=4b a ∴=-代入(★)得:()2440ax a x +--=方法1.由114a -⨯可得1x =或4x a =-显然1x =是A 点的横坐标,4x a=-是B 点的横坐标.设直线AB 交y 轴于点C ,则()0C b ,,即()04C a -, 由()112AOB AOC BOC S S S a =+=⨯+△△△·4-()141522a a ⎛⎫=⎪⎝⎭·4-,整理得 215160a a +-=1a ∴=或16a =-(舍去)413b ∴=-=∴直线AB 的解析式为3y x =+方法2.同方法1.得()2440ax a x +--=由求根公式也可得1x =或4x a=- 方法3.同方法1.得()2440ax a x +--=由2111522AOB S OC x x =-=△·()21440a a x x a a a ++-===> 4OC b a ==-可得()1415422a a a +⎛⎫-= ⎪⎝⎭解得1a =或16=-(舍去) 24、略25、(1)由题意知 2166k =⨯=∴反比例函数的解析式为6y x=. 又(3)B a ,在6y x=的图象上,2a ∴=.(23)B ∴,. 直线1y k x b =+过16A(,),(23)B ,两点,11623k b k b +=⎧∴⎨+=⎩,. 139k b =-⎧∴⎨=⎩,. (2)x 的取值范围为12x <<. (3)当12OBCD S =梯形,PC PE =.设点P 的坐标为()m n ,,23BC OD CE OD BO CD B ⊥= ∥,,,(,),(3)322C m CE BC m OD m ∴==-=+,,,,. 2OBCD BC OD S CE +∴=⨯梯形,即221232m m -++=⨯. 4m ∴=.又362mn n =∴=,.即12PE CE =.PC PE ∴=.2011中考数学分类总复习检测题(六)一、选择题 二、填空题11、(3,0) 12、8 13、132+-=x y 14、)2,6(或)2,6(- 15、X=2 16、-4 三、解答题 17、 略 18、)4,1(19、解:(1)把A (2,0)、B (0,-6)代入c bx x y ++-=221 得:2206b c c -++=⎧⎨=-⎩解得46b c =⎧⎨=-⎩∴这个二次函数的解析式为21462y x x =-+- (2) ∵该抛物线对称轴为直线4412()2x =-=⨯-∴点C 的坐标为(4,0) ∴AC=OC -OA =4-2=2题号 1 2 3 4 5 6 7 8 9 10 答案 DBADDABDBA∴1126622ABC S AC OB =⨯⨯=⨯⨯=△ 20、解:(1)过点C 作CD AB ⊥,垂足为D ,则12CD CA CB ===,,∴DB DA ==点(1A,点10)B ,.(2)延长DC ,交C 于点P .由题意可知,P 为抛物线的顶点,并可求得点(13)P ,. 设此抛物线的表达式为2(1)3y a x =-+,又∵抛物线过点10)B ,,则2011)3a =-+,得1a =-. 所以此抛物线的解析式为22(1)322y x x x =--+=-++. 21、(1) 232+-=x x y (2) 31><x x 或22、(1)m=-5 c=-2 (2) ),顶点坐标(对称轴1111)1(2222-=---=-+-=x x x x y 23、)6(542121)6(54456)5(654,3-∙∙=∙=∴-==-=∴∆∆⊥<-===∴==∆∆x x FD AE S x FD FD x BC FD AB AF ACB Rt ADF Rt DAC FD F AF x AF x AE AB BC AC ABC Rt AEF 得即相似于作过点,则中解:在 C E A24、解:(1)AB 为直径,90ACB ∴∠=︒.又90PC CD PCD ⊥∴∠=︒ ,而AC BCCAB CPD ABC PCD PC CD∠=∠∴∴=,△∽△,·AC CD PC BC ∴=·;(2)当点P 运动到AB 弧中点时,过点B 作BE PC ⊥于点E ,P 是AB 中点452PCB CE BE BC ∴∠=︒===,又CAB CPB ∠=∠ 43tan tan 3tan 4BE CPB CAB PE CPB ∴∠=∠=∴==∠,3422BE BC ⎛⎫== ⎪ ⎪⎝⎭从而2PC PE EC =+=,由(1)得433CD PC ==(3)当点P 在AB 上运动时,12PCD S PC CD =△·,由(1)可知,43CD PC = 223PCD S PC ∴=△故PC 最大时,PCD S △取最大值时;而PC 为直径时最大. PCD S ∴△的最大值2250533S =⨯=.25、略2011中考数学分类总复习检测题(七)一、选择题二、填空题11、40 , 4.6 12、15.2 , 3040 13、200 14、4 , 0.1 15、1.61 16、37770三、解答题 17、3564018、(1) 26 (2) 27 19、(1) 41 (2) 4920020、(1) 45 (2) 众数90 , 中位数80 21、(1) 85.5 (2) 87.75 22、解:(1)设调查的人数为x ,则根据题意:题号 1 2 3 4 5 6 7 8 9 10答案A D A CB A DC B CP30300x x =∴=·10%, ∴一共调查了300人(2)由(1)可知,完整的统计图如图所示(3)设该市民支持“强制戒烟”的概率为P ,由(1)可知,40%0.4P ==支持“警示戒烟”这种方式的人有1000035%3500=·(人).23、(1) 165 (2)3300 24、解:(1)补图正确(如图); (2)1520- (3)11025、(1) 3.0,12,8===c b a (2) 略 (3) 602011中考数学分类总复习检测题(八)一、选择题 二、填空题 11、15岁,52 12、52 13、41 14、3115、10,20 16、0.3 三、解答题17、解:(1)P (取出绿球)=53521=-; (2)设袋中绿球有x 个,则5312=+x x解得x =18经检验x =18是方程的解,所以袋中的绿球有18个. 18、 (1)41(2) 24 题号 12 3 4 5 6 7 8 9 10 答案 DCACBAADAC替代品戒烟 警示戒烟 药物戒烟强制戒烟10% 15%戒烟 戒烟 戒烟 戒烟 60 3035% 40%19、(1) 32(2) 略 20、(1) 略 (2) 6121、(1)平均分 众数 中位数 马琳 8.7 11 9.0 王励勤9.71111(2)8011161602016160503232000=∴=⨯:刘敏同学中奖的概率为22、解:(1)由题意,画树状图如下:A -D ;A -E ;A -F ;B -D ;B -E ;B -F ;C -D ;C -E ;C -F . 共有9种情况并且这9种情况出现的可能性相同(2)首场比赛中两个队都为部队文工团的情况有3种,即A -D ;B -D ;C -D 所以P=3193=. 23、 略24、(1) 30 20 (2)21(3) 500 25、(1) 15000 (2) 801 4012011中考数学分类总复习检测题(九)一、选择题 二、填空题11、70 12、 70 13、25 14、略 15、90 16、60 三、解答题 17、53 18、 110 19、3cm 20、 25题号1 2 3 4 5 6 7 8 9 10 答案 B C A C D A D C B B21、22、略23、(1)40 (2) 6 24、略 25、略2011中考数学分类总复习检测题(十)一、选择题二、填空题11、65 12、10 13、 80 14、180 15、(1a 16、3或5 三、解答题17、证明:∵AD BC ∥ ∴A C ∠=∠ ∵AE FC = ∴AF CE =在ADF △和CBE △中AD CB A C AF CE =⎧⎪∠=∠⎨⎪=⎩∴ADF CBE △≌△∴BE DF = 6分 18、菱形19、解: 在Rt ABC △中,9030C A ∠=︒∠=︒,,BD 是ABC ∠的平分线,30.ABD CBD AD DB ∴∠=∠=∴=°.又 在Rt ,5CBD CD =△中cm.10BD ∴=cm.题号 1 2 3 4 5 6 7 8 9 10 答案 BCBBCACBCBAEC AFC AECAFC ECD EAB AFC ECD EAB AFC AEC ECF EAF FCD FAB AEC FCD FAB AFC ECD EAB AEC ∠=∠∴∠+∠=∠+∠+∠=∠+∠+∠=∠∴∠+∠+∠+∠=∠∠+∠=∠∠+∠=∠4341)(414141, 解:BC ∴=2AB BC ==cm20、1)∠B = ∠F 或 AB ∥EF 或 AC = ED . (2)证明:当∠B = ∠F 时 在△ABC 和△EFD 中A B E F B F BC FD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△EFD (SAS) (本题其它证法参照此标准给分) 21、解:(1)(作出点E 给1分,作出点P 给1分,连AP 得角平分线AD 给1分)(2)∵AD 平分∠BAC .∴∠CAD =∠EAD在△CAD 与△EAD 中 AD =AD (公共边) ∠CAD =∠EAD AC =AE (已知) ∴△CAD ≌△EAD∴∠DEA =∠DCA =90° ∴DE ⊥AB22、解:猜测 AE BD AE BD =,⊥.理由如下:90ACD BCE ∠=∠= °,ACD DCE BCE DCE ∴∠+∠=∠+∠,即.ACE DCB ∠=∠ ACD ∴△和BCE △都是等腰直角三角形. AC CD CE CB ∴==,,ACE DCB ∴△≌△. AE BD ∴=,.CAE CDB ∠=∠ 90AFC DFH DHF ACD ∠=∠∴∠=∠= ,°.AE BD ∴⊥.23、证明:(1)∵∠A=30°,∠ACB=90°,D 是AB 的中点. ∴BC=BD , ∠B=60° ∴△BCD 是等边三角形. 又∵CN ⊥DB ,∴12DN DB =∵∠EDF=90°,△BCD 是等边三角形. ∴∠ADG =30°,而∠A =30°. ∴GA=GD .∵GM ⊥AB∴12AM AD =又∵AD=DB ∴AM=DN (2)∵DF ∥AC∴∠1=∠A=30°,∠AGD=∠GDH=90°, ∴∠ADG=60°. ∵∠B=60°,AD=DB , ∴△ADG ≌△DBH ∴AG=DH ,又∵∠1=∠A ,GM ⊥AB ,HN ⊥AB , ∴△AMG ≌△DNH . ∴AM=DN .24、(1) 等边三角形 (2) )30(33232≤≤+-=t t t S (3) 略 25、解:(1)在四边形ABCD 中,AB BC ⊥,DC BC AB DC ∴⊥,∥, ∴四边形ABCD 为直角梯形(或矩形). 过点P 作PQ BC ⊥,垂足为Q ,PQ AB ∴∥, 又点P 是AD 的中点,∴点Q 是BC 的中点, 又111()()222PQ AB CD a b BC =+=+=, PQ BQ QC ∴==,PQB ∴△与PQC △是全等的等腰直角三角形, 90BPC BPQ QPC PB PC ∴∠=∠+∠==°,, PBC ∴△是等腰直角三角形.(2)存在点M 使AM MD ⊥.图②BPD CBA Q E M 2M 1以AD 为直径,P 为圆心作圆P .当a b =时,四边形ABCD 为矩形,PA PD PQ ==,圆P 与BC 相切于点Q ,此时,M 点与Q 点重合,存在点M ,使得AM MD ⊥,此时1()2BM a b =+. 当a b <时,四边形ABCD 为直角梯形,AD BC >,PA PD PQ =>,圆心P 到BC 的距离PQ 小于圆P 的半径,圆P 与BC 相交,BC 上存在两点12M M ,,使AM MD ⊥,过点A 作AE DC ⊥,在Rt AED △中,AE a b DE b a =+=-,,22222222AD AE DE AD a b AD =+=+,,连结12PM PM ,,则12PM PM ==在直角三角形1PQM中,12b aQM -===, 11BM BQ M Q a ∴=-=.同理可得:22BM BQ M Q b =+=.综上所述,在线段BC 上存在点M ,使AM MD ⊥. 当a b =时,有一点M ,2a bBM +=;当a b <时,有两点12M M ,,12BM a BM b ==,. 2011中考数学分类总复习检测题(十一)一、选择题二、填空题11、17 12、20 13、22.5 14、20 15、菱形16、8 三、解答题17、证明:四边形ABCD 为等腰梯形,B DCB ∴∠=∠. GE DC GEB DCB ∴∠=∠ ∥,. GEB B GB GE ∴∠=∠∴=.. 在GEF △和HCG △中, GE DC GEF HCF ∴∠=∠ ∥,. F 是EC 的中点,FE FC ∴=. 而GFE CFH ∠=∠(对顶角相等), GEF HCF ∴△≌△. GE HC BG CH ∴=∴=,.18、DF BE =,DF BE // 提示:证明CEB AFD ∆≅∆题号 1 2 3 4 5 67 8 9 10 答案B BC CD C B B D A19、解:如图,过点D 作DF AB ∥,分别交AC BC ,于点E F ,.AB AC ⊥ ,90AED BAC ∴∠=∠= . AD BC ∥,18045DAE B BAC ∴∠=-∠-∠= .在Rt ABC △中,90BAC ∠=,45B ∠=,BC =sin 4542AC BC ∴===在Rt ADE △中,90AED ∠=,45DAE ∠=,AD ,1DE AE ∴==.3CE AC AE ∴=-=.在Rt DEC △中,90CED ∠=,DC ∴==20、证明:(1)∵DE ⊥AG ,BF ⊥AG , ∴∠AED =∠AFB =90°.∵ABCD 是正方形,DE ⊥AG ,∴∠BAF +∠DAE =90°,∠ADE +∠DAE =90°, ∴∠BAF =∠ADE .又在正方形ABCD 中,AB =AD .在△ABF 与△DAE 中,∠AFB =∠DEA =90°, ∠BAF =∠ADE ,AB =DA , ∴△ABF ≌△DAE .(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF . 又 AF=AE+EF ,∴AF=EF+FB ,∴DE=EF+FB . 21、(1) 略 (2) 222b ac +=22、(1) CF AD = (2) 提示:证明CFD ADE∆∆~23、解:(1)D E ,是AB ,AC 的中点, DE BC ∴∥,2BC DE =. 又2BE DE =,EF BE =,BC BE EF ∴==,EF BC ∥. ∴四边形BCFE 是菱形.(2)连接BF 交CE 于点O .在菱形BCFE 中,130BCF ∠= ,4CE =,BF CE ∴⊥,1652BCO BCF ∠=∠= ,122OC CE ==. 在Rt BOC △中,tan 65OB OC= ,2tan 65OB ∴= ,4tan 65BF =.ADE F CGBABCDFEA C DF EO∴菱形BCFE 的面积1144tan 658tan 6517.222CE BF ==⨯⨯=≈ .24、(1)证明: 四边形ABCD 是菱形,BC CD ∴=, AC 平分BCD ∠.而CE CE =,BCE DCE ∴△≌△ EBC EDC ∴∠=∠.又AB DC ∥,APD CDP ∴∠=∠ EBC APD ∴∠=∠(2)当P 点运动到AB 边的中点时,ADP △的面积等于菱形ABCD 面积的14. 连接DB .60DAB ∠= °,AD AB =, ABD ∴△是等边三角形而P 是AB 边的中点,DP AB ∴⊥12ADP S AP DP = △,ABCD S AB DP = 菱形12AP AB = ,∴111224ADP ABCD S AB DP S =⨯= △菱形即ADP △的面积等于菱形ABCD 面积的14.25、解:(1)设抛物线的解析式为2y ax =,12B ⎛- ⎝⎭在抛物线上,把12B ⎛- ⎝⎭代入23y ax =+得a =∴抛物线解析式为2y x =+. (2)点1(02B A ⎛- ⎝⎭,,CB ∴== CB CB OA '∴==.又2CA ==,1.AB ∴==ABDCEP图AD CPAB AB OC '∴==.∴四边形AOCB '是矩形.1CB OC '== ,B '∴点的坐标为.当1x =时,代入2y =+得y =B '∴在抛物线上.(3)存在.理由是:设BA 的解析式为y kx b =+,1220k b b ⎧-+=⎪∴⎨⎪+=⎩k b ⎧=⎪∴⎨=⎪⎩ BA ∴的解析式为y =P F ,分别在直线BA 和抛物线上,且PF AD ∥,∴设2(P m F m ⎛ ⎝⎭,,2PF AD =+-⎭==, 如果PF AD =,则有2-+=⎝⎭解得10m =(不符合题意舍去),232m =. ∴当32m =时,PF AD =, 存在四边形ADFP 是平行四边形.当32m ==P ∴点的坐标是32⎛ ⎝⎭.2011中考数学分类总复习检测题(十二)一、选择题 二、填空题11、48 12、相切 13、15π 14、 15、7 16、4π 三、解答题 17、40度 18、30度 19、略20、证明:(1)连结OD .由O 、E 分别是BC 、AC 中点得OE ∥AB . ∴∠1=∠2,∠B =∠3,又OB=OD . ∴∠2=∠3. 而OD=OC ,OE=OE ∴△OCE ≌△ODE . ∴∠OCE=∠ODE .又∠C=90°,故∠ODE =90°. ∴DE 是⊙O 的切线. (2)在Rt △ODE 中,由32OD =,DE =2 得52OE =又∵O 、E 分别是CB 、CA 的中点∴AB =2·5252OE =⨯=∴所求AB 的长是5cm .21、AD=2 ,AC=222、(1)提示:连接BC, 证明:90=∠ACB (2) 提示:证明:ACD ACB ∆∆~23、 (1) 略 (2) AD=2224、解:(1)分别过A O ,两点作AE CD OF CD ⊥⊥,,垂足分别为点E ,点F , AE OF OF ∴∥,就是圆心O 到CD 的距离. 四边形ABCD 是平行四边形,题号 1 2 3 4 5 6 7 8 9 10 答案 BBDCADCABCBAB CD AE OF ∴∴=∥,.在Rt ADE △中,60sin sin 60AE AED D AD AD∠=∠==°,,°,AE AE OF AE m ====,,, 圆心到CD 的距离OF(2)OF =, AB 为O ⊙的直径,且10AB =,∴当5OF =时,CD 与O ⊙相切于F 点,5m ==,, ∴当m =时,CD 与O ⊙相切. 25、(1)B(1,3) C(0,332) (2) 3323+=x y ,(3) 略2011中考数学分类总复习检测题(十三)一、选择题 二、填空题11、(2, 2) 12、72度 13、214、(0, 0) 15、4 16、6 三、解答题 17、211<<-a 18、 (1)画图1(04)B ,题号1 2 3 4 5 6 7 8 9 10 答案 CAACCCBACD图(1)图(2)(2)画图5OB ==∴点B 旋转到点2B 时,经过的路线长为25π5π42⨯⨯=. 19、(1)(2,3); (2)图形略.(0,6-);(3)(7-3,)或(53)--,或(33),.20、3 21、(1)如图(2)5(3)∠CAD ,55(或∠ADC ,552)(4)2122、(1, 3)23、(1) A 1 (1, 1) B 1 (2, 2) C 1 (0, 4) (2) A 2 (6, 4) B 2 (4, 2) C 2 (5, 1)(3) 直线X=3 24、解:(1)BD MF BD MF =,⊥. 延长FM 交BD 于点N ,由题意得:BAD MAF △≌△. ∴BD MF =,ADB AFM ∠=∠. 又∵DMN AMF ∠=∠,∴90ADB DMN AFM AMF ∠+∠=∠+∠=°, ∴90DNM ∠=°,∴BD MF ⊥.(2)β的度数为60°或15°(答对一个得2分) (3)由题意得矩形2PNA A .设2A A x =,则PN x =, 在222Rt A M F △中,∵228F M FM ==,∴22224A M A F ==,,∴2AF x =. ∵290PAF ∠=°,230PF A ∠=°,∴2tan 304AP AF x == °.DM N BAP 2M 2 F 2FCD MABENABEC D∴4PD AD AP x=-=.∵NP AB∥,∴DNP B∠=∠.∵D D∠=∠,∴DPN DAB△∽△.∴PN DPAB DA=.∴44xx+=,解得6x=-.即26A A=-答:平移的距离是(6-cm.(其它方法可参照此答案给分)25、(1) DE=EF (2) NE=BF2011中考数学分类总复习检测题(十四)一、选择题二、填空题11、4112、16.5 13、325014、12 15、1 : 2 16、三、解答题17、2518、36 ,3419、9.920、52021、解:延长AD交BC的延长线于点E在Rt△ABE中,AB=200,∠A=60°得AE=400在Rt△CDE中,CD=100,∠CED=30°得CE=2CD=200,DE=1003≈227(m)所以,AD=400-1003BC=2003-200≈146 (m)22、(1) PC=32(2) 45度23、1.3124、20320-题号 1 2 3 4 5 6 7 8 9 10答案 B B A D A B C B D CBDCAE25、(1) 略 (2) 38=r 2011中考数学分类总复习检测题(十五)一、选择题 二、填空题 11、100 12、41313、 78 14、4 15、 OA=OB 16、 4 三、解答题 17、略18、提示:连接CD19、(1) ACD ABE ∆≅∆ (2) 略 20、提示:证明EBA AFD ∆≅∆21、(1) 略 (2) 提示:证明:角B=90度22、解:(1)证明:∵AF 平分∠BAC ,∴∠CAD =∠DAB =12∠BAC .∵D 与A 关于E 对称,∴E 为AD 中点.∵BC ⊥AD ,∴BC 为AD 的中垂线,∴AC =CD . 在Rt △ACE 和Rt △ABE 中,∠CAD +∠ACE =∠DAB +∠ABE =90°, ∠CAD =∠DAB . ∴∠ACE =∠ABE ,∴AC =AB . ∴AB =CD . (2)∵∠BAC =2∠MPC , 又∵∠BAC =2∠CAD ,∴∠MPC =∠CAD .∵AC =CD ,∴∠CAD =∠CDA , ∴∠MPC =∠CDA . ∴∠MP F=∠CDM .∵AC =AB ,AE ⊥BC ,∴CE =BE . ∴AM 为BC 的中垂线,∴CM =BM .∵EM ⊥BC ,∴EM 平分∠CMB ,(等腰三角形三线合一) ∴∠C ME =∠BME . ∵∠BME =∠PMF , ∴∠PMF =∠C M E ,∴∠MCD =∠F (三角形内角和).23、(1) 略 (2)X=2时, Y 最大,最大值是124、(1)猜想:BG DE = BC DC =90BCG DCE ∠=∠=° CG CE =∴BCG DCE △≌△(SAS ) (2)在BCG △与DHG △中 由(1)得CBG CDE ∠=∠ CGB DGH ∠=∠90DHB BCG ∴∠=∠=° BH DE ∴⊥.题号 1 2 3 4 5 6 7 8 9 10 答案 CAABBACBBBFM PE D CBA25、证明:(1)∵∠A=30°,∠ACB=90°,D是AB的中点.∴BC=BD,∠B=60°∴△BCD是等边三角形.又∵CN⊥DB,∴12 DN DB=∵∠EDF=90°,△BCD是等边三角形.∴∠ADG=30°,而∠A=30°.∴GA=GD.∵GM⊥AB∴12 AM AD=又∵AD=DB∴AM=DN(2)∵DF∥AC∴∠1=∠A=30°,∠AGD=∠GDH=90°,∴∠ADG=60°.∵∠B=60°,AD=DB,∴△ADG≌△DBH∴AG=DH,又∵∠1=∠A,GM⊥AB,HN⊥AB,∴△AMG≌△DNH.∴AM=DN.图②B。

2011年中考数学试题分类汇编(150套) 整式专题

2011年中考数学试题分类汇编(150套) 整式专题

2011年中考数学试题分类汇编(150套)整式专题一、选择题1.(2011某某凉山)下列计算正确的是A .=.1)(11=C .422()a a a --÷=D .2111()24xy xy xy -⎛⎫= ⎪⎝⎭【答案】D2.(2011某某眉山)下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+ 【答案】B3.(2011某某)已知有一多项式与(2x 2+5x -2)的和为(2x 2+5x +4),求此多项式为何? (A) 2 (B) 6 (C) 10x +6 (D) 4x 2+10x +2 。

【答案】B 4.(2011某某某某)下列运算正确的是(A)22x x x =⋅ (B)22)(xy xy = (C)632)(x x = (D)422x x x =+【答案】C5.(2011 某某省某某)计算a 2·a 4的结果是(▲) A .a 2B .a 6C .a 8D .a 16【答案】B6.2011 某某某某市)下列运算正确的是(▲)A .22a a a =⋅B .33)(ab ab =C .632)(a a =D .5210a a a =÷【答案】C7.(2011某某聊城)下列运算正确的是( )A .(3xy 2)2=6x 2y 4B .24122x x =- C .(-x )7÷(-x )2=-x 5 D .(6xy 2)2÷3xy =2xy 3【答案】C8.(2011某某市潼南县)计算3x +x 的结果是( ) A . 3x 2B . 2x C. 4x D. 4x 2【答案】C9.(2011某某省中中考) 计算x x ÷)2(3的结果正确的是…………………………( ) A )28x B )26x C )38x D )36x 【答案】A10.(2011某某某某,3,3分)下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3 【答案】D11.(2011某某某某,8,3分)下列命题中,正确的是( )A .若a ·b >0,则a >0,b >0B .若a ·b <0,则a <0,b <0C .若a ·b =0,则a =0,且b =0D .若a ·b =0,则a =0,或b =0 【答案】D12.(2011某某某某) 34a a ⋅的结果是A.4aB.7aC.6aD. 12a 【答案】B13.(2011某某某某)下列说法或运算正确的是 ×102有3个有效数字 B .222)(b a b a -=- C .532a a a =+D .a 10÷a 4= a6【答案】D14.(2011某某某某市) 图①是一个边长为()m n +的正方形,小颖将 图①中的阴影部分拼成图②的形状,由图①和图② 能验证的式子是( )A .22()()4m n m n mn +--= B .222()()2m n m n mn +-+= C .222()2m n mn m n -+=+D .22()()m n m n m n +-=- 【答案】B15.(2011某某某某)如果33-=-b a ,那么代数式b a 35+-的值是( ▲ ) A .0 B .2 C .5D .8【答案】D16.(2011某某日照)由m (a +b +c )=ma +mb +mc ,可得:(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b-ab 2+b 3=a 3+b 3,即(a +b )(a 2-ab +b 2)=a 3+b 3.我们把等式①叫做多项式乘法的立方公式。

南安市2011届初中毕业班总复习数学综合练习卷(五)

南安市2011届初中毕业班总复习数学综合练习卷(五)

南安市2011届初中毕业班总复习数学综合练习卷(五)(满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分) 1.-2的相反数是( ). A.-2 B.2 C.-21 D.21 2.下列运算正确的是A. 2222=-B.523a a a =∙ C.428a a a =÷ D.()63262a a -=-3.下列判断中,你认为正确的是( ) A .0的倒数是0B.2π是分数124.如下左图所示的几何体的左视图是( )5.如图,A ⊙,B ⊙的半径分别为1cm ,2cm ,圆心距AB 为5cm .如果A ⊙由图示位置沿直线AB 向右平移3cm ,则此时该圆与B ⊙的位置关系是( )A .内含 B. 外切 C.相交 D. 外离 . 6. 已知点M (-2,3 )在双曲线xky =上,则下列各点一定在该双曲线上的是( ) A .(3,2) B .(-2,-3 ) C .(2,3 )D .(3,-2 )7.如图a 是长方形纸带,=20DEF ∠,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是( )A . 110°B .150°C .140°D . 120°二、填空题(每小题4分,共40分)A D A CBAE AF AAC A CB 图a图b图cA .B .C .D .(第5题)第15题8.分解因式:2327a -= .9.全国两会期间,温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套.这些住房将有力地缓解住房的压力,特别是解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是 .10.现有甲、乙两支球队,每支球队队员身高数据的平均数均为1.80米,方差分别为2S 甲= 0.31、2S 乙=0.36,则身高较整齐的球队是 队(填“甲”或“乙”). 11.不等式组1021x x +>⎧⎨-<⎩,的解集是 .12.如图,一位同学将一块含30°的三角板叠放在直尺上.若∠1=40°,则∠2= °. 13.八边形的外角和等于 °.14.在一次函数m x m y 2)4(+-=中,如果y 的值随自变量x 的值增大而减小,那么这个一次函数的图像一定不经过第 象限.15. 如图,已知OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB =40°,则∠OBD = 度. 16.圆锥的底面半径为1,侧面积为4π,则圆锥的高线长为 .17.如图,在Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=4,E 是AB 边的中点,F 是AC 边的中点,则(1)=EF ;(2)若D 是BC 边上一动点,则△EFD 的周长最小值是 .三、解答题(共89分)18.(9分)计算:()())12011117+5π-⎛⎫---- ⎪⎝⎭.19.(9分)先化简,再求值:121)1(13322+---+÷-+a a a a a a ,其中4=a .20.(9分)某班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.项目选择情况统计图: 训练前定时定点投篮测试进球数统计图:训练后篮球定时定点投篮测试进球数统计表:请你根据图表中的信息回答下列问题:(1)选择长跑训练的人数占全班人数的百分比是 ,该班共有同学 人; (2)补全“训练前篮球定时定点投篮测试进球数统计图;立定跳远20%长跑铅球10%篮球60%45673进球数(个)12890(3)求训练后篮球定时定点投篮人均进球数.21.(9分)如图,已知:点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF .能否由上面的已知条件证明AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件.......,添加到已知条件中,使AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB =ED ;②BC =EF ;③∠ACB =∠DFE .22.(9分)在一个不透明的盒子里,装有四个分别写有数字1、2、3、4的乒乓球(形状、大小一样),先从盒子里随机取出一个乒乓球,记下数字后放回盒子,摇匀后再随机取 出一个乒乓球,记下数字.(1)请用树状图或列表的方法求两次取出乒乓球上的数字相同的概率; (2)求两次取出乒乓球上的数字之积小于6的概率.DE(第21题)23.(9分) 如图1,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等边三角形,E是AB的中点,连结CE并延长交AD于F,若AB=2.(1)直接写出BC的长;(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.24.(9分)为了加强市民的节水意识,合理利用水资源,某市采用价格调控手段达节水的目的。

2011年中考数学总复习专题测试卷(12个专题打包下载)-11

2011年中考数学总复习专题测试卷(12个专题打包下载)-11

2011年中考数学总复习专题测试卷(六)(投影与视图)(试卷满分150 分,考试时间120 分钟)一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.图1中几何体的主视图是()。

2.如图,小明从正面观察一个圆柱体邮筒和一个正方体箱子,看到的是()。

3.正视图、左视图和俯视图完全相同的几何体是()。

4.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()。

5.一个物体的三视图如图所示,则该物体的形状是()。

A、圆柱B、圆锥C、三棱锥D、三棱柱俯视图主(正)视图左视图6.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能...是( )。

A B C D7.右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )。

A 、5个 B 、6个 C 、7个 D 、8个8.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是( )。

A .O B . 6 C .快 D .乐9.下列各图是由全等的正方形组成的图形,能围成一个立方体的图形是( )。

A .B .C .D .10.一个均匀的立方体各面上分别标有数字1,2,3,4,6,8,其表面展开图是如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数字的2倍的概率是( )。

A .32 B .21 C .31 D .61二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)11.如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面...涂色的小立方体共有_________个。

2011年中考数学总复习专题测试卷(12个专题打包下载)-2

2011年中考数学总复习专题测试卷(七)(角、相交线与平行线)(试卷满分150 分,考试时间120 分钟)一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.如果两个角的一边在同一直线上,另一边互相平行,那么这两个角的关系是()。

A.相等B.互补C.相等或互补D.相等且互补2.已知∠AOB=30°,自∠AOB的顶点O引射线OC,若∠AOC : ∠AOB=4 : 3 ,则∠BOC 等于()。

A.10°B.40°C.70°D.10°或70°3.一个角等于它的补角的5倍,那么这个角的补角的余角是()。

A.30°B.60°C.45°D.以上答案都不对4.用一副三角板可以作出大于0°而小于180°的角的个数()。

A.5个B.10个C.11个D.以上都不对5.已知三条直线a,b,c,下列命题中错误的是()A.如果a∥b,b∥c,那么a∥cB.如果a⊥b,b⊥c,那么a⊥cC.如果a⊥b,b⊥c,那么a∥cD.如果a⊥b,a∥c,那么b⊥c6.如果两条平行线被第三条直线所截得的8个角中,有一个角的度数已知,则()。

A.只能求出其余3个角的度数B.能求出其余5个角的度数C.只能求出其余6个角的度数D.能求出其余7个角的度数7.若两条平行线被第三条直线所截,则下列说法错误的是()。

A.一对同位角的平分线互相平行B.一对内错角的平分线互相平行C.一对同旁内角的平分线互相垂直D.一对同旁内角的平分线互相平行8.下列说法,其中正确的是()。

A.两条直线被第三条直线所截,内错角相等;B.不相交的两条直线就是平行线;C.点到直线的垂线段,叫做点到直线的距离;D.同位角相等,两直线平行。

2011年中考数学真题分类汇编(150套) 分式专题

2011年中考数学真题分类汇编(150套)分式专题一、选择题1.(2011某某红河哈尼族彝族自治州)使分式x-31有意义的x 的取值是 A.x≠0 B. x≠±3 C. x≠-3 D. x≠3【答案】D2.(2011某某随州)化简:211()(3)31x x x x +-•---的结果是( ) A .2 B .21x - C .23x - D .41x x --【答案】B3.(2011 某某某某)当分式21-x 没有意义时,x 的值是( )A .2B .1C .0D .—2【答案】A4.(2011 某某某某)下列运算正确的是(A )1=---a b b b a a (B )b a nm b n a m --=- (C )a a b a b 11=+- (D )ba b a b a b a -=-+--1222 【答案】D5.(2011某某某某) 若分式221-2b-3b b - 的值为0,则b 的值是A. 1B. -1C.±1D. 2 【答案】A6.(2011 某某某某)化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x -C .82x -+ D .82x + 【答案】D7.(2011某某某某)化简211a a a a--÷的结果是 A .1a B .a C .a -1 D .11a - 【答案】C8.(2011某某威海)化简a a b a b -÷⎪⎭⎫⎝⎛-2的结果是A .1--aB .1+-aC .1+-abD .b ab +-【答案】B9.(2011某某某某)若分式1263+-x x 的值为0,则( ▲ ) (A )2-=x (B )21-=x (C )21=x(D )2=x【答案】D10.(2011某某某某)化简1111--+x x ,可得( ) A.122-x B.122--x C.122-x x D.122--x x 【答案】B11.(2011某某聊城)使分式1212-+x x 无意义的x 的值是( ) A .x =21- B .x =21C .21-≠x D .21≠x【答案】B12.(2011 某某某某)计算111xx x ---结果是( ).(A )0 (B )1 (C )-1 (D )x 【答案】C13.(2011 黄冈)化简:211()(3)31x x x x +-•---的结果是( ) A .2 B .21x - C .23x - D .41x x --【答案】B14.(2011 某某)化简ba b b a a ---22的结果是A .22b a -B .b a +C .b a -D .1 【答案】B15.(2011 某某株洲)若分式25x -有意义...,则x 的取值X 围是 A .5x ≠ B .5x ≠-C .5x >D .5x >-【答案】A16.(2011某某荆州)分式112+-x x 的值为0,则A..x=-1 B .x=1 C .x=±1 D .x=0 【答案】B17.(2011 某某某某南安)要使分式11x +有意义,则x 应满足的条件是( ).A .1x ≠B .1x ≠-C .0x ≠D .1x >【答案】B18.(2011某某某某)若分式x-32有意义,则x 的取值X 围是 A .x ≠3 B .x =3 C .x <3 D .x >3 【答案】A二、填空题1.(2011某某凉山)已知:244x x -+与 |1y -| 互为相反数,则式子()xy x y y x ⎛⎫-÷+ ⎪⎝⎭的值等于。

2011年中考数学试题及答案

2011年中考考试试卷数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第10页.试卷满分120分,考试时间100分钟.考试结束后,将试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题 共30分)注意事项:1.答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔填在“答题卡”上;用2B 铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码.2.答案答在试卷上无效,每小题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2sin 30°的值等于( )A .1 BCD .22.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有( )A .2个B .3个C .4个D .5个3.若x y ,为实数,且20x +=,则2009x y ⎛⎫ ⎪⎝⎭的值为( )A .1B .1-C .2D .2- 4.边长为a 的正六边形的内切圆的半径为( ) A .2a B .a CD .12a5.右上图是一根钢管的直观图,则它的三视图为( )A .B .C .D . 6.为参加2009年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m )为:8,8.5,9,8.5,9.2.这组数据的众H I N A数、中位数依次是( )A .8.5,8.5B .8.5,9C .8.5,8.75D .8.64,97.在ABC △和DEF △中,22AB DE AC DF A D ==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为( ) A .8,3 B .8,6 C .4,3 D .4,6 8.在平面直角坐标系中,已知线段AB 的两个端点分别是()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( )A .()43,B .()34,C .()12--,D .()21--, 9.如图,ABC △内接于O ⊙,若28OAB ∠=°,则C ∠的大小为( )A . 28°B .56°C .60°D .62°10.在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A .22y x x =--+ B .22y x x =-+- C .22y x x =-++ D .22y x x =++第(9)题2009年天津市初中毕业生学业考试试卷数 学第Ⅱ卷(非选择题 共90分)注意事项:1.答第Ⅱ卷前,考生务必将密封线内的项目和试卷第3页左上角的“座位号”填写清楚. 2. 第Ⅱ卷共8页,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔直接答在试卷上.二、填空题:本大题共8小题,每小题3分,共24分,请将答案直接填在题中横线上. 11= .12.若分式22221x x x x --++的值为0,则x 的值等于 .13.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形ABCD 的中点四边形是一个矩形,则四边形ABCD 可以是 . 14.已知一次函数的图象过点()35,与()49--,,则该函数的图象与y 轴交点的坐标为__________ _.15.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为本,付款金额为y 元,请填写下表:16.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.17.如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有_______个.18.如图,有一个边长为5的正方形纸片ABCD ,要将其剪拼成边长分别为a b ,的两个小正方形,使得2225a b +=.①a b ,的值可以是________(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性: __________________________________________ _________________________________________ _________________________________________第(17)题黄瓜根数/株第(16)题三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本小题6分) 解不等式组5125431x x x x ->+⎧⎨-<+⎩,.20.(本小题8分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么? (Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当OAB △的面积为4时,求点A 的坐标及反比例函数的解析式.21.(本小题8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (Ⅱ)求摸出的两个球号码之和等于5的概率.如图,已知AB 为O ⊙的直径,PA PC ,是O ⊙的切线,A C ,为切点,30BAC ∠=° (Ⅰ)求P ∠的大小;(Ⅱ)若2AB =,求PA 的长(结果保留根号).23.(本小题8分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离.P CAO注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.如图①,要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为2x ,则每个竖彩条的宽为3x .为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD .结合以上分析完成填空:如图②,用含x 的代数式表示: AB =____________________________cm ; AD =____________________________cm ; 矩形ABCD 的面积为_____________cm 2; 列出方程并完成本题解答.图②图①已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围; (Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.已知函数212y x y x bx c αβ==++,,,为方程120y y -=的两个根,点()1M T ,在函数2y 的图象上. (Ⅰ)若1132αβ==,,求函数2y 的解析式; (Ⅱ)在(Ⅰ)的条件下,若函数1y 与2y 的图象的两个交点为A B ,,当ABM △的面积为112时,求t 的值; (Ⅲ)若01αβ<<<,当01t <<时,试确定T αβ,,三者之间的大小关系,并说明理由.参考答案及评分标准评分说明:1.各题均按参考答案及评分标准评分.2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.一、选择题:本大题共10小题,每小题3分,共30分.1.A 2.B 3.B 4.C 5.D 6.A 7.A 8.B 9.D 10.C 二、填空题:本大题共8小题,每小题3分,共24分.1112.213.正方形(对角线互相垂直的四边形均可) 14.()01-,15.56,80,156.816.60;1317.21 18.①3,4(提示:答案不惟一);②裁剪线及拼接方法如图所示:图中的点E 可以是以BC 为直径的半圆上的任意一点(点B C ,除外).BE CE ,的长分别为两个小正方形的边长. 三、解答题:本大题共8小题,共66分 19.本小题满分6分 解:5125431x x x x ->+⎧⎨-<+⎩ ,①②由①得2x >, ························································································································ 2分由②得,52x >-···················································································································· 4分 ∴原不等式组的解集为2x >································································································ 6分 20.本小题满分8分.解:(Ⅰ)这个反比例函数图象的另一支在第三象限. ························································· 1分 因为这个反比例函数的图象分布在第一、第三象限, 所以50m ->,解得5m >. ································································································ 3分(Ⅱ)如图,由第一象限内的点A 在正比例函数2y x =的图象上,设点A 的坐标为()()00020x x x >,,则点B 的坐标为()00x ,,0014242OAB S x x =∴= △,·,解得02x =(负值舍去).∴点A 的坐标为()24,. ·········································································································· 6分 DCA E 2 31 2 3又 点A 在反比例函数5m y x-=的图象上, 542m -∴=,即58m -=. ∴反比例函数的解析式为8y x=. ··························································································· 8分 21.本小题满分8分.解(Ⅰ)法一:根据题意,可以画出如下的树形图:从树形图可以看出,摸出两球出现的所有可能结果共有6种; 法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种. ············································· 4分 (Ⅱ)设两个球号码之和等于5为事件A .摸出的两个球号码之和等于5的结果有2种,它们是:()()2332,,,.()2163P A ∴==. ··················································································································· 8分 22.本小题满分8分.解(Ⅰ)PA 是O ⊙的切线,AB 为O ⊙的直径, PA AB ∴⊥.90BAP ∴∠=°.30BAC ∠= °,9060CAP BAC ∴∠=-∠=°°.················································································· 2分 又PA 、PC 切O ⊙于点A C ,. PA PC ∴=.PAC ∴△为等边三角形. 60P ∴∠=°. ··························································································································· 5分(Ⅱ)如图,连接BC , 则90ACB ∠=°.在Rt ACB △中,230AB BAC =∠=,°,AC AB ∴=·cos 2BAC ∠=cos 30°=PAC △为等边三角形, PA AC ∴=.1 2 32 13 3 1 2 第一个球 第二个球 P C B A O第二个球 第一个球 (1,3) (2,3) (1,2) (3,2)(3,1) (2,1) 3 2 1 1 2 3PA ∴=··························································································································· 8分 23.本小题满分8分解:如图,过C 点作CD 垂直于AB 交BA 的延长线于点D . ············································· 1分 在Rt CDA △中,3018018012060AC CAD CAB =∠=-∠=︒-︒=︒,°. ···················· 2分CD AC ∴=·sin 30CAD ∠=·sin 60=°AD AC =·cos 30CAD ∠=·cos 60°=15. 又在Rt CDB △中,22270BC BD BC CD == ,-,65BD ∴==. ··························································································· 7分651550AB BD AD ∴=-=-=,答:A B ,两个凉亭之间的距离为50m. ················································································ 8分24.本小题满分8分.解(Ⅰ)220630424260600x x x x ---+,,; ·································································· 3分(Ⅱ)根据题意,得2124260*********x x ⎛⎫-+=-⨯⨯ ⎪⎝⎭. ············································· 5分 整理,得2665500x x -+=.解方程,得125106x x ==,(不合题意,舍去). 则552332x x ==,. 答:每个横、竖彩条的宽度分别为53cm ,52cm. ································································· 8分25.本小题满分10分.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+,即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ········································································································· 4分图①图②图③(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···················································································································· 6分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. ······················································································· 7分(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠.又CBD CB D OCB CBD ''''∠=∠∴∠=∠ ,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OCOA OB''=,得2OC OB ''=. ···················································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C 的坐标为()016. ····················································································· 10分 26.本小题满分10分.解(Ⅰ)212120y x y x bx c y y ==++-= ,,,()210x b x c ∴+-+=. ··································································································· 1分 将1132αβ==,分别代入()210x b x c +-+=,得 ()()22111110103322b c b c ⎛⎫⎛⎫+-⨯+=+-⨯+= ⎪ ⎪⎝⎭⎝⎭,,解得1166b c ==,. ∴函数2y 的解析式为2y 25166x x =-+. ····································································· 3分(Ⅱ)由已知,得AB =,设ABM △的高为h ,311212ABM S AB h h ∴===△·1144=.根据题意,t T -=,由21166T t t =++,得251166144t t -+-=. 当251166144t t -+=-时,解得12512t t ==;当251166144t t -+=时,解得34t t ==.t ∴的值为555121212,,. ······················································································ 6分 (Ⅲ)由已知,得222b c b c T t bt c αααβββ=++=++=++,,.()()T t t b ααα∴-=-++, ()()T t t b βββ-=-++,()()22b c b c αβααββ-=++-++,化简得()()10b αβαβ-++-=.01αβ<<< ,得0αβ-≠, 10b αβ∴++-=.有1010b b αββα+=->+=->,. 又01t <<,0t b α∴++>,0t b β++>,∴当0t a <≤时,T αβ≤≤;当t αβ<≤时,T αβ<≤;当1t β<<时,T αβ<<. ································································································· 10分。

2011年中考数学总复习专题测试卷(12个专题打包下载)-8

2011年中考数学总复习专题测试卷(四)(函数及其图象)(试卷满分 150 分,考试时间 120 分钟)一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.已知反比例函数 y=a-2x的图象在第二、四象限,则a 的取值范围是( )。

A .a≤2 B .a ≥2 C .a <2 D .a >22.若 ab >0,bc<0,则直线y=-a b x -cb不通过( )。

A .第一象限B 第二象限C .第三象限D .第四象限3.若二次函数y=x 2-2x+c 图象的顶点在x 轴上,则c 等于( )。

A .-1 B .1 C .21D .24.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )。

A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-15.已知一次函数y= kx+b 的图象经过第一、二、四象限,则反比例函数y= kbx 的图象大致为( )。

6.二次函数y=x 2-4x+3的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为A .1B .3C .4D .67.已知一次函数y=kx+b 的图象如图所示,当x <0时,y 的取值范围是( )。

A .y >0 B .y <0 C .-2<y <0 D .y <-2 8.如图是二次函数y=ax 2+bx+c 的图象,则点(a+b ,ac)在( )。

A .第一象限B .第二象限C .第三象限D .第四象限xyO(第7题图) (第8题图) (第9题图) (第10题图)9.二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论:A ODCE FxyB①a >0; ②b >0; ③c >0;④b 2-4a c >0, 其中正确的个数是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011中考总复习数学教材过关训练:有理数
一、填空题
1.-5的相反数是___________________.-3的绝对值是__________________,4
1的算术平方根是__________________.
答案:5 3 0.5
提示:由相反数、绝对值、平方根的定义可得. 2.
5
2的倒数与它的相反数的商是___________________. 答案:-4
25 提示:25÷(-52)=-425. 3.早春二月的某一天,A 市的平均气温为-5℃,B 市的平均气温为3℃,则当天B 比A 市的平均气温高____________℃.
答案:8
提示:3-(-5)=8.
4.若a 、b 互为倒数,c 、d 互为相反数,则
2ab +c+d=__________________. 答案:2
1 提示:ab=1,c+d=0.
5.用“<”“>”或“=”填空 (1)3.1__________-1.2;(2)-1
41__________-172; (3)|-3.5|__________|2
7|;(4)8.2__________|-8.5|. 答案:> > = <
提示:利用数轴比较大小.
6.埃及与北京的时差为-5小时,即表示同一时刻埃及比北京晚5小时,现在是北京时间18:00,则埃及现在是________________.
答案:13:00
提示:-5+18=13.
二、选择题
7.小明从地下三层坐电梯上升到地上11层,他一共上升了_____________层.
A.12
B.13
C.14
D.15 答案:B
提示:3+10=13层.
8.所有大于-3,小于4的整数的和是
A.3
B.7
C.4
D.0 答案:A
提示:相反数的意义.
9.在数轴上到A 点的距离是5的点有2个,它们表示的是-8和2,则点A 表示的数是
A.-4
B.0
C.-3
D.-5
答案:C
提示:绝对值的定义.
10.一次跳绳比赛以100次为标准,超出的记为正数,不够的记为负数,记录如下:+18,-15,+23,-17, -13,0,+16,+5,+10,-2,则这10位选手的平均成绩是
A.125
B.102.5
C.120
D.115
答案:B
提示:18-15+23-17-13+0+16+5+10-2=25,100+25÷10=102.5.
11.(2010江苏无锡中考)比较-
21,-31,4
1的大小,结果正确的是 A.-21<-31<41 B.-21<41<-31 C.41<-31<-21 D.-31<-21<41 答案:A
提示:有理数的比较.
12.若“!”是一种数学运算符号,并且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则!98!100的值为 A.48
50 B.99! C.9 900 D.2! 答案:C 提示:
!98!100=1979819899100⨯⨯⨯⨯⨯⨯⨯ =9 900. 三、解答题
13.计算:
(1)3+4×(-21)-23+(-3
1)2; (2)22-23×0.25+2 0060+|-3-1|; (3)9911
10×(-7); (4)25÷[(-2)3-(-5)]. 答案:(1)-6
98;(2)7;(3)-699114;(4)-325. 提示:根据法则进行有理数的混合运算.
14.小然家、学校、商场、医院恰好在东西走向的同一条马路上.已知小然家在学校东500米,商场在学校西350米,医院在学校东450米.若将马路近似地看成一条直线,以学校为原点,向东方向为正方向,
(1)在数轴上表示出四个场所的位置.
(2)列式计算小然家与商场之间的距离.
(3)小然离开家先向西走了50米,又向东走了500米,然后又向西走了200米,请问此时小然的位置离学校多远?
(1)答案:略.
提示:用数轴上的点表示实数.
(2)答案:850米.
提示:有理数的加减法.
(3)答案:750米.
提示:负数的数学含义及有理数的加减法.
15.小张上周五在股市以收盘价(收市时的价格)每股20元买进某公司股票1 000股,在接下来
根据上表回答问题:
(1)星期四收盘时,该股票每股多少元?
(2)周内该股票收盘时的最高价、最低价分别是多少?
(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小张在本周以收盘价将全部股票卖出,他的收益情况如何?
(1)答案:1.6元.
提示:有理数的加减法.
(2)答案:22.9元,20.8元.
提示:有理数的加减法.
(3)答案:1 889.5元.
16.一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位……依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是多少个单位?
答案:50.
提示:1-2+3-4+5…+99-100=-50.。

相关文档
最新文档