高二数学下学期第二次月考习题(理奥赛)
高二数学第二次月考试题理试题

智才艺州攀枝花市创界学校隆回一中2021年下期高二第二次月考数学〔理科〕试题试题卷 时量:120分钟总分:150分一、选择题(本大题一一共8个小题,每一小题5分,一共40分,在每一小题给出的四个选项里面只有一个是符合题目要求的,请把答案写在答题卷上) 1.函数()f x 在1x =处的导数为1,那么0(1)(1)3lim x f x f x x→--+=()A .3B .23-C .13D .32- 2定点12,F F ,且128F F =,动点P 满足128PF PF +=,那么点P 的轨迹是〔〕3.过点P 〔2,4〕且与抛物线y 2=8x 有且只有一个公一共点的的直线有〔〕 A.0条B.1条C.2条D.3条a =(1,1,0),b =(-1,0,2),那么与向量a +b 方向相反的单位向量e 的坐标是〔〕 A.(0,1,2)B.(0,-1,-2)C.D.12(0,,)555.a <0,b <0的一个必要条件为() A.a +b <0 B.a -b >0 C.b a >1D.ba>-1 6.①假设a 、b 一共线,那么a 、b 所在的直线平行;②假设a 、b 所在的直线是异面直线,那么a 、b 一定不一共面;③假设a 、b 、c 三向量两两一共面,那么a 、b 、c 三向量一定也一共面;④三向量a 、b 、c ,那么空间任意一个向量p 总可以唯一表示为p =x a +y b +z c 〔〕. A .0B.1 C.2D.37、假设函数2)(3-+=ax x x f 在区间),1(+∞内是增函数,那么实数a 的取值范围是〔〕A .),3(+∞B .),3[+∞-C .),3(+∞-D .)3,(--∞ 8.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的选项是〔〕) “存在x ∈R,x 2+2x+2≤0〞的否认是。
2022-2023学年高二下学期第二次月考数学试题(解析版)

2024届高二年级下学期第二次月考数学试卷一、单选题(共40分)1. 已知复数满足,( )z ()()31i 1i z --=+z=A.B.C.D.【答案】D 【解析】【分析】先求出复数的代数形式,再求模即可. z 【详解】由得()()31i 1i z --=+,()()()()1i 1i 1i333i 1i 1i 1i z +++=+=+=+--+.z ∴==故选:D.2. 某地政府调查育龄妇女生育意愿与家庭年收入高低的关系时,随机调查了当地3000名育龄妇女,用独立性检验的方法处理数据,并计算得,则根据这一数据以及临界值表,判断育龄妇女生育意27.326χ=愿与家庭年收入高低有关系的可信度( )参考数据如下:,()()()22210.8280.001,7.8790.005, 6.6350.01P P P χχχ≥≈≥≈≥≈.()()223.8410.05, 2.7060.1P P χχ≥≈≥≈A. 低于 B. 低于 C. 高于 D. 高于1%0.5%99%99.5%【答案】C 【解析】【分析】根据临界值表求得正确答案.【详解】由于,()27.326 6.635,7.879χ=∈而,()()227.8790.005, 6.6350.01P P χχ≥≈≥≈所以可信度高于. 99%故选:C3. 已知向量满足,且,则在上的投影向量为( ),a b 10a b ⋅= ()3,4b =- a b A. B.C.D. ()6,8-()6,8-68,55⎛⎫- ⎪⎝⎭68,55⎛⎫-⎪⎝⎭【答案】C 【解析】【分析】向量在向量上的投影向量的定义计算即可.a b【详解】解:因为向量,且,那么,()3,4b =- 10a b ⋅=5b == 所以向量在向量上的投影向量为, a b ()3468cos ,555b a b a a b b b-⋅⎛⎫⋅=⋅=- ⎪⎝⎭ ,,故选:C.4. 已知等比数列的前n 项和为,若,则( ){}n a n S 153n n S t -=⨯+t =A. B. 5C.D.5-53-53【答案】C 【解析】【分析】根据条件得到,,,从而求出,,,再由数列是等比数列得到,1S 2S 3S 1a 2a 3a {}n a 3212a a a a =即可得到.t 【详解】由题意得:,,, 115S a t ==+21215S a a t =+=+312345S a a a t =++=+即,,, 15a t =+210a =330a =因为数列是等比数列,所以, {}n a 3212a a a a =即,解得:,1030510t =+53t =-故选:C .5. 如图,八面体的每一个面都是正三角形,并且四个顶点在同一平面内,下列结论:①,,,A B C D AE平面;②平面平面;③;④平面平面,正确命题的个数//CDF ABE //CDF AB AD ⊥ACE ⊥BDF 为( )A. 1B. 2C. 3D. 4【答案】D 【解析】【分析】根据题意,以正八面体的中心为原点,分别为轴,建立如图所示空间直O ,,OB OC OE ,,x y z 角坐标系,由空间向量的坐标运算以及法向量,对选项逐一判断,即可得到结果.【详解】以正八面体的中心为原点,分别为轴,建立如图所示空间直角坐标系, O ,,OB OC OE ,,x y z 设正八面体的边长为,则2()(()()(0,,,,,0,0,A E C D F 所以,,(()(,,0,AE CD CF ===设面的法向量为,则,解得,取,即CDF (),,n x y z =CD n CF n ⎧⋅==⎪⎨⋅==⎪⎩x z x y =⎧⎨=-⎩1x =()1,1,1n =-又,所以,面,即面,①正确;0AE n ⋅== AE n ⊥AE ⊄CDF AE //CDF 因为,所以,AE CF =- AE //CF 又,面,面,则面,//AB CD AB ⊄CDF CD ⊂CDF //AB CDF 由,平面,所以平面平面,②正确; AB AE A = ,AE AB ⊂ABE AEB //CDF 因为,则,所以,③正确;))(),,BAB AD ==0AB AD ⋅=u u u r u u u rAB AD ⊥易知平面的一个法向量为,平面的一个法向量为,ACE ()11,0,0n =u r BDF ()20,1,0n =u u r因为,所以平面平面,④正确;120n n ⋅=ACE ⊥BDF 故选:D6. 如图,在正三角形的12个点中任取三个点构成三角形,能构成三角形的数量为( )A. 220B. 200C. 190D. 170【答案】C 【解析】【分析】利用间接法,用总数减去不能构成三角形的情况即可.【详解】任取三个点有种,其中三点共线的有种,故能构成三角形个, 312C 353C 33125C 3C 190-=故选:C .7. 已知,分别是双曲线的左、右焦点,过的直线分别交双曲线左、1F 2F ()2222:10,0x y a b a bΓ-=>>1F 右两支于A ,B 两点,点C 在x 轴上,,平分,则双曲线的离心率为( )23CB F A =2BF 1F BC ∠ΓA.B.C.D.【答案】A 【解析】【分析】根据可知,再根据角平分线定理得到的关系,再根据双曲线定23CB F A =2//CB F A 1,BF BC 义分别把图中所有线段用表示出来,根据边的关系利用余弦定理即可解出离心率.,,a b c 【详解】因为,所以∽,23CB F A =12F AF 1F BC △设,则,设,则,. 122FF c =24F C c =1AF t =13BF t =2AB t =因为平分,由角平分线定理可知,, 2BF 1F BC ∠11222142BF F F c BC F C c ===所以,所以, 126BC BF t ==2123AF BC t ==由双曲线定义知,即,,① 212AF AF a -=22t t a -=2t a =又由得,122B F B F a -=2322BF t a t =-=所以,即是等边三角形, 222BF AB AF t ===2ABF △所以.2260F BC ABF ∠=∠=︒在中,由余弦定理知,12F BF 22212121212cos 2BF BF F F F BF BF BF +-∠=⋅⋅即,化简得, 22214942223t t ct t+-=⋅⋅2274t c =把①代入上式得. ce a==故选:A .8. 高斯是德国著名的数学家,近代数学奠基者之一;享有“数学王子“的称号.用他名字定义的函数称为高斯函数,其中表示不超过x 的最大整数,已知数列满足,,()[]f x x =[]x {}n a 12a =26a =,若,为数列的前n 项和,则( )2156n n n a a a +++=[]51log n n b a +=n S 11000n n b b +⎧⎫⎨⎬⋅⎩⎭[]2023S =A. 999 B. 749 C. 499 D. 249【答案】A 【解析】【分析】根据递推关系可得为等比数列,进而可得,由累加法可求解{}1n n a a +-1145n n n a a -+=⨯-,进而根据对数的运算性质可得,根据裂项求和即可求解.151n n a +=+[]51log n n b a n +==【详解】由得,因此数列为公比为5,2156n n n a a a +++=()2115n n n n a a a a +++-=-{}1n n a a +-首项为的等比数列,故,进而根据累加法214a a -=1145n n n a a -+=⨯-得,()()()()1111112024555251n n n n n n n n a a a a a a a a ++---=+++=++-+-++=+- 由于,又,()515log log 51nn a +=+()()()5555log 5log 51log 55log 511nnnnn n <+<⨯⇒<+<+因此,则,故[]51log n n b a n +==()11000100011100011n n n c b b n n n n +⎛⎫===- ⎪⋅⋅++⎝⎭,12110001n n S c c c n ⎛⎫=+++=- ⎪⎝⎭所以, []20231100010001100099920232023S ⎡⎤⎛⎫⎡⎤=-=-= ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦故选:A【点睛】方法点睛:常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于,其中和分别为特殊数列,裂项相消法类似于,错位相减法类似于n n n c a b =+{}n a {}n b ()11n a n n =+,其中为等差数列,为等比数列等. n n n c a b =⋅{}n a {}n b 二、多选题(共20分)9. 已知方程表示椭圆,下列说法正确的是( )221124x y m m +=--A. m 的取值范围为 B. 若该椭圆的焦点在y 轴上,则 ()4,12()8,12m∈C. 若,则该椭圆的焦距为4 D. 若,则该椭圆经过点6m =10m =(【答案】BC 【解析】【分析】根据椭圆的标准方程和几何性质依次判断选项即可.【详解】A :因为方程表示椭圆,221124x y m m +=--所以,解得,且,故A 错误;12040124m m m m ->⎧⎪->⎨⎪-≠-⎩412m <<8m ≠B :因为椭圆的焦点在y 轴上,221124x y m m +=--所以,解得,故B 正确;4120m m ->->812m <<C :若,则椭圆方程为,6m =22162x y +=所以,从而,故C 正确;222624c a b =-=-=24c =D :若,则椭圆方程为,10m =22126x y +=点的坐标不满足方程,即该椭圆不经过点,故D错误. ((故选:BC.10. 设等差数列的前项和为,,公差为,,,则下列结论正确的是{}n a n n S 10a >d 890a a +>90a <( ) A.0d <B. 当时,取得最大值 8n =n S C.45180a a a ++<D. 使得成立的最大自然数是15 0n S >n 【答案】ABC 【解析】【分析】根据已知可判断,,然后可判断AB ;利用通项公式将转化为可判80a >90a <4518a a a ++9a 断C ;利用下标和性质表示出可判断D.1617,S S 【详解】解:因为等差数列中,,, {}n a 890a a +>90a <所以,,,A 正确; 80a >90a <980d a a =-<当时,取得最大值,B 正确;8n =n S ,C 正确; ()45181193243830a a a a d a d a ++=+=+=<,,()()1611689880S a a a a =+=+>11717917()1702a a S a +==<故成立的最大自然数,D 错误. 0n S >16n =故选:ABC .11. 已知的展开式中第3项与第7项的二项式系数相等,则( ) ()1nx +A.8n =B. 的展开式中项的系数为56 ()1nx +2x C. 奇数项的二项式系数和为128 D. 的展开式中项的系数为56()21nx y +-2xy 【答案】AC 【解析】【分析】利用二项式定理求得的展开通项公式,从而得到关于的方程,解出的值判断AB ,()1nx +n n 利用所有奇数项的二项式系数和为判断C ,根据二项式定理判断D.12n -【详解】因为的展开式通项为,()1nx +1C C k k k kr n n T x x +==所以的展开式的第项的二项式系数为,()1nx +1k +C kn 所以,解得,A 正确; 26C C n n =8n =的系数为,B 错误;2x 28C 28=奇数项的二项式系数和为,C 正确; 1722128n -==根据二项式定理,表示8个相乘,()821x y +-()21x y+-所以中有1个选择,1个选择,6个选择,()21x y+-x 2y-1所以的展开式中项的系数为,D 错误;()21nx y +-2xy ()71187C C 156-=-故选:AC12. 已知小李每天在上班路上都要经过甲、乙两个路口,且他在甲、乙两个路口遇到红灯的概率分别为13,p .记小李在星期一到星期五这5天每天上班路上在甲路口遇到红灯个数之和为,在甲、乙这两个路X 口遇到红灯个数之和为,则( ) Y A. ()54243P X ==B. ()109D X =C. 当时,小李星期一到星期五上班路上恰有3天至少遇到一次红灯的概率为25p =216625D. 当时, 25p =()443E Y =【答案】BC 【解析】【分析】对于AB ,确定,即可求出和,对于C ,表示一天至少遇到红灯15,3X B ⎛⎫ ⎪⎝⎭()4P X =()D X 的概率为,可求出星期一到星期五上班路上恰有3天至少遇到一次红灯的概率的表达式,再将1233p +代入即可求得结果,对于D ,记为周一到周五这五天在乙路口遇到红灯的个数,则25p =ξ()5,B p ξ~,,即可求出.Y X ξ=+()E Y 【详解】对于AB ,小李在星期一到星期五这5天每天上班路上在甲路口遇到红灯个数之和为,且他X 在甲路口遇到红灯的概率为, 13则,15,3X B ⎛⎫ ⎪⎝⎭所以,, ()44511104C 133243P X ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭()111051339D X ⎛⎫=⨯⨯-= ⎪⎝⎭所以A 错误,B 正确,对于C ,由题意可知一天至少遇到一次红灯的概率为, ()112111333p p ⎛⎫---=+ ⎪⎝⎭则小李星期一到星期五上班路上恰有3天至少遇到一次红灯的概率为, 32351212C 13333p p ⎛⎫⎛⎫+--⎪ ⎪⎝⎭⎝⎭当时,, 25p =323233551212122122216C 1C 13333335335625p p ⎛⎫⎛⎫⎛⎫⎛⎫+--=+⨯--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以C 正确,对于D ,记为周一到周五这五天在乙路口遇到红灯的个数,则,, ξ()5,B p ξ~Y X ξ=+所以, ()()()()1553E Y E X E X E p ξξ=+=+=⨯+当时,,所以D 错误, 25p =()121155353E Y =⨯+⨯=故选:BC三、填空题(共20分)13. 圆心在直线上,且与直线相切于点的圆的方程为______. 2x =-20x +-=(-【答案】 ()2224x y ++=【解析】【分析】设圆心为,记点为,由已知直线与直线垂直,由此可()2,C t -(-A AC 20x -=求,再求可得圆的半径,由此可得圆的方程. t AC【详解】记圆心为点,点为点,C (-A 因为圆心在直线上,故可设圆心的坐标为, C 2x =-C ()2,t -因为圆与直线相切于点, C 20x -=(A -所以直线与直线垂直, CA 20x +-=直线的斜率为 CA 20x +-=, 1⎛=- ⎝所以,0=t 所以圆心为, ()2,0C -圆的半径为,2CA r ===所以圆的方程为. ()2224x y ++=故答案为:.()2224x y ++=14. 已知随机变量,且,若,则的最小()21N ξσ ,()()0P P a ξξ≤=≥()00x y a x y +=>>,12x y+值为_________.【答案】 32+【解析】【分析】先根据正态曲线的对称性可求,结合基本不等式可求答案. 2a =【详解】,可得正态分布曲线的对称轴为,()21,N ξσ1x =又,,即. ()()0P P a ξξ≤=≥12a∴=2a =则()(121121213332222y x x y x y x y x y ⎛⎫⎛⎫+=++=++≥+=+⎪ ⎪⎝⎭⎝⎭当且仅当,即时,等号成立.y=2,4x y ==-故答案为:. 32+15. 已知数列是等差数列,并且,,若将,,,去掉一项后,剩{}n a 1476a a a ++=60a =2a 3a 4a 5a 下三项依次为等比数列的前三项,则为__________. {}n b 4b 【答案】## 120.5【解析】【分析】先求得,进而求得,,,,根据等比数列的知识求得. n a 2a 3a 4a 5a 4b 【详解】设等差数列的公差为,{}n a d 依题意,则,147660a a a a ++=⎧⎨=⎩1139650a d a d +=⎧⎨+=⎩解得,所以,151a d =⎧⎨=-⎩6n a n =-+所以, 23454,3,2,1a a a a ====通过观察可知,去掉后,3a 成等比数列,2454,2,1a a a ===所以等比数列的首项为,公比为,{}n b 412所以.3411422b ⎛⎫=⨯= ⎪⎝⎭故答案为:1216. 设奇函数在上为单调递减函数,且,则不等式的解集()f x (0,)+∞()20f =3()2()05f x f x x--≤为___________【答案】 [)(]2,00,2-U 【解析】【分析】分析函数的奇偶性、单调性和取值范围,即可得到不等式的解集. 【详解】由题意,,x ∈R 在中,为奇函数且在上单调递减,()y f x =()f x ()0,∞+()20f =∴,,函数在和上单调递减,()()f x f x =--()()220f f -==(),0∞-()0,∞+∴当和时,;当和时,. (),2-∞-()0,2()0f x >()2,0-()2,+∞()0f x >∵,3()2()05f x f x x--≤∴,即,3()2()3()2()()055f x f x f x f x f x x x x ----==-≤()0f x x≥当时,解得:;当时,解得:, 0x <20x -≤<0x >02x <≤∴不等式解集为:,3()2()05f x fx x--≤[)(]2,00,2-U 故答案为:.[)(]2,00,2-U 四、解答题(共70分)17. 已知向量,,且函数.()cos ,1m x =)2,cos n x x =()f x m n =⋅(1)求函数的单调增区间;()f x (2)若中,分别为角对的边,,求的取值范围. ABC ,,a b c ,,A B C ()2cos cos -=a c B b C π26A f ⎛⎫+ ⎪⎝⎭【答案】(1)πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦(2) 30,2⎛⎫ ⎪⎝⎭【解析】【分析】(1)由题知,再根据三角函数性质求解即可; ()1sin 262πf x x ⎛⎫=++ ⎪⎝⎭(2)由正弦定理边角互化,结合恒等变换得,进而得,,再根据三角函数1cos 2B =π3B =2π0,3A ⎛⎫∈ ⎪⎝⎭的性质求解即可. 【小问1详解】因为向量,,且函数()cos ,1m x =)2,cos n x x =()f x m n =⋅所以 ()211π1cos cos cos2sin 22262f x m n x x x x x x ⎛⎫=⋅=+=++=++ ⎪⎝⎭ 令,解得, πππ2π22π262k x k -+≤+≤+ππππ,Z 36k x k k -+≤≤+∈所以,函数的单调增区间为.()f x πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦【小问2详解】因为,()2cos cos -=a c B b C由正弦定理可得:, 2sin cos sin cos sin cos A B C B B C -=即,2sin cos sin cos sin cos A B C B B C =+因为, ()sin cos sin cos sin sin C B B C B C A +=+=所以,2sin cos sin A B A =因为,所以, ()0,π,sin 0A A ∈≠1cos 2B =因为,所以,所以, ()0,πB ∈π3B =2π0,3A ⎛⎫∈ ⎪⎝⎭所以, πππ11sin cos 263622A f A A ⎛⎫⎛⎫+=+++=+ ⎪ ⎪⎝⎭⎝⎭所以;π13cos 0,2622A f A ⎛⎫⎛⎫+=+∈⎪ ⎪⎝⎭⎝⎭所以,的取值范围为.π26A f ⎛⎫+⎪⎝⎭30,2⎛⎫⎪⎝⎭18. 已知正项数列中,.{}n a 2113,223(2)n n n a S S a n -=+=-≥(1)求的通项公式; {}n a (2)若,求的前n 项和. 2nn na b ={}n b n T 【答案】(1) 21n a n =+(2) 2552n nn T +=-【解析】【分析】(1)根据计算即可得解;11,1,2n n n S n a S S n -=⎧=⎨-≥⎩(2)利用错位相减法求解即可.【小问1详解】当时,,2n =2212212222324212,0S S a a a a a +=-=+=+>解得,25a =由当时,, 2n ≥21223n n n S S a -+=-得当时,,3n ≥2121223n n n S S a ---+=-两式相减得,即,()22112n n n n a a a a --+=-()()()1112n n n n n n a a a a a a ---++-=又,所以,0n a >()123n n a a n --=≥又适合上式,212a a -=所以数列是以为首项,为公差的等差数列, {}n a 32所以; 21n a n =+【小问2详解】, 2122n n n n a n b +==则, 1223521222n n n n T b b b +=+++=+++ , 231135212122222n n n n n T +-+=++++ 两式相减得 2311322221222222n n n n T ++=++++- 211111121122222n n n -++⎛⎫=+++++- ⎪⎝⎭111121212212n n n +-+=+--, 152522n n ++=-所以. 2552n nn T +=-19. 如图,在四棱锥中,侧面底面,,底面是平行四边形,S ABCD -SCD ⊥ABCD SC SD =ABCD ,,,分别为线段的中点. π3BAD ∠=2AB =1AD =,MN ,CD AB(1)证明:平面;BD ⊥SMN (2)若直线与平面所成角的大小为,求二面角的余弦值. SA ABCD π6C SBD --【答案】(1)证明见解析(2)【解析】【分析】(1)利用勾股定理、面面垂直和线面垂直的性质可证得,,由线面垂直BD MN ⊥SM BD ⊥的判定可证得结论;(2)根据线面角的定义可知,设,取中点,根据垂直关系可以为π6SAM ∠=MN BD O = SN F O 坐标原点建立空间直角坐标系,利用二面角的向量求法可求得结果. 【小问1详解】,,,, 2AB = 1AD =π3BAD ∠=2222cos 3BD AB AD AB AD BAD ∴=+-⋅∠=即,,,BD =222AD BD AB ∴+=AD BD ∴⊥分别为中点,四边形为平行四边形,,;,M N ,CD AB ABCD //MN AD ∴BD MN ∴⊥,为中点,,SC SD = M CD SM CD ∴⊥平面平面,平面平面,平面,SCD ⊥ABCD SCD ABCD CD =SM ⊂SCD 平面,又平面,;SM ∴⊥ABCD BD ⊂ABCD SM BD ∴⊥,平面,平面.SM MN M = ,SM MN ⊂SMN BD ∴⊥SMN 【小问2详解】 连接,AM 由(1)知:平面,则与平面所成角为,即, SM ⊥ABCD SA ABCD SAM ∠π6SAM ∠=在中,,, ADM △1AD DM ==2ππ3ADC BAD ∠=-∠=,解得:2222cos 3AM AD DM AD DM ADC ∴=+-⋅∠=AM =,; 2πcos 6AMSA ∴==πtan 16SM AM ==设,取中点,连接,MN BD O = SN F OF 分别为中点,,又平面,,O F ,MN SN //OF SM ∴SM ⊥ABCD 平面,又,OF ∴⊥ABCD MN BD ⊥则以为坐标原点,正方向为轴,可建立如图所示空间直角坐标系,O ,,OM OB OF,,x y z则,,,,C ⎛⎫- ⎪⎝⎭1,0,12S ⎛⎫- ⎪⎝⎭B ⎛⎫ ⎪ ⎪⎝⎭0,D ⎛⎫ ⎪ ⎪⎝⎭,,,112SB ⎛⎫∴=- ⎪ ⎪⎝⎭()1,0,0CB =()DB = 设平面的法向量,SBC (),,n x y z =则,令,解得:,,;1020SB n x y z CB n x ⎧⋅=+-=⎪⎨⎪⋅==⎩2y =0x=z=(0,n ∴= 设平面的法向量,SBD (),,m a b c =则,令,解得:,,;1020SB m a c DB m ⎧⋅=+-=⎪⎨⎪⋅==⎩2a =0b =1c =()2,0,1m ∴= ,cos m n m n m n⋅∴<⋅>===⋅ 二面角为钝二面角,二面角的余弦值为C SBD --∴C SB D --20. 2023年1月26日,世界乒乓球职业大联盟(WTT )支线赛多哈站结束,中国队包揽了五个单项冠军,乒乓球单打规则是首先由发球员发球2次,再由接发球员发球2次,两者交替,胜者得1分.在一局比赛中,先得11分的一方为胜方(胜方至少比对方多2分),10平后,先多得2分的一方为胜方,甲、乙两位同学进行乒乓球单打比赛,甲在一次发球中,得1分的概率为,乙在一次发球中,得1分35的概率为,如果在一局比赛中,由乙队员先发球.12(1)甲、乙的比分暂时为8:8,求最终甲以11:9赢得比赛的概率; (2)求发球3次后,甲的累计得分的分布列及数学期望. 【答案】(1)625(2)分布列见详解, 85【解析】【分析】(1)根据题意可得甲以11:9赢得比赛,则甲再得到3分,乙得到1分,且甲得到最后一分,再根据独立事件的乘法公式求概率即可;(2)根据题意可得X 的可能取值为0,1,2,3,求出相应的概率列出分布列,再求其数学期望即可. 【小问1详解】甲以11:9赢得比赛,共计20次发球,在后4次发球中,需甲在最后一次获胜,最终甲以11:9赢得比赛的概率为:. 22212131236C 2525525P ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【小问2详解】设甲累计得分为随机变量X ,X 的可能取值为0,1,2,3.,()212102510P X ⎛⎫==⨯= ⎪⎝⎭, ()2212121371C 252520P X ⎛⎫⎛⎫==⨯⨯+⨯=⎪ ⎪⎝⎭⎝⎭,()2212131222C 25255P X ⎛⎫⎛⎫==⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,()213332520P X ⎛⎫==⨯=⎪⎝⎭∴随机变量X 的分布列为: X 0123P110 720 25 320∴. ()17238012310205205E X =⨯+⨯+⨯+⨯=21. 已知某种商品的价格(单位:元)和需求量(单位:件)之间存在线性关系,下表是试营业期间记录的数据(对应的需求量因污损缺失): 24x =价格x16 17 18 192024需求量y 5549424036经计算得,,,由前组数据计算出的关于的线性回归5211630i ix==∑52110086ii y ==∑513949i i i x y ==∑5y x 方程为. 4710y x a=-+(1)估计对应的需求量y (结果保留整数);24x =(2)若对应的需求量恰为(1)中的估计值,求组数据的相关系数(结果保留三位小数).24x =6r 附:相关系数. r ==328.8769≈【答案】(1)16(2) 0.575-【解析】【分析】(1)计算前五组数据价格、需求量,,代入回归直线方程求出值,再代入18x =2225y =a 即可;24x =(2)求出六组数据价格、需求量的平均值,,以及与相关系数有关的数值,代入计算即可. x 'y '【小问1详解】记前五组数据价格、需求量的平均值分别为,,x y 由题设知,. 511185i i x x ===∑51122255i i y y ===∑因为回归直线经过样本中心,所以,解得. (),x y 2224718510a =-⨯+129a =即, 4712910x y -+=所以时对应的需求量(件). 24x =47241291610y =-⨯+≈【小问2详解】设六组数据价格、需求量的平均值分别为,,则,,x 'y '611196i i x x ===∑61111963i i y y ===∑,,.6212206ii x==∑62110342i i y ==∑514333i i i xy ==∑所以相关系数. 0.575r ==≈-22. 已知点,经过轴右侧一动点作轴的垂线,垂足为,且.记动点的(1,0)F y A y M ||||1AF AM -=A 轨迹为曲线.C (1)求曲线的方程;C (2)设经过点的直线与曲线相交于,两点,经过点,且为常数)的直(1,0)B -C P Q (1,)((0,2)D t t ∈t 线与曲线的另一个交点为,求证:直线恒过定点. PD C N QN 【答案】(1)()240y x x =>(2)证明见解析 【解析】【分析】(1)设,根据距离公式得到方程,整理即可;()(),0A x y x >(2)设、、,表示出直线的方程,由点在直线上,代()11,P x y ()22,Q x y ()33,N x y PQ ()1,0B -PQ 入可得,同理可得,再表示出直线,代入可得124y y =()13231y y ty y y ++=QN ,即可得到直线过定点坐标.()()()131441y y ty y x +-=-QN 【小问1详解】解:设,则, ()(),0A x y x >()0,M y 因为,||||1AF AM -=又,整理得.0x >1x =+()240y x x =>【小问2详解】证明:设、、,()11,P x y ()22,Q x y ()33,N x y 所以, 121222121212444PQ y y y y k y y x x y y --===-+-所以直线的方程为,PQ ()11124y y x x y y -=-+因为点在直线上,()1,0B -PQ 所以,即,解得①, ()111241y x y y -=--+21112414y y y y ⎛⎫-=-- ⎪+⎝⎭124y y =同理可得直线的方程为,PN ()11134y y x x y y -=-+又在直线上,所以,易得, ()1,D t PN ()111341t y x y y -=-+1y t ≠解得②,()13231y y ty y y ++=所以直线的方程为,即③,QN ()22234y y x x y y -=-+()23234y y y x y y +=+将②式代入③式化简得,又, ()1311234y y ty y x y y y +=+124y y =即, ()131344y y ty y x y +=+即, ()()()131441y y ty y x +-=-所以直线恒过定点.QN 41,t ⎛⎫ ⎪⎝⎭。
高二数学下学期第二次月考试题 理含解析 试题

智才艺州攀枝花市创界学校二中二零二零—二零二壹高二下学期第二次月考数学试卷(理科)一、选择题〔此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.,且,那么实数的值是〔〕A.0B.1C. D.【答案】C【解析】【分析】先计算,再求得,利用模的计算公式求得a.【详解】∵,∴∴=3,得,那么,∴a=,应选:C.【点睛】此题主要考察复数模的运算、虚数i的周期,属于根底题.2.①是三角形一边的边长,是该边上的高,那么三角形的面积是,假设把扇形的弧长,半径分别看出三角形的底边长和高,可得到扇形的面积;②由,可得到,那么①、②两个推理依次是A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理【答案】A【解析】试题分析:根据类比推理、归纳推理的定义及特征,即可得出结论.详解:①由三角形性质得到圆的性质有相似之处,故推理为类比推理;②由特殊到一般,故推理为归纳推理.应选:A.点睛:此题考察的知识点是类比推理,归纳推理和演绎推理,纯熟掌握三种推理方式的定义及特征是解答此题的关键.满足,那么〔〕A. B.C. D.【答案】A【解析】【分析】由求得,利用复数的除法运算法那么化简即可.【详解】由得,所以=,应选A.【点睛】复数是高考中的必考知识,主要考察复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、一共轭复数、复数的模这些重要概念,复数的运算主要考察除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.=(i是虚数单位),那么复数的虚部为〔〕A.iB.-iC.1D.-1【答案】C【解析】故答案为C的导数是()A. B. C. D.【答案】D【解析】【分析】将f〔x〕=sin2x看成外函数和内函数,分别求导即可.【详解】将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x应选:D.【点睛】此题考察复合函数的求导,熟记简单复合函数求导,准确计算是关键,是根底题=的极值点为()A. B.C.或者D.【答案】B【解析】【分析】首先对函数求导,判断函数的单调性区间,从而求得函数的极值点,得到结果.【详解】==,函数在上是增函数,在上是减函数,所以x=1是函数的极小值点,应选B.【点睛】该题考察的是有关利用导数研究函数的极值点的问题,属于简单题目.()A.5B.6C.7D.8【答案】D【解析】时,时,应选D.与直线及所围成的封闭图形的面积为()A. B. C. D.【答案】D【解析】曲线与直线及所围成的封闭图形如下列图,图形的面积为,选.考点:定积分的简单应用.9.某校高二(2)班每周都会选出两位“进步之星〞,期中考试之后一周“进步之星〞人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,小赵说:“一定没有我,肯定有小宋〞,小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,小谭说:“小赵说的对〞.这四人中有且只有两人的说法是正确的,那么“进步之星〞是()A.小马、小谭B.小马、小宋C.小赵、小谭D.小赵、小宋【答案】C【解析】【分析】根据题意,得出四人中有且只有小马和小宋的说法是正确的,“进步之星〞是小赵和小谭.【详解】小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,假设小马说假话,那么小赵、小宋、小谭说的都是假话,不合题意,所以小马说的是真话;小赵说:“一定没有我,肯定有小宋〞是假话,否那么,小谭说的是真话,这样有三人说真话,不合题意;小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,是真话;小谭说:“小赵说的对〞,是假话;这样,四人中有且只有小马和小宋的说法是正确的,且“进步之星〞是小赵和小谭.应选:C.【点睛】此题考察了逻辑推理的应用问题,分情况讨论是关键,是根底题目.,直线过点且与曲线相切,那么切点的横坐标为()A. B.1 C.2 D.【答案】B【解析】【分析】设出切点坐标,求出原函数的导函数,得到曲线在切点处的切线方程,把点〔0,﹣e〕代入,利用函数零点的断定求得切点横坐标.【详解】由f〔x〕=e2x﹣1,得f′〔x〕=2e2x﹣1,设切点为〔〕,那么f′〔x0〕,∴曲线y=f〔x〕在切点处的切线方程为y〔x﹣〕.把点〔0,﹣e〕代入,得﹣e,即,两边取对数,得〔〕+ln〔〕﹣1=0.令g〔x〕=〔2x﹣1〕+ln〔2x﹣1〕﹣1,显然函数g〔x〕为〔,+∞〕上的增函数,又g〔1〕=0,∴x=1,即=1.应选:B.【点睛】此题考察利用导数研究过曲线上某点处的切线方程,考察函数零点的断定及应用,是中档题.f(x)的导函数f'(x)的图象如下列图,f(-1)=f(2)=3,令g(x)=(x-1)f(x),那么不等式g(x)≥3x-3的解集是() A.[-1,1]∪[2,+∞) B.(-∞,-1]∪[1,2]C.(-∞,-1]∪[2,+∞)D.[-1,2]【答案】A【解析】【分析】根据图象得到函数f〔x〕的单调区间,通过讨论x的范围,从而求出不等式的解集.【详解】由题意得:f〔x〕在〔﹣∞,1〕递减,在〔1,+∞〕递增,解不等式g〔x〕≥3x﹣3,即解不等式〔x﹣1〕f〔x〕≥3〔x﹣1〕,①x﹣1≥0时,上式可化为:f〔x〕≥3=f〔2〕,解得:x≥2,②x﹣1≤0时,不等式可化为:f〔x〕≤3=f〔﹣1〕,解得:﹣1≤x≤1,综上:不等式的解集是[﹣1,1]∪[2,+∞〕,应选:A.【点睛】此题考察了函数的单调性问题,考察导数的应用,分类讨论思想,准确判断f(x)的单调性是关键,是一道中档题.在上存在导函数,对于任意的实数,都有,当时,.假设,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】试题分析:∵,设,那么,∴为奇函数,又,∴在上是减函数,从而在上是减函数,又等价于,即,∴,解得.考点:导数在函数单调性中的应用.【思路点睛】因为,设,那么,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果.二、填空题〔此题一共4小题,每一小题5分,一共20分〕为纯虚数,那么实数的值等于__________.【答案】0【解析】试题分析:由题意得,复数为纯虚数,那么,解得或者,当时,〔舍去〕,所以.考点:复数的概念.,,那么__________〔填入“〞或者“〞〕.【答案】.【解析】分析:利用分析法,逐步分析,即可得到与的大小关系.详解:由题意可知,那么比较的大小,只需比较和的大小,只需比较和的大小,又由,所以,即,即.点睛:此题主要考察了利用分析法比较大小,其中解答中合理利用分析法,逐步分析,得出大小关系是解答的关键,着重考察了推理与论证才能.15..【答案】.【解析】试题分析:根据定积分性质:,根据定积分的几何意义可知,表示以为圆心,1为半径的圆的四分之一面积,所以,而,所以.考点:定积分.,假设对任意实数都有,那么实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减,即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤〕〔i为虚数单位〕.〔1〕当时,求复数的值;〔2〕假设复数在复平面内对应的点位于第二象限,求的取值范围.【答案】〔Ⅰ〕〔Ⅱ〕【解析】【分析】〔Ⅰ〕将代入,利用复数运算公式计算即可。
高二数学(理)下学期第二次月考试题(含答案)

上学期第二次月考高二数学卷(理)考试时间:120分钟 满分:150一、选择题(每小题5分,共12题)1、已知全集{,,,,}U a b c d e =,{,,}M a c d =,{,,}N b d e =,则N M C U ⋂)( = ( )A .{}bB .{}dC .{,}b eD .{,,}b d e2、 5()a x x +(x R ∈)展开式中3x 的系数为10,则实数a 等于( )A .-1B .12 C .1 D .23、某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( )A. 24种B. 36种C. 38种D. 108种4、计算888281808242C C C C ++++ =( )A 、62B 、82C 、83 D 、63 5、一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每次取后不放回,则若已知第一只是好的,则第二只也是好的概率为( ) A.23 B.512 C.59 D.796、已知△ABC 的重心为P ,若实数λ满足:AB AC AP λ+=,则λ的值为A .2B .23C .3D .67、在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,问实验顺序的编排方法共有 ( )A .34种B .48种C .96种D .144种8、35(1(1+的展开式中x 的系数是(A )4- (B )2- (C )2 (D )49、某体育彩票规定: 从01到36共36个号码中抽出7个号码为一注,每注2元 某人想先选定吉利号18,然后再从01到17中选3个连续的号,从19到29中选2个连续的号,从30到36中选1个号组成一注,则此人把这种要求的号买全,至少要花( )A.1050元B. 1052元C. 2100元D. 2102元10、9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的种数是( )A.2524C C ⋅ B.443424C C C ++ C.2524C C + D.054415342524C C C C C C ⋅+⋅+⋅11、已知,)(为偶函数x f x x f x x f x f 2)(,02),2()2(=≤≤--=+时当,若*,(),n n N a f n ∈=则2011a = ( )A .1B .21C . 14D .1812、如图,在A 、B 间有四个焊接点,若焊接点脱落,而可能导致电路不通,如今发现A 、B 之间线路不通,则焊接点脱落的不同情况有 ( )A .10B .13C .12D .15二、填空题(每小题5分,共4小题)13、已知(1-2x)n的展开式中,二项式系数的和为64,则它的二项展开式中,系数最大的是第_____________项.14、乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_.15、同时投掷三颗骰子,至少有一颗骰子掷出6点的概率是_____________ (结果要求写成既约分数).16、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有_______种不同的涂色方案。
2021年高二下学期第二次月考数学(理奥赛)试题 含答案

考试时间:xx年4月28—29上饶县中学xx届高二年级下学期第二次月考数学试卷(理奥赛)2021年高二下学期第二次月考数学(理奥赛)试题含答案1.设是实数,且是实数,则()A.B.C.D.2.下列命题中是假命题的是()A.B.C.D.3.若a,b∈R,则>成立的一个充分不必要的条件是()A.b>a>0 B.a>b>0 C.b<a D.a<b 4.椭圆的离心率为b,点(1,b)是圆x2+y2﹣4x﹣4y+4=0的一条弦的中点,则此弦所在直线的方程是()A.3x+2y﹣4=0 B.3x﹣2y﹣2=0 C.4x+6y﹣7=0 D.4x﹣6y﹣1=0.5.若曲线在点处的切线方程是,则()A.B.C.D.6.已知直线与椭圆相交于、两点,若椭圆的离心率为,焦距为2,则线段AB的长是() A.B.C.D.27.在R上可导的函数的图象如图示,为函数的导数,则关于的不等式的解集为()A.B.C.D.8.已知函数在上不是单调函数,则实数的取值范围是()A.B.C.D.9.如图所示,ABCD -A 1B 1C 1D 1是棱长为6的正方体,E ,F 分别是棱AB ,BC 上的动点,且AE =BF.当A 1,E ,F ,C 1共面时,平面A 1DE与平面C 1DF 所成二面角的余弦值为( )A. B. C. D.10.若函数()'()()y f x R xf x f x =>-在上可导,且满足不等恒成立,满足则下列不等式一定成立的是( )A .B .C .D .11.已知函数与图象上存在关于轴对称的点,则的取值范围是( )A. B . C. D.12.已知椭圆C 1: =1(a >b >0)与圆C 2:x 2+y 2=b 2,若在椭圆C 1上存在点P ,过P 作圆的切线PA ,PB ,切点为A ,B 使得∠BPA=,则椭圆C 1的离心率的取值范围是( ) A . B . C . D .二、填空题(本大题共4小题,每题5分,共20分,把答案填在题中横线上)13.计算定积分()dx= .14.设命题:(),命题:(),若命题是命题的充分非必要条件,则的取值范围是 .15.设椭圆的两个焦点分别为,点在椭圆上,且,,则该椭圆的离心率为 .16.已知椭圆方程+=1(),当+的最小值时,椭圆的离心率= .三、解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.)17.(本小题满分10分)已知命题p :∀x ∈[1,2],x 2-a ≥0.命题q :∃x 0∈R ,使得x 20+(a -1)x 0+1<0.若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围.18.(本小题12分)已知数列满足,且(1)用数学归纳法证明:;(2)设,求数列的通项公式.19.(本小题12分)如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=,点E 在PD 上,且PE:ED=2:1.(1)证明PA ⊥平面ABCD ;(2)求以AC 为棱,EAC 与DAC 为面的二面角的大小;(3)在棱PC 上是否存在一点F ,使BF//平面AEC ?证明你的结论.20.(本小题12分)已知椭圆C :的一个顶点为A (2,0),离心率为,过点G (1,0)的直线与椭圆C 相交于不同的两点M ,N .(1)求椭圆C 的方程;(2)当△AMN 的面积为时,求直线的方程.21.(本小题满分12分)已知函数(1)求函数的单调区间和极值;(2)若对于任意的及,不等式恒成立,试求m 的取值范围.BD22.(本小题满分12分)已知椭圆C:的焦距为4,其长轴长和短轴长之比为.(1)求椭圆C的标准方程;(2)设F为椭圆C的右焦点,T为直线上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.(ⅰ)若OT平分线段PQ(其中O为坐标原点),求的值;(ⅱ)在(ⅰ)的条件下,当最小时,求点T的坐标.上饶县中学xx 届高二年级下学期第二次月考数学试卷(理奥)答案1—5 BBACA 6--10 BACBB 11--12 BA13. 14. 15. 16.17.(本小题满分12分)解: 由条件知,a ≤x 2对∀x ∈[1,2]成立,∴a ≤1;∵∃x 0∈R ,使x 02+(a -1)x 0+1<0成立,∴不等式x 2+(a -1)x +1<0有解,∴Δ=(a -1)2-4>0,∴a >3或a <-1; ∵p 或q 为真,p 且q 为假,∴p 与q 一真一假.①p 真q 假时,-1≤a ≤1;②p 假q 真时,a >3.∴实数a 的取值范围是a >3或-1≤a ≤1.18.解:(1)证明时,假设 时 成立当 时在(0,1)递增(2)19证明 因为底面ABCD 是菱形,∠ABC=60°,所以AB=AD=AC=a , 在△PAB 中,由PA 2+AB 2=2a 2=PB 2 知PA ⊥AB.同理,PA ⊥AD ,所以PA ⊥平面ABCD.(Ⅱ)解 作EG//PA 交AD 于G ,由PA ⊥平面ABCD.知EG ⊥平面ABCD.作GH ⊥AC 于H ,连结EH ,则EH ⊥AC ,∠EHG 即为二面角的平面角.又PE : ED=2 : 1,所以从而(3)解法一以A为坐标原点,直线AD、AP分别为y轴、z轴,过A点垂直平面PAD的直线为x轴,建立空间直角坐标系如图.由题设条件,相关各点的坐标分别为所以设点F是棱PC上的点,则令得解得即时,亦即,F是PC的中点时,、、共面.又BF平面AEC,所以当F是棱PC的中点时,BF//平面AEC.20.(1);(2)±y=0.解:(1)由题意可得:,解得a=2,c=,b2=2.∴椭圆C的方程为.(2)设直线l的方程为:my=x﹣1,M(x1,y1),N(x2,y2).联立,化为(m2+2)y2+2my﹣3=0,∴y1+y2=,y1y2=.∴|MN|===.点A到直线l的距离d=,∴|BC|d==,化为16m4+14m2﹣11=0,解得m2= 解得m=.∴直线l的方程为,即±y=0.21.解:(1)由题知,函数的定义域为,且2分令可得当时,;当时,.所以,函数的单调递增区间为,单调递减区间为,在时取得极小值,在定义域内无极大值. 6分(2)由(1)知,函数在上单调递增,故在区间上的最小值为. 8分因此,只需在上恒成立即可,即在上恒成立.设,,由二次函数的图像和性质可得且即:且解得:,即实数m的取值范围是22.解:(Ⅰ)由已知可得解得所以椭圆C的标准方程是.(Ⅱ)(ⅰ)由(Ⅰ)可得,F点的坐标是(2,0).设直线的方程为,将直线的方程与椭圆C的方程联立,得消去x,得,其判别式设则于是设为的中点,则点的坐标为.因为,所以直线的斜率为,其方程为.当时,,所以点的坐标为,此时直线OT的斜率为,其方程为.将点的坐标为代入,得. 解得.(ⅱ)由(ⅰ)知T为直线上任意一点可得,点T的坐标为. 于是,20686 50CE 僎t*Q27106 69E2 槢30232 7618 瘘22110 565E 噞€39077 98A5 颥U20855 5177 具p25151 623F 房。
高二下学期第二次月考(6月)数学(理)试题(解析版)

高二年级下学期第二次月考数学试题(理)注意事项:1.本试卷分第Ⅰ卷(选择题)和Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 2.答题前请仔细阅读答题卡(纸)上的“注意事项”,按照“注意事项”的规定答题. 3.选择题答案涂在答题卡上,非选择题答案写在答题卡上相应位置,在试卷和草稿纸上作答无效.第Ⅰ卷 选择题(共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求,将正确答案填涂在答题卡上.1.已知集合{}2|3100A x x x =-++≥,{|121}B x m x m =+≤≤-,若A B ⋂≠∅,则m 的取值范围是( ) A. 1,42⎡⎤⎢⎥⎣⎦B. 1,(4,)2⎛⎫-∞+∞ ⎪⎝⎭U C. [2,4] D. (2,4)【答案】C 【解析】 【分析】化简出集合[]2,5A =-,由题意先说明B 不是空集,再解A B ⋂≠∅. 【详解】解:∵集合{}[]2|31002,5A x x x =-++≥=-,又∵{|121}B x m x m =+≤≤-,A B ⋂≠∅, 则121m m +≤-,即2m ≥; 此时,15m +≤,解得,4m ≤; 故m 的取值范围为[2,4]. 故选:C.【点睛】本题考查了集合的交集的应用,注意A B ⋂≠∅的前提是,A B 都不是空集,属于基础题. 2.在复平面内,复数12iz i+=,则z 对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】 【分析】化简复数,求出共轭复数,可得对应的点的坐标,即可得出结论. 【详解】解:复数122iz i i+==-, 共轭复数2z i =+, 对应的点()2,1位于第一象限. 故选:A.【点睛】本题考查复数的几何意义,考查复数的运算,正确化简复数是关键. 3.下列命题中,真命题的是( ) A. 00,0x x R e∃∈≤B. 2,2x x R x ∀∈>C. 0a b +=的充要条件是1ab=- D. 若,x y R ∈,且2x y +>,则,x y 中至少有一个大于1 【答案】D 【解析】 【分析】利用全称命题和特称命题的定义判断A ,B.利用充要条件和必要条件的定义判断C.利用反证法证明D . 【详解】解:A ,根据指数函数的性质可知x e 0>恒成立,所以A 错误. B.当x 1=-时,1212(1)12-=<-=,所以B 错误. C.若a b 0==时,ab无意义0,即充分性不成立,所以C 错误. D.假设x ,y 都小于1,则x 1<,y 1<,所以x y 2+<与x y 2+>矛盾,所以假设不成立,所以D 正确. 故选D .【点睛】本题主要考查命题的真假判断,考查充分、必要条件的判断,属于基础题.4.若函数22,1,()log ,1,x x f x x x ⎧<=⎨-≥⎩ 则函数()f x 的值域是( )A. (,2)-∞B. (,2]-∞C. [0,)+∞D. (,0)(0,2)-∞U【答案】A 【解析】 【分析】画出函数的图像,由此确定函数的值域.【详解】画出函数的图像如下图所示,由图可知,函数的值域为(),2-∞,故选 A.【点睛】本小题主要考查指数函数和对数函数的图像,考查分段函数的值域,考查数形结合的数学思想方法,属于基础题.5.已知定义在R 上的奇函数()f x 满足:当0x <时,()()2log 1f x x =-,则()()7f f =( )A .1-B. 2-C. 1D. 2【答案】D 【解析】 【分析】根据()f x 为定义在R 上的奇函数,先求出()7f ,进而可求出()()7ff .【详解】因为()f x 为定义在R 上的奇函数,当0x <时,()()2log 1f x x =-,所以()()()277log 173f f =--=-+=-;所以()()()()273log 132ff f =-=+=.故选D【点睛】本题主要考查函数的奇偶性,根据函数的奇偶性求函数的值,熟记奇函数的定义即可求解,属于基础题型.6.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A. 0.7 B. 0.6C. 0.4D. 0.3【答案】B 【解析】分析:判断出为二项分布,利用公式()()D X np 1p =-进行计算即可.()()D X np 1p =-Qp 0.4∴=或p 0.6=()()()()6444661010P X 41P X 61C p p C p p Q ==-<==-,()221p p ∴-<,可知p 0.5>故答案选B.点睛:本题主要考查二项分布相关知识,属于中档题. 7.用数学归纳法证明:()()*222111112(2)232121n n n n N +++⋅⋅⋅+<-≥∈--时第一步需要证明( ) A. 11221<-- B. 21112221n+<-- C. 22111122321++<-- D. 222211*********+++<-- 【答案】C 【解析】 【分析】直接利用数学归纳法写出2n =时左边的表达式即可,不等式的左边需要从1加到()22121-,不要漏掉项.【详解】解:用数学归纳法证明()()*222111112(2)232121n n n n N +++⋅⋅⋅+<-≥∈--,第一步应验证不等式为:222111122321++<--. 故选:C.【点睛】在利用数学归纳法证明问题中,第一步一定要分析不等式左边的项的特点,不能多写也不能少写,否则会引起答案的错误.8.若极坐标方程()ρρθ=满足()()ρθρπθ=-,则()ρρθ=表示的图形关于( )对称. A. 极轴 B. 极点C. 射线2πθ=D. 不确定【答案】C 【解析】 【分析】由()()ρρθρπθ==-,可得22θπθπ+-=,即可判断出结论.【详解】解:∵()()ρρθρπθ==-, ∴22θπθπ+-=,因此方程()ρρθ=表示的图形关于射线2πθ=对称.故选:C.【点睛】本题考查了极坐标方程的意义,考查了推理能力,属于基础题. 9.函数||4cos x y x e =-的图象可能是( )A. B.C. D.【答案】A 【解析】 【分析】求导,判断导函数函数值的正负,从而判断函数的单调性,通过单调性判断选项. 【详解】解:当0x >时,4cos xy x e =-,则'4sin x y x e =--,若0,2x π⎛⎫∈ ⎪⎝⎭,sin 0,0x x e >>,'4sin 0x y x e =--<,若,2x π⎡⎫∈+∞⎪⎢⎣⎭,44sin 4x -≤≤,()3222.74x e e π≥>>,则'4sin 0xy x e =--<恒成立, 即当0x >时,'4sin 0xy x e =--<恒成立, 则4cos x y x e =-在()0,∞+上单调递减,故选:A.【点睛】本题主要考查函数的图象,可以通过函数的性质进行排除,属于中档题.10.已知抛物线22(0)y px p =>为双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A 是两曲线的一个点,且AF ⊥x 轴,则双曲线的离心率为( )A.1B.1C.1D.2【答案】A 【解析】 【分析】求出抛物线与双曲线的焦点坐标,将其代入双曲线方程求出A 的坐标,将A 代入抛物线方程求出双曲线的三参数,,a b c 的关系,则双曲线的离心率可求.【详解】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,双曲线的焦点坐标为(),0c , 2p c ∴=,Q 点A 是两曲线的一个交点,且AF x ⊥轴,将x c =代入双曲线方程得到2,b A c a ⎛⎫⎪⎝⎭,将A 的坐标代入抛物线方程可得,422222444b pc c a b a===+,即4224440a a b b +-=,解得ba= 222222b c a a a -∴==+)22231c a=+=解得1ce a==,故选A .【点睛】本题主要考查双曲线性质与双曲线的离心率,是中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解.11.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A. 12-B.13C.12D. 1【答案】C 【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+,设()11eex x g x --+=+,则()()21111111e 1eeee e x x x x x x g x ---+----=-=-=', 当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【名师点睛】利用函数零点的情况求参数的值或取值范围的方法:(1)利用零点存在性定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图像的上、下关系问题,从而构建不等式求解.12.定义域为R 的函数()f x 满足()()f x f x '>,则不等式1()(21)x e f x f x -<-的解为( ) A. 1(,)4+∞ B. 1(,)2+∞C. (1,)+∞D. (2,)+∞【答案】C 【解析】 【分析】由()()f x f x '>,构造函数()()exf xg x =,对其求导可知()()()0e xf x f xg x -''=>,所以函数()()exf xg x =是R 的单调递增函数,不等式()()121x ef x f x -<-可化为()()2121eexx f x f x --<,由()g x 的单调性可知21x x <-,解不等式即可得到答案. 【详解】构造函数()()e xf xg x =,则()()()()()2e e 0e e x x xxf x f x f x f xg x ''--='=>,则函数()()exf xg x =是R 的单调递增函数,对不等式()()1e21x f x f x -<-的两端同时除以21e x -得()()2121e e xx f x f x --<,则21x x <-,解得1x >. 故答案为C.【点睛】由()()f x f x '>,构造增函数()()exf xg x =,是本题的一个难点,需要学生在平常的学习中多积累这样的方法.第Ⅱ卷 非选择题(共90分)二、填空题:本大题共4小题,每小题5分,共20分,将答案填在答题卡上相应位置.13.设1x ≥,则函数()()231x x y x ++=+的最小值是______.【答案】6 【解析】【分析】根据题意,令1t x =+,则函数(1)(2)2=3t t y t t t ++=++(2t ≥),进行求导可得出函数2=3y t t++的单调性,进而即可求出最小值. 【详解】令1t x =+,则函数(1)(2)2=3t t y t t t++=++(2t ≥),因为2t ≥,所以2210y t'=->, 即函数23y t t=++为增函数, 所以23y t t=++在2t =时取到最小值, 代入可得最小值为6. 故答案为:6.【点睛】本题考查了换元法以及用导数求函数单调性,考查了转化思想,属于中档题. 14.若0sin a xdx π=⎰,则9a x ⎛- ⎝的展开式中常数项为______.【答案】672 【解析】 【分析】先由微积分基本定理求出a ,再由二项展开式的通项公式,即可求出结果. 【详解】因为()sin 020a xdx cosx cos cos πππ==-=-+=⎰;所以92x ⎛ ⎝的展开式的通项公式为:()()39999221992121k k kkkkk k kk T C xx C x----+=-=-,令3902k -=,则6k =,所以常数项为()6637921672T C =-=. 故答案为672【点睛】本题主要考查微积分基本定理和二项式定理,熟记公式即可求解,属于基础题型.15.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260. 【解析】分析:按是否取零分类讨论,若取零,则先排首位,最后根据分类与分步计数原理计数. 详解:若不取零,则排列数为224534C C A ,若取零,则排列数为21135333C C A A ,因此一共有22421135345333C C A C C A A 1260+=个没有重复数字的四位数.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法. 16.已知矩形ABCD 中,AB =1,BC =,将矩形ABCD 沿对角线AC 折起,使平面ABC 与平面ACD 垂直,则B 与D 之间的距离为__________. 【答案】10【解析】 【分析】过B ,D 分别向AC 作垂线,垂足分别为M ,N .则可求得AM =,BM =,CN =,DN =,MN =1.再求出=++,平方即得||=.【详解】过B ,D 分别向AC 作垂线,垂足分别为M ,N .则可求得AM =,BM =,CN =,DN =,MN =1.由于=++, ∴||2=(++)2=||2+||2+||2+2(·+·+·)=()2+12+()2+2(0+0+0)=, ∴||=. 故答案为【点睛】(1)本题主要考查空间向量的线性运算和向量的模的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)空间向量a r的模2||a a =rr 三、解答题:大本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.在平面直角坐标系中,以原点为极点.以x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 4sin 4ρρθρθ=-+,直线1l 的极坐标方程为()cos sin 3ρθθ-=.(1)写出曲线C 和直线1l 的直角坐标方程;(2)设直线2l 过点()10P -,与曲线C 交于不同两点A B ,,AB 的中点为M ,1l 与2l 的交点为N ,求PM PN ⋅.【答案】(Ⅰ)C: ()()22129x y -++= ;直线1l 的直角坐标方程30x y --= (Ⅱ)8【解析】【分析】(Ⅰ)由极坐标方程与直角坐标方程的互化公式可直接得出结果;(Ⅱ)先写出直线2l 的参数方程,代入曲线C 的普通方程,得到PM ,再由直线2l 的参数方程代入30x y --=,得到PN ,进而可得出结果.【详解】(Ⅰ)曲线2:2cos 4sin 4C ρρθρθ=-+的直角坐标方程为:22244x y x y +=-+; 即()()22129x y -++= ()1:cos sin 3l ρθθ-=的直角坐标方程为:30x y --=(Ⅱ)直线2l 的参数方程1x tcos y tsin αα=-+⎧⎨=⎩(t 为参数), 将其代入曲线C 的普通方程并整理得()24cos sin 10t t αα---=,设,A B 两点的参数分别为12,t t ,则()124cos sin t t αα+=-因为M 为AB 的中点,故点M 的参数为()122cos sin 2t t αα+=-, 设N 点的参数分别为3t ,把1x tcos y tsin αα=-+⎧⎨=⎩代入30x y --=整理得34cos sin t αα=- 所以12342cos sin 82cos sin t t PM PN t αααα+⋅=⋅=-⋅=-. 【点睛】本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可;本题也考查了参数的方法求弦长的问题,熟记参数方程即可求解,属于常考题型.18.已知函数()||f x x a =-.(1)若不等式()3f x ≤的解集为{|15}x x -≤≤,求实数a 的值;(2)在(1)的条件下,若()(5)f x f x m ++≥对一切实数x 恒成立,求实数m 的取值范围.【答案】(1) 2a =;(2) m 的取值范围(5]-∞,. 【解析】【详解】(1)∵|x-a|≤3 ,∴a-3≤x≤a+3,∵f (x )≤3的解集为[-1,5] ,∴,∴a=2.(2)∵f (x )+f (x+5)=|x-2|+|x+3|≥|(x-2)-(x+3)|=5又f (x )+f (x+5)≥m 恒成立 ,∴m≤5.19.每年3月21日是世界睡眠日,良好的睡眠状况是保持身体健康的重要基础.为了做好今年的世界睡眠日宣传工作,某社区从本辖区内同一年龄层次的人员中抽取了100人,通过问询的方式得到他们在一周内的睡眠时间(单位:小时),并绘制出如右的频率分布直方图:(Ⅰ)求这100人睡眠时间的平均数x (同一组数据用该组区间的中点值代替,结果精确到个位);(Ⅱ)由直方图可以认为,人的睡眠时间t 近似服从正态分布()2N μσ,,其中μ近似地等于样本平均数x ,2σ近似地等于样本方差2s ,233.6s ≈.假设该辖区内这一年龄层次共有10000人,试估计该人群中一周睡眠时间位于区间(39.2,50.8)的人数. 33.6 5.8≈.若随机变量Z 服从正态分布()2N μσ,,则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=.【答案】(1)45; (2)6826人.【解析】【分析】(I)结合题表,计算期望,得到平均数,即可.(II)结合题意,得到该区间位于距离平均数一个标准差之内,计算概率,计算人数,即可.【详解】(Ⅰ)0.06340.18380.20420.28460.16500.10540.025844.7245 x=⨯+⨯+⨯+⨯+⨯+⨯+⨯=≈;(Ⅱ)由题意得,39.250.8,μσμσ-≈+≈,()39.250.80.6826P t<<=,所以估计该人群中一周睡眠时间在区间()39.250.8,的人数约为100000.68266826⨯=(人);【点睛】本道题考查了正态分布曲线,考查了期望计算公式,难度中等.20.如图,在正三棱柱111ABC A B C-中,11AB BC⊥,P是1AA的中点.(1)求平面1PBC将三棱柱分成的两部分的体积之比;(2)求平面1PBC与平面ABC所成二面角的正切值.【答案】(1)1:1;(22【解析】【分析】(1)设1,AB a AA b==,分别求出111ABC A B CV-,1B ACC PV-,即可得体积比;(2)取BC的中点M,连接1,AM B M,通过11AB BC⊥及11AB BC⊥,可得1BC⊥面1AMB,根据计算可得222a b=,不妨设2b=,则22a=由题可得1PBCV在面ABC上的投影为ABCV,设平面1PBC与平面ABC所成二面角的大小为θ,求出1BPCSV,ABCSV,可得1cos ABCBPCSSθ=VV,进而可得正切值.【详解】解:(1)设1,AB a AA b==,则1112213sin 6024ABC AB C V a b a b -=⋅⋅=o , 12113332228B ACC P b V b a a a b -⎛⎫=⋅⋅+⋅⋅= ⎪⎝⎭, 则平面1PBC 将三棱柱分成的两部分的体积之比为1:1;(2)如图:取BC 的中点M ,连接1,AM B M , 由已知得面ABC ⊥面11BCC B ,又AM BC ⊥,则AM ⊥面11BCC B ,又1BC ⊂面11BCC B ,1AM BC ∴⊥,又11AB BC ⊥,且1AM A AB =I ,则1BC ⊥面1AMB ,11BC B M ∴⊥,则111BMB B BC V :V ,1111BB BM BB B C ∴=, 2ab b a ∴=,222a b ∴=, 不妨设2b =,则22a = 则()212213BP PC ==+=,()2212223BC =+=, 则1212333322BPC S =⨯-=V (2132322ABC S =⨯⨯=V由题可得1PBC V 在面ABC 上的投影为ABC V ,设平面1PBC 与平面ABC 所成二面角的大小为θ,则1cos 3ABC BPC S S θ===V V ,sin tan cos 2θθθ∴=== 所以平面1PBC 与平面ABC. 【点睛】本题考查棱柱,棱锥体积的求解,考查利用面积的射影法求二面角的大小,是中档题. 21.已知椭圆222:2(0)C x y a a +=>,过原点O 且斜率不为0的直线与椭圆C 交于P ,Q 两点. (1)若(1,0)F 为椭圆C 的一个焦点,求椭圆C 的标准方程;(2)若经过椭圆C 的右焦点的直线l 与椭圆C 交于A ,B 两点,四边形OAPB 能否为平行四边形?若能,求此时直线OP 的方程,若不能,说明理由.【答案】(1)2212x y +=;(2)0x = 【解析】【分析】(1)变形2222:12x y C a a+=,根据,,a b c 的关系求解即可; (2)设直线l 的方程为2x my a =+,代入椭圆方程,根据韦达定理及向量的坐标运算,求得P 点坐标,代入椭圆方程,即可求得m 的值,进而可得直线OP 的方程.【详解】解:(1)由已知得2222:12x y C a a +=,则2212a a -=,解得22a =, 所以椭圆C 的标准方程为2212x y +=; (2)设()()()112200,,,,,A x y B x y P x y ,椭圆C 的右焦点,02F a ⎛⎫ ⎪⎪⎝⎭,当直线l 的斜率为0时,,,O A B 三点共线,不符合题意,所以可设直线l的方程为x my =, 联立2222x y a +=,可得()222202a m y ++-=, 显然,>0∆,则1222y y m +=-+, 若四边形OAPB 为平行四边形,则OP OA OB =+u u u r u u u r u u u r ,所以,01222y y y m =+=-+, ()0121222x x x m y y m =+=++=+, 因为P 在椭圆上,所以222002x y a +=,即()()222222228422a a m a m m +=++,解得m =,所以四边形OAPB能为平行四边行,此时002OP y m k x ==-=, 直线OP的方程为y x =即0x ±=. 【点睛】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,计算能力,属于中档题.22.设函数()ln f x x x =-,() 21xg x xe x =--. (1) 关于x 的方程()2103f x x x m =-+在区间[1,3]上有解,求m 的取值范围; (2) 当0x >时,()()g x a f x -≥恒成立,求实数a 的取值范围.【答案】(1) m 的取值范围为35[ln 32,ln]24-+;(2) a 的取值范围为0a ≤. 【解析】试题分析:(1)方程()2103f x x m =-+等价于()27ln 3h x x x x m =-+=,利用导数研究函数的单调性,结合函数图象可得m 的取值范围;(2)()()g x a f x -≥恒成立等价于()()()ln 1x F x g x f x x e x x a =-=⋅---≥恒成立,两次求导,求得()F x 的最小值为零,从而可得实数a 的取值范围.试题解析:(1)方程()2103f x x x m =-+即为27ln 3x x x m -+=,令()()27ln 03h x x x x x =-+>,则()()()312317'233x x h x x x x+-=-+=-,∴当[]1,3x ∈时,()()',h x h x 随x 变化情况如表:()()443351,3ln 32,ln 33224h h h ⎛⎫==-<=+ ⎪⎝⎭Q ,∴当[]1,3x ∈时,()35ln 32,ln 24h x ⎡⎤∈-+⎢⎥⎣⎦,m ∴的取值范围是35ln 32,ln24⎡⎤-+⎢⎥⎣⎦. (2)依题意,当0x >时,()()g x f x a -≥恒成立,令()()()()ln 10x F x g x f x x e x x x =-=⋅--->,则()()()()11'111x x x F x x e x e x x +=+⋅--=⋅⋅-,令()1x G x x e =⋅-,则当0x >时,()()'10x G x x e =+⋅>,∴函数()G x 在()0,∞+上递增,()()010,110G G e =-<=->Q ,()G x ∴存在唯一的零点()0,1c ∈,且当()0,x c ∈时,()0G x <,当(),x c ∈+∞时,()0G x >,则当()0,x c ∈时,()'0E x <,当(),x c ∈+∞时,()'0F x >,()F x ∴在()0,c 上递减,在(),c +∞上递增,从而()()2ln 1F x F c ce c c ≥=---,由()0G c =得10,1c c ce ce -==,两边取对数得ln 0c c +=,()()()0,0,0F c F x F c a ∴=∴≥=∴≤,即实数a 的取值范围是0a ≤.。
高二数学下学期第二次月考试题理含解析试题
智才艺州攀枝花市创界学校第四中二零二零—二零二壹高二数学下学期第二次月考试题理〔含解析〕本卷须知:2.答复选择题时,选出每一小题答案后,用铅笔把答题卡对应题目之答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答复非选择题时,将答案写在答题卡上.写在套本套试卷上无效.第I 卷选择题〔60分〕一、选择题:此题一共12小题,每一小题5分,一共60分.在每一小题给的四个选项里面,只有一项为哪一项哪一项符合题目要求的.z 满足:(1)4i z -=,那么z 的虚部是〔〕A.-2B.2C.2i -D.2i【答案】B 【解析】 【分析】利用复数的除法运算化为(,)a bia b R +∈的形式,那么答案可求.【详解】解:由(1)4i z -=,得44(1)4(1)221(1)(1)2i i z i i i i ++====+--+, 那么复数z 的虚部是2, 应选B .【点睛】此题考察了复数代数形式的乘除运算,考察了复数的根本概念,是根底题. 2.函数f 〔x 〕在x 0处的导数为1,那么000(2x)()limx f x f x x∆→+∆-∆等于〔〕A.2B.﹣2C.1D.﹣1【答案】A 【解析】分析:与极限的定义式比较,凑配出极限式的形式:0000()()lim'()x f x x f x f x x∆→+∆-=∆.详解:000000(2)()(2)()lim 2lim2x x f x x f x f x x f x x x∆→∆→+∆-+∆-=∆∆02'()212f x ==⨯=, 应选A . 点睛:在极限式0000()()lim'()x f x x f x f x x∆→+∆-=∆中分子分母中的增量是一样的,都是x ∆,因此有000000(m )()(m )()lim m limm x x f x x f x f x x f x x x∆→∆→+∆-+∆-=∆∆0'()mf x =. 22:1y E x n-=的一条渐近线方程为2y x =,那么E 的两焦点坐标分别为A.(B.(0,C.(D.(0,【答案】C 【解析】 【分析】求出双曲线的渐近线方程,可得4n =,以此求出焦点坐标.【详解】解析:双曲线22:1y E x n-=的渐近线方程为y =或者y =,所以2=即4n =,故21a =,24b =,25c =,所以E 的两焦点坐标分别()),,应选C.【点睛】此题考察双曲线的焦点的求法,注意运用渐近线方程,考察运算才能,属于根底题.(1,1)a x =-,(1,3)b x =+,那么“2x =〞是“//a b →→〞的A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件【解析】 【分析】利用充要条件的判断方法进展判断即可. 【详解】假设2x =,那么()1,1a =,()3,3b =,那么//a b ;但当//a b 时,2,x =±故“2x =〞是“//a b 〞的充分但不必要条件.选A.【点睛】此题考察充分不必要条件条件的判断,属根底题.X ~N (1,σ2),其正态分布密度曲线如以下图,且P (X,那么向正方形OABC 中随机投掷10000个点,那么落入阴影局部的点的个数的估计值为()(附:随机变量ξ服从正态分布N (μ,σ2),那么P (μ-σ<ξ<μ+σ)=66%,P (μ-2σ<ξ<μ+2σ)=94%) A.6038 B.6587C.7028D.7539【答案】B 【解析】 分析:求出()10110.682610.34130.65872Px <≤=-⨯=-=,即可得出结论. 详解:由题意得,P (X ≤-1)=P (X ≥3)=0.0228,∴P (-1<X <3)=1-0.0228×2=0.9544,∴1-2σ=-1,σ=1, ∴P (0≤X ≤1)=P (0≤X ≤2)=0.3413, 故估计的个数为10000×(1-0.3413)=6587, 应选B.点睛:此题考察正态分布曲线的特点及曲线所表示的意义,考察正态分布中两个量μ和σ的应用,考察曲6.在200件产品中有3件次品,现从中任意抽取5件,其中至少有2件次品的抽法有〔〕 A.233197C C 种 B.()5142003197CC C -种C.233198C C 种D.()233231973197C CC C +种【答案】D 【解析】分析:据题意,“至少有2件次品〞可分为“有2件次品〞与“有3件次品〞两种情况,由组合数公式分别求得两种情况下的抽法数,进而相加可得答案.详解:根据题意,“至少有2件次品〞可分为“有2件次品〞与“有3件次品〞两种情况, “有2件次品〞的抽取方法有C 32C 1973种, “有3件次品〞的抽取方法有C 33C 1972种, 那么一共有C 32C 1973+C 33C 1972种不同的抽取方法, 应选D .点睛:此题考察组合数公式的运用,解题时要注意“至少〞“至多〞“最多〞“最少〞等情况的分类讨论.2yx 在(1,1)A 处的切线与y 轴及抛物线所围成的图形面积为〔〕A.1B.12C.13D.2【答案】C 【解析】 【分析】先求切线方程,再用定积分求图形面积,求出被积函数的原函数即可. 【详解】解:函数的导数为()2f x x '=, 那么在()1,1处的切线斜率()12k f ='=,那么对应的切线方程为12(1)y x -=-,即21y x =-,那么由积分的几何意义可得阴影局部的面积()12321001121()|33Sx x dx x x x ⎡⎤=--=-+=⎣⎦⎰, 应选:C .【点睛】此题主要考察导数的应用,利用导数的几何意义求出切线方程,以及利用积分求区域面积是解决此题的关键.220x y +-=经过椭圆22221(0)x y a b a b +=>>的上顶点与右焦点,那么椭圆的方程为()A.22415x y +=B.2215x y +=C.22194x y +=D.22164x y += 【答案】A 【解析】 【分析】求出直线与坐标轴的交点,推出椭圆的,a b ,即可得到椭圆的方程.【详解】由题意,直线2x y 20+-=经过椭圆22221(0)x y a b a b+=>>的上顶点与右焦点, 可得1,2cb ==,可得a ==所以椭圆的HY 方程为22415x y +=,应选A.【点睛】此题主要考察了椭圆的HY 方程及其简单的几何性质的应用,其中解答中熟记椭圆的额HY 方程的形式和简单的几何性质是解答的关键,着重考察了推理与运算才能,属于根底题.3222y x ax ax =-+上任意一点处的切线的倾斜角都是锐角,那么整数a 等于〔〕A.0B.1C.2-D.1-【答案】B 【解析】 【分析】求出原函数的导函数,由导函数大于0恒成立转化为二次不等式对应二次方程的判别式小于0,进一步求解关于a 的不等式得答案. 【详解】解:由3222y x ax ax =-+,得2342y x ax a '=-+,曲线32:22C y x ax ax =-+上任意点处的切线的倾斜角都为锐角,∴对任意实数23420x x ax a -+>,恒成立,2(4)4320a a ∴=--⨯⨯<.解得:302a<<. ∴整数a 的值是1.故答案为B【点睛】此题考察了利用导数研究曲线上某点处的切线方程,函数在某点处的导数值就是对应曲线上该点处的切线的斜率,考察了数学转化思想方法,是中档题.()f x 在R 上可导,其导函数为()'f x ,如图是函数()()'g x xf x =的图象,那么()f x 的极值点是()A.极大值点2x =-,极小值点0x =B.极小值点2x =-,极大值点0x =C.极值点只有2x =-D.极值点只有0x=【答案】C 【解析】 结合图象,2x <-时,()0g x <,故()'0,20f x x >-<<时,()0g x >,故()'0,0f x x 时,()0g x <,故()'0f x <,故()f x 在(),2-∞-递增,在()2,-+∞递减,故()f x 的极值点是2x =-,应选C.()()221:231C x y -+-=,圆()()222:349C x y -+-=,M 、N 分别是圆1C 、2C 上动点,P 是x 轴上动点,那么PN PM -的最大值是()A.4C.4【答案】D 【解析】 【分析】 作出图形,由23PN PC ≤+,11PM PC ≥-,得出214PN PM PC PC -≤-+,利用1C 、P 、2C 三点一共线可得出PN PM-的最大值.【详解】如以下图所示: 圆1C 的圆心()12,3C ,半径为11r =,圆2C 的圆心()23,4C ,半径为23r =,12C C ==由圆的几何性质可得2223PN PC r PC ≤+=+,1111PM PC r PC ≥-=-,2112444PN PM PC PC C C -≤-+≤+=,当且仅当1C 、P 、2C 三点一共线时,PN PM-4.应选:D.【点睛】此题考察折线段长度差的最大值的计算,考察了圆的几何性质的应用以及利用三点一共线求最值,考察数形结合思想的应用,属于中等题. 12.a ,b R ∈,且(1)xea xb ≥-+对x ∈R 恒成立,那么ab 的最大值是〔〕A.32e B.32C.312e D.3e【答案】C 【解析】分析:先求出函数的导数,再分别讨论a=0,a <0,a >0的情况,从而得出ab 的最大值.详解:令f 〔x 〕=e x -a 〔x-1〕-b ,那么f′〔x 〕=e x-a , 假设a=0,那么f 〔x 〕=e x-b≥-b≥0,得b≤0,此时ab=0;假设a <0,那么f′〔x 〕>0,函数单调增,x→-∞,此时f 〔x 〕→-∞,不可能恒有f 〔x 〕≥0. 假设a >0,由f′〔x 〕=e x -a=0,得极小值点x=lna ,由f 〔lna 〕=a-alna+a-b≥0,得b≤a〔2-lna 〕,ab≤a 2〔2-lna 〕.令g 〔a 〕=a 2〔2-lna 〕.那么g′〔a 〕=2a 〔2-lna 〕-a=a 〔3-2lna 〕=0,得极大值点a=32e.而g 〔32e〕=312e ∴ab 的最大值是312e 应选C 点睛:此题考察函数恒成立问题,考察了函数的单调性,训练了导数在求最值中的应用,浸透了分类讨论思想,是中档题.第II 卷非选择题〔90分〕二、填空题:此题一共4小题,每一小题5分,一共20分.O xyz -中,(1,2,1)A -,(0,1,2)B ,(1,1,1)C ,那么异面直线OA 与BC 所成角的余弦值为__________.【解析】 【分析】 先求出OA =()1,2,1-,()1,0.1BC =-,利用空间向量夹角余弦公式可得结果.【详解】因为()1,2,1A -,()0,1,2B ,()1,1,1C ,所以OA =()1,2,1-,()1,0.1BC =-,异面直线OA 与BC 所成角的余弦值为θ.1cos 36OA BC OA BCθ⋅=== 【点睛】此题主要考察空间向量的坐标运算、异面直线所成的角以及空间向量夹角余弦公式的应用,意在考察综合应用所学知识解答问题的才能,属于中档题.14.2214(2)dt t+=⎰__________. 【答案】4 【解析】()()22124422|422441dt t t t ⎛⎫⎛⎫-=-=---= ⎪ ⎪⎝⎭⎝⎭⎰,故答案为4. ()32f x x x =+,假设()()2330f a a f a -+-<,那么实数a 的取值范围是__________.【答案】(1,3) 【解析】由题意得()f x 为单调递增函数,且为奇函数,所以()()2330f a a f a -+-<点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f 〞,转化为详细的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内24y x =的准线与双曲线22221(00)x y a b a b,-=>>交于A 、B 两点,点F 为抛物线的焦点,假设FAB ∆为直角三角形,那么双曲线离心率的取值范围是.【答案】)+∞.【解析】试题分析:抛物线焦点(10)F ,,由题意01a <<,且090AFB ∠=并被x 轴平分,所以点(12)-,在双曲线上,得22141a b -=,即2222241a b c aa ==--,即22422224511a a a c a a a -=+=--,所以22222254111c a e a a a -===+--,2015a e <∴,,故e>故应填)+∞.考点:抛物线;双曲线.三、解答题:一共70分.解容许写出文字说明、证明过程或者演算步骤.第17~21题为必考题,每个试题考生都必须答题.第22、23题为选考题,考生根据要求答题. 〔一〕必考题:一共60分.17.从某校高三年级中随机抽取100名学生,对其高校招生体检表中的视图情况进展统计,得到如以下图的频率分布直方图,从这100人中随机抽取1人,其视力在0.30.5~的概率为110. 〔1〕求,a b 的值; 〔2〕假设某大学A 专业的报考要求之一是视力在0.9以上,那么对这100人中能报考A 专业的学生采用按视力分层抽样的方法抽取8人,调查他们对A 专业的理解程度,现从这8人中随机抽取3人进展是否有意向报考该大学A 专业的调查,记抽到的学生中视力在1.1 1.3~的人数为ξ,求ξ的分布列及数学期望.【答案】〔1〕100a =,0.50b =〔2〕见解析【解析】分析:(1)先根据小长方形的面积等于对应区间概率得b ,再根据所有小长方形面积和为1求区间[0.9,]概率,除以组距即得a,(2)先根据分层抽样得确定视力在1.1 1.3~ 详解:解:〔1〕0.20.10.50100b b a ⨯=⇒=⇒=; 〔2〕ξ的可能取值为0,1,2,3,概率为:()()3215533388·10300,15656C C C P P C C ξξ======, ()()1235333388·1512,35656C C C P P C C ξξ======,所以其分布列如下:那么()639568Eξ==. 点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值〞,第二步是“探求概率〞,第三步是“写分布列〞,第四步是“求期望值〞.()22(,)x f x e ax x R a R =--∈∈.〔Ⅰ〕当1a =时,求曲线()y f x =在1x =处的切线方程;〔Ⅱ〕当0x ≥时,假设不等式()0f x ≥恒成立,务实数a 的取值范围.【答案】〔I 〕(21)2y e x =--;〔II 〕(,2]-∞.【解析】分析:(1)先求切线的斜率和切点的坐标,再求切线的方程.(2)分类讨论求()min f x ⎡⎤⎣⎦,再解()min f x ⎡⎤⎣⎦≥0,求出实数a 的取值范围.详解:〔Ⅰ〕当1a =时,()22x f x e ax =--,()'21x f x e =-,()'121f e =-,即曲线()y f x =在1x =处的切线的斜率为21k e =-,又()123f e =-,所以所求切线方程为()212y e x =--.〔Ⅱ〕当0x ≥时,假设不等式()0f x ≥恒成立()min 0f x ⎡⎤⇔≥⎣⎦,易知()'2x f x e a =-,①假设0a ≤,那么()'0f x >恒成立,()f x 在R 上单调递增;又()00f =,所以当[)0,x ∈+∞时,()()00f x f ≥=,符合题意.②假设0a>,由()'0f x =,解得ln2a x =, 那么当,ln2a x ⎛⎫∈-∞ ⎪⎝⎭时,()'0f x <,()f x 单调递减; 当ln,2a x ⎛⎫∈+∞ ⎪⎝⎭时,()'0f x >,()f x 单调递增. 所以ln2ax =时,函数()f x 获得最小值.那么当ln 02a≤,即02a <≤时,那么当[)0,x ∈+∞时,()()00f x f ≥=,符合题意. 当ln02a>,即2a >时, 那么当0,ln2a x ⎛⎫∈ ⎪⎝⎭时,()f x 单调递增,()()00f x f <=,不符合题意. 综上,实数a 的取值范围是(],2-∞.点睛:〔1〕此题主要考察导数的几何题意和切线方程的求法,考察利用导数求函数的最小值,意在考察学生对这些知识的掌握程度和分析推理转化才能.(2)解答第2问由两次分类讨论,第一次是分类的起因是解不等式2xae>时,右边要化成ln 2a e ,由于对数函数定义域的限制所以要分类讨论,第二次分类的起因是ln 2ax =是否在函数的定义域{|0}x x ≥内,大家要理解掌握.19.如图,四棱锥P ABCD -的底面为矩形,PA 是四棱锥的高,PB 与平面PAD 所成角为45º,F 是PB 的中点,E 是BC 上的动点.〔1〕证明:PE ⊥AF ;〔2〕假设BC =2AB ,PE 与AB 所成角的余弦值为17,求二面角D -PE -B 的余弦值.【答案】〔1〕见解析;〔2〕42-【解析】 【分析】(1)建立空间坐标系得到两直线的方向向量,进而证得垂直关系;〔2〕建立坐标系通过题干的线线角得到()3,2,0E ,求两个面的法向量,进而得到二面角.【详解】〔1〕建立如以下图空间直角坐标系.设,,AP AB b BE a ===,那么,()()()()0,0,0,0,,0,,,0,0,0,,A B b E a b P b 于是,(),,,0,,.22b b PE a b b AF ⎛⎫=-= ⎪⎝⎭,那么0PE AF⋅=,所以AF PE ⊥.〔2〕设2AB =那么4,BC =,()()()()4,0,0,0,2,0,,2,0,0,0,2,D B E a P()()0,2,0,,2,2,AB PE a ==-假设,那么由217ABPE AB PE=得()3,3,2,0a E=,设平面PDE 的法向量为(),,n x y z =,()()4,0,2,3,2,0,PD ED =-=-由00n PD n PE ⎛⋅= ⋅=⎝,得:420,2022x xx z x y x y z x =⎧⎪-=⎧⎪=⎨⎨-=⎩⎪=⎪⎩,于是()2,1,4,21.n n ==,而(),0,1,1, 2.AF PBC AF AF ⊥==设二面角D-PE-B 为θ,那么为钝角所以,cos n AF n AFθ=-=-=【点睛】这个题目考察了空间中的直线和平面的位置关系,平面和平面的夹角.求线面角,一是可以利用等体积计算出直线的端点到面的间隔,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.面面角一般是定义法,做出二面角,或者者三垂线法做出二面角,利用几何关系求出二面角,也可以建系来做.C :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,左顶点为A B 是椭圆上的动点,1ABF 的面积的最大值为12.(1)求椭圆C 的方程;(2)设经过点1F 的直线l 与椭圆C 相交于不同的两点M ,N ,线段MN 的中垂线为'l .假设直线'l 与直线l 相交于点P ,与直线2x =相交于点Q ,求PQ MN的最小值.【答案】见解析. 【解析】试题分析:〔1〕由,有c a =,可得b c =.设B 点的纵坐标为()000y y ≠.可得1ABF S ∆的最大值()12a cb -=1b =,a =即可得到椭圆C 的方程; 〔2〕由题意知直线l 的斜率不为0,故设直线l :1x my =-.设()11,Mx y ,()22,N x y ,(),P P P x y ,()2,Q Q y .联立22221x y x my ⎧+=⎨=-⎩,得()222210m y my +--=.由弦长公式可得2212m MN m +=+PQ 22262m m +=+,由此得到PQ MN 的表达式,由根本不等式可得到PQ MN的最小值.试题解析:〔1〕由,有c a =222a c =.∵222a b c =+,∴b c =.设B 点的纵坐标为()000y y ≠.那么()1012ABFS a c y ∆=-⋅()12a cb ≤-=即)1b b -=.∴1b =,a=∴椭圆C 的方程为2212x y +=.〔2〕由题意知直线l 的斜率不为0,故设直线l :1x my =-.设()11,Mx y ,()22,N x y ,(),P P P x y ,()2,Q Q y .联立22221x y x my ⎧+=⎨=-⎩,消去x ,得()222210m y my +--=.此时()2810m∆=+>.∴12222m y y m +=+,12212y y m =-+.由弦长公式,得MN =12y y -=整理,得2212m MN m +=+. 又12222P y y m y m +==+,∴1P P x my =-222m -=+.∴2P PQ =-22262m m +=+.∴2PQMN =22=22⎫=≥,=,即1m =±时等号成立.∴当1m =±,即直线l 的斜率为1±时,PQ MN获得最小值2.〔Ⅰ〕讨论()f x 的单调性; 〔Ⅱ〕假设1a =,证明:当0x>时,()1x f x e <-.【答案】〔Ⅰ〕答案见解析;〔Ⅱ〕证明见解析. 【解析】分析:〔Ⅰ〕先确定函数定义域,再求导()21x x af x x++'=+,讨论导数的正负可得单调区间; 〔2〕令()()21=ln 1-e 12x hx x x +++,求导根据单调性可得()()00h x h <=,从而得证.详解:〔Ⅰ〕、()f x 的定义域为()1,+x ∈-∞由()()21ln 12f x x a x =++得()211a x x af x x x x++=+='++ ()0f x '=令得20x x a ++=14a ∆=-.①当10,4a ∆≤≥时,()0f x '≥恒成立,()f x 在-1+x ∈∞(,)上单调递增. ②当0∆>时,()0f x '=的根为12x x ==1.当1-1x ≤,即0a ≤时,2-1x x ∈(,)递减,2+x x ∈∞(,)递增 2.当1-1x >,即104a <<时,12-1+x x x (,),(,)∈∞递增,12x x x ∈(,)递减.综上所述:当0a ≤时,2-1x x ∈(,)递减,2+x x ∈∞(,)递增;当104a <<时,12-1+x x x (,),(,)∈∞递增,12x x x ∈(,)递减;当14a≥时()f x 在-1+x ∈∞(,)上单调递增. 〔Ⅱ〕()()211=ln 12a f x x x =++当时,所以令()()21=ln 1-e 12xh x x x +++所以只需要()()21=ln 1-e 12xh x x x +++在0+x ∈∞(,)上的最大值小于0. ()1'=-e 1x h x x x ++,∴令()'=0,0h x x =.∴令()()21(='(=1-e 01x g x h x g x x '∴-<+)).() '0h x ∴<()0+h x x ∈∞在,递减,()()00h x h <=,不等式成立.〔二〕选考题:一共10分.请考生在第22、23题中任选一题答题.假设多做,那么按所做的第一题计分. [选修4-4:坐标系与参数方程] 22.在平面直角坐标系xOy 中,曲线1C 的参数方程为:cos sin x y θθ=⎧⎨=⎩〔θ为参数,[]0,θπ∈〕,将曲线1C 经过伸缩变换:x xy '='=⎧⎪⎨⎪⎩得到曲线2C .〔1〕以原点为极点,x 轴的正半轴为极轴建立坐标系,求2C 的极坐标方程;〔2〕假设直线cos :sin x t l y t αα=⎧⎨=⎩〔t 为参数〕与12,C C 相交于,A B两点,且1AB =,求α的值.【答案】(1)[]()2230,2cos 1ρθπθ=∈+(2)3πα=或者23π【解析】 试题分析:()1求得曲线1C 的普通方程,然后通过变换得到曲线2C 方程,在转化为极坐标方程()2在极坐标方程的根底上结合1AB =求出结果解析:〔1〕1C 的普通方程为()2210xy y +=≥,把'x x =,'y y =代入上述方程得,()22''1'03y x y +=≥, ∴2C 的方程为()22103y x y +=≥.令cos x ρθ=,sin y ρθ=,所以2C 的极坐标方程为22233cos sin ρθθ=+232cos 1θ=+[]()0,θπ∈. 〔2〕在〔1〕中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈,由1ρθα=⎧⎨=⎩得1A ρ=,由2232cos 1ρθθα⎧=⎪+⎨⎪=⎩得ρ=11=,∴1cos 2α=±. 而[]0,απ∈,∴3πα=或者23π.[选修4-5:不等式选讲] 23. 函数()2F x x m x =-++的图象的对称轴为1x =.〔1〕求不等式()2F x x ≥+的解集;〔2〕假设函数()f x 的最小值为M ,正数a ,b 满足a b M +=,求证:12924a b +≥. 【答案】(1)(,0][4,)-∞⋃+∞(2)见解析 【解析】【详解】试题分析:(1)由函数的对称性可得0m =,零点分段求解不等式可得不等式()2F x x ≥+的解集(2)由绝对值不等式的性质可得()2min f x M ==,那么2a b +=,结合均值不等式的结论:1214222a b a b +=+()11422422a b a b ⎛⎫=++ ⎪⎝⎭94≥,当且仅当23a =,43b =时取等号.题中的不等式得证. 试题解析: 〔1〕∵函数()f x 的对称轴为1x =,∴()()02f f =∴0m =,经检验成立∴()2f x x x =+-22,02,0222,2x x x x x -+≤⎧⎪=<<⎨⎪-≥⎩,由()2f x x ≥+,得0222x x x ≤⎧⎨-+≥+⎩或者0222x x <<⎧⎨≥+⎩或者2222x x x ≥⎧⎨-≥+⎩.解得0x ≤或者4x ≥, 故不等式()2Fx x ≥+的解集为][(),04,-∞⋃+∞.〔2〕由绝对值不等式的性质, 可知()222x x x x -+≥--=,当且仅当02x ≤≤等号成立∴()2min f x M ==,∴2a b +=,∴1214222a b a b+=+()11422422a ba b⎛⎫=++⎪⎝⎭12814422b aa b⎛⎫=+++⎪⎝⎭()195444≥⨯+=〔当且仅当23a=,43b=时取等号〕.即129 24 a b+≥.。
高二数学(理)下学期第二次月考试题及答案
高二级第二次月考试题数学(理科)一.选择题(共12小题,每小题5分) 1.复数i-12(i 为虚数单位)的共轭复数是( ) A .1+i B .1−i C .−1+i D .−1−i2.正弦函数是奇函数,()()1sin 2+=x x f 是正弦函数,因此()()1sin 2+=x x f 是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确 3.已知函数x x f x f 2)1()(2+'=,则)2(f '的值为( )A .B .0C .D .4.设集合A ={a ,b ,c ,d ,e },B ⊆A ,已知a ∈B ,且B 中含有3个元素,则集合B 有 ( )A .A 26个 B .C 24个 C .A 33个 D .C 35个5.用反证法证明某命题时,对结论:“自然数a,b,c 中恰有一个是偶数”正确的反设为( )A .a,b,c 中至少有两个偶数B .a,b,c 中至少有两个偶数或都是奇数C .a,b,c 都是奇数D .a,b,c 都是偶数6.某中学从4名男生和4名女生中推荐4人参加社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .68种B .70种C .240种D .280种7.设函数.若为奇函数,则曲线在点处的切线方程( ) A .B .C .D .8.已知函数()223a bx ax x x f +++=在1=x 处取得极值为10,则=a ( )A .4或-11B .4C .4或-3D .-3 9.若函数()x kx x f ln -=在区间()+∞,1单调递增,则k 的取值范围是( )A .[)+∞,2B .(]1,-∞-C .[)+∞,1D .(]2,-∞- 10.在直角坐标平面内,由曲线,,和轴所围成的封闭图形的面积为( )A .B .C .D .11.用数学归纳法证明不等式“()11113212224n n n n +++>>++”时的过程中,由n k =到1n k =+,不等式的左边增加的项为( ) A .()121k +B .()112121k k +++C.()11121211k k k +-+++ D .()11211k k -++12.函数()x f 的定义域为R ,()20=f ,若对任意()()1,>'+∈x f x f R x ,则不等式()1+>⋅x x e x f e 的解集为( )A .()+∞,0B .()0,∞-C .()()+∞⋃-∞-,11,D .()()1,01,⋃-∞- 二.填空题(共4小题,每小题5分)13.某人射击8枪,命中4枪,则4枪命中恰好有3枪连在一起的情形的不同种数为___. 14.设()55221052x a x a x a a x ++=-,那么531420a a a a a a ++++的值为______.15.函数()a x x x f --=ln 有两个不同的零点,则实数a 的取值范围是___ _. 16.已知a ,b 为常数,b >a >0,且a ,-32,b 成等比数列,(a +bx )6的展开式中所有项的系数和为64,则a 等于________. 三.解答题17.(本题满分10分)设复数i m m z )4(22-+=,当实数m 取何值时,复数z 对应的点:(1)位于虚轴上; (2)位于第一、三象限.18.(本题满分12分)已知(x -2x)n的展开式中,第4项和第9项的二项式系数相等,(1)求n ;(2)求展开式中x 的一次项的系数.19.(本题满分12分)已知是定义在上的函数,=,且曲线在处的切线与直线143--=x y 平行.(1)求的值.(2)若函数()m x f y -=在区间上有三个零点,求实数的取值范围.20.(本题满分12分)在平面直角坐标系中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已 知曲线C 的极坐标方程为01cos 42=+-θρρ,直线l 的参数方程为()为参数t t y t x ,213233⎪⎪⎩⎪⎪⎨⎧+=+=,设直线l 与曲线C 相交于P,Q 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)求OP OQ ⋅的值.21. (本题满分12分)已知曲线C 的极坐标方程是2ρ=,以极点为原点,以极轴为x 轴的正半轴,取相同的单位长度,建立平面直角坐标系,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 231212(t 为参数) (1)写出直线l 的普通方程与曲线C 的直角坐标方程; (2)设曲线C 经过伸缩变换2x xy y'=⎧⎨'=⎩得到曲线C ',曲线C '上任一点为()00,M x y,求0012y +的取值范围.22.(本题满分12分)已知函数()()012≥++=m emx x x f x,其中e 为自然对数的底数. (1)讨论函数()x f 的极值;(2)若()2,1∈m ,证明:当[]m x x ,1,21∈时,()ex x f 1121++->.第二学期高二期中考试 数学理科答案一.选择题1-5 BCDBB 6-10 ADBC A 11-12 CA 二.填空题 13.20 14. 121122- 15. 1-<a 16. 21=a 三.解答题17.详解:(1)复数对应的点位于虚轴上, 则.∴时,复数对应的点位于虚轴上.(2)复数对应的点位于一、三象限,则或.∴当时,复数对应的点位于一、三象限.18. (1)由第4项和第9项的二项式系数相等可得C 3n =C 8n ,解得n =11.(2)由(1)知,展开式的第k +1项为T k +1=C k 11(x )11-k (-2x)k =(-2)k C k11x 11-3k 2. 令11-3k2=1得k =3. 此时T 3+1=(-2)3C 311x =-1 320x ,所以展开式中x 的一次项的系数为-1 320. 19. (1)因为曲线在处的切线与直线平行,所以,所以.(2)由得令得. 当时,;当时,;当时,在,单调递增,在单调递减. 又若函数在区间上有三个零点,等价于函数在上的图象与有三个公共点.结合函数在区间上大致图象可知,实数的取值范围是.20. (1)曲线C 的直角坐标方程为:,即,直线l 的普通方程为03=-y x(2)将直线的极坐标方程()R ∈=ρπθ6与圆的极坐标方程联立得:01322=+-ρρ,1,121=⋅=OQ OP ρρ21. (Ⅰ)由(t 为参数)消去参数可得直线l 的普通方程为:x+y ﹣2﹣1=0由ρ=2,两端平方可得:曲线C 的直角坐标方程为x 2+y 2=4 (Ⅱ)曲线C 经过伸缩变换得到曲线C′的方程为x 2+=4,即+=1 又点M 在曲线C′上,则(θ为参数)代入x 0+y 0得:x 0+y 0得=•2cos θ+•4sin θ=22os θ+2sin θ=4sin (θ+),所以x 0+y 0的取值范围是[﹣4,4]22.(1)解:()()()()xe m x x xf ----='11.当0>m 时,1-m<1,令()0='x f ,解得x=1或1-m .则函数()x f 在()m -∞-1,上单调递减,在()1,1m -内单调递增,在()+∞,1上单调递减.m x -=∴1时,函数()x f 取得极小值;x=1时,函数()x f 取得极大值.当0=m 时,()0≤'x f ,函数()x f 在R 上单调递减,无极值. (2)证明:当[]m x x ,1,21∈时,()e x x f 1121++->,只要证明()max 2min 1)11(ex x f ++->即可,由(1)可知:()x f 在[]m x ,1∈内单调递减,()()me m mf x f 122min+==∴.e e x 111max 2=⎪⎭⎫ ⎝⎛++- 只需要证明()2,1,1122∈>+m e e m m 令()()2,1,122∈+=m e m m g m , ()()2,1,1422∈-+-='m e m m m g m,()0142,02=-+-='m m m g 则()()0,221,0,221,1,221<'⎪⎪⎭⎫⎝⎛+∈>'⎪⎪⎭⎫ ⎝⎛+∈+=m g m m g m m 当当 221+=∴m 为()m g 的极大值点,仅有一个极值,则为最值,()⎪⎪⎭⎫ ⎝⎛+=221max g m g ()()()e e m g e eg e g 13,392,312>>∴>==, 即()2,1,1122∈>+m e e m m证明成立 因此原命题成立.。
【数学】高二数学下学期第二次月考试题理
【关键字】数学安徽省宿州市泗县二中下学期第二次月考高二数学试卷(理科)一.选择题(共10题,每题4分)1.已知函数的导函数的图像如下,则()A.函数有1个极大值点,1个极小值点B.函数有2个极大值点,2个极小值点C.函数有3个极大值点,1个极小值点D.函数有1个极大值点,3个极小值点2.对方程(其中是自然对数的底数,)根的描述正确的是( )A.对任意的实数,方程必有根B.对任意的实数,方程均无根C.必存在正数,使方程有3个根D.必存在负数,使方程有3个根3.有以下命题:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;②为空间四点,且向量不构成空间的一个基底,那么点一定共面;③已知向量是空间的一个基底,则向量,也是空间的一个基底。
其中正确的命题是()A.①②B. ①③C.②③D.①②③4.已知点,则点关于轴对称的点的坐标为()A.B.C.D.5.已知为正方形的中心,点为正方形所在平面外一点,若,则=()A.1B.3 D.46.在极坐标系中与圆相切的一条直线的方程为()A B C D7.点是椭圆上的一个动点,则的最大值为()A.B.C.D.8.曲线在处的切线的斜率是()A. B. C. D.9.设、是定义域为R的恒大于零的可导函数,且,则当时有( )A. B.C. D.10.在曲线上的点是()A B C D二.填空题(共5题,每题4分)11.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是___ ____12. 平面、的法向量分别为=(2,3,5),=(-3,1,-4),则,的位置关系是(用“①平行”,“②笔直”,“③相交但不笔直”填空)13.已知,则=14.已知是上的增函数,则实数的取值范围是 15.已知,动点是内的点,,若四边形的面积等于,则线段的长度的最小值等于高二数学答题卷(理科)一、选择题(共10题,每题4分,共40分)二、填空题(共5题,每题4分,共20分)11. 12. 13. 14. 15. 三、解答题(共4题,每题10分,共40分) 16.已知1ln ()xf x x+=(e 是自然对数的底数, 2.71828e ≈) (1)求()f x 的极大值;(2)若12,x x 是区间1,e e ⎡⎤⎢⎥⎣⎦上的任意两个实数,求证:12()()1f x f x -≤.17.正方体1AC 中2AB =,E 为1BB 的中点.(1)请在线段1DD 上确定一点F 使1,,,A E C F 四点共面,并加以证明; (2)求二面角1--C AC E 的平面角α的余弦值;(3)点M 在面ABCD 内,且点M 在平面1AEC F 上的射影恰为1AEC ∆的重心,求异面直线AC 与1MC 所成角的余弦值.A 118.已知抛物线2C 4x y =:,圆22:(2)4M x y ++=,(2,)N a (其中a 为常数)是 直线1:2l x =上的点,倾斜角为锐角..α的直线2l 过点N 且与抛物线C 交于两点A 、B,与圆M 交于C 、D 两点.(1) 请写出直线2l 的参数方程;(2) 若88NA NB a ⋅=-,且CD =,求a 的值.19.已知函数3()f x x ax b =-+存在极值点. (1) 求a 的取值范围;(2) 过曲线()y f x =外.的点(1,0)P 作曲线()y f x =的切线,所作切线恰有两条....,切点分别为A 、B.(ⅰ)证明:a b =;(ⅱ)请问PAB ∆的面积是否为定值?若是,求此定值;若不是求出面积的取值范围.高二(下)期中考试数学(理科卷)参考答案ACDAD ADCCB(0,-1,0) 3 34- 1a ≥ 216(1)1 (2)max min 1211,()0,()()101f f f f x f x e===-≤-=17(1)中点(2)0(3)M 511(,6618(1)2cos ()sin x t t y a t αα=+⎧⎨=+⎩为参数(2)219(1)0a >(2)(ⅰ)略(ⅱ)2716此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
高二数学下学期第二次月考试题(理奥赛)-人教版高二全册数学试题
某某县中学2017届高二年级下学期第二次月考数 学 试 卷(理奥赛)时间:120分钟 总分:150分一 、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设a 是实数,且211ai i+++是实数,则a =( ) A .1- B .1 C .12D .322.下列命题中是假命题的是( ) A .(0,),>2x x sin x π∀∈B .000,+=2x R sin x cos x ∃∈C .,3>0xx R ∀∈D .00,=0x R lg x ∃∈3.若a ,b∈R,则21a >21b 成立的一个充分不必要的条件是( )A .b >a >0B .a >b >0C .b <aD .a <b4.椭圆的离心率为b ,点(1,b )是圆x 2+y 2﹣4x ﹣4y+4=0的一条弦的中点,则此弦所在直线的方程是( )A .3x+2y ﹣4=0B .3x ﹣2y ﹣2=0C .4x+6y ﹣7=0D .4x ﹣6y ﹣1=0. 5.若曲线2y x ax b =++在点0)b (,处的切线方程是10x y -+=,则( )A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-6.已知直线1y x =-+与椭圆22221(0)x y a b a b +=>>相交于A 、B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长是( )A 223B 423C 2.27.在R 上可导的函数()f x 的图象如图示,()f x '为函数()f x 的导数,则关于x 的不等式()0x f x '⋅<的解集为( )A .)1,0()1,( --∞B .),1()0,1(+∞-考试时间:2016年4月28—29日C .)2,1()1,2( --D .),2()2,(+∞--∞8.已知函数32()1f x x ax x =-+--在R 上不是单调函数,则实数a 的取值X 围是( )A .3,3⎡⎤-⎣⎦B .(3,3)-C .(,3)(3,)-∞-+∞D .(),33,⎤⎡-∞-+∞⎦⎣9.如图所示,ABCD -A 1B 1C 1D 1是棱长为6的正方体,E ,F 分别是棱AB ,BC 上的动点,且AE =BF.当A 1,E ,F ,C 1共面时,平面A 1DE 与平面C 1DF 所成二面角的余弦值为( )A.32B.12C.15D.26510.若函数()'()()y f x R xf x f x =>-在上可导,且满足不等恒成立,,a b 且常数满足,b a >则下列不等式一定成立的是( )A .()()af b bf a >B .()()af a bf b >C .()()af a bf b <D .()()af b bf a <11.已知函数())0(212<-+=x e x x f x与())ln(2a x x x g ++=图象上存在关于y 轴对称的点,则a 的取值X 围是( ) A.)1,(e -∞ B.),(e -∞ C.),1(e e- D.)1,(e e -12.已知椭圆C 1:2222x y a b+ =1(a >b >0)与圆C 2:x 2+y 2=b 2,若在椭圆C 1上存在点P ,过P 作圆的切线PA ,PB ,切点为A ,B 使得∠BPA=3π,则椭圆C 1的离心率的取值X 围是( ) A .B .C .D .二、填空题(本大题共4小题,每题5分,共20分,把答案填在题中横线上) 13.计算定积分(213x x -+)dx=.14.设命题p :⎪⎩⎪⎨⎧≥+-≤-->-+06208201243y x y x y x (Ry x ∈,),命题q :222r y x ≤+(0,,,>∈r R r y x ),若命题q 是命题p ⌝的充分非必要条件,则r 的取值X 围是.15.设椭圆22221(0)x y a b a b +=>>的两个焦点分别为12,F F ,点在椭圆上,且120PF PF ⋅=,123tan PF F ∠=,则该椭圆的离心率为 . 16.已知椭圆方程22x a +22y b =1(0a b >>),当2a +()16b a b -的最小值时,椭圆的离心率e =.三、解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.) 17.(本小题满分10分)已知命题p :∀x ∈[1,2],x 2-a ≥0.命题q :∃x 0∈R,使得x 20+(a -1)x 0+1<0.若“p 或q ”为真,“p 且q ”为假,某某数a 的取值X 围.18.(本小题12分)已知数列{}n x 满足112x =,且1()2n n n x x n x *+=∈-N (1)用数学归纳法证明:01n x <<;(2)设1n na x =,求数列{}n a 的通项公式.19.(本小题12分)如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1. (1)证明PA⊥平面ABCD ;(2)求以AC 为棱,EAC 与DAC 为面的二面角θ的大小;(3)在棱PC 上是否存在一点F ,使BF//平面AEC ?P证明你的结论.20.(本小题12分)已知椭圆C :22221(0)x y a b a b +=>>的一个顶点为A (2,0),离心率为2,过点G (1,0)的直线l 与椭圆C 相交于不同的两点M ,N . (1)求椭圆C 的方程;(2)当△AMN 的面积为5时,求直线l 的方程.21.(本小题满分12分)已知函数xx x f 1ln 2)(+= (1)求函数)(x f 的单调区间和极值;(2)若对于任意的),∞+∈1[x 及]2,1[∈t ,不等式22)(2+-≥mt t x f 恒成立,试求m 的取值X 围.22.(本小题满分12分)已知椭圆C :)0(12222>>=+b a by a x 的焦距为4,其长轴长和短轴长之比为1:3.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的右焦点,T 为直线)2,(≠∈=t t t x R 上纵坐标不为0的任意一点,过F 作TF的垂线交椭圆C 于点P ,Q .(ⅰ)若OT 平分线段PQ (其中O 为坐标原点),求t 的值; (ⅱ)在(ⅰ)的条件下,当||||PQ TF 最小时,求点T 的坐标.某某县中学2017届高二年级下学期第二次月考数学试卷(理奥)答案1—5 BBACA 6--10 BACBB 11--12 BA13. 14. 15. 16.17.(本小题满分12分)解: 由条件知,a ≤x 2对∀x ∈[1,2]成立,∴a ≤1;∵∃x 0∈R,使x +(a -1)x 0+1<0成立,∴不等式x 2+(a -1)x +1<0有解,∴Δ=(a -1)2-4>0,∴a >3或a <-1; ∵p 或q 为真,p 且q 为假, ∴p 与q 一真一假. ①p 真q 假时,-1≤a ≤1; ②p 假q 真时,a >3.∴实数a 的取值X 围是a >3或-1≤a ≤1.18.解:(1)证明时,假设时成立当时在(0,1)递增(2)19证明因为底面ABCD是菱形,∠ABC=60°,所以AB=AD=AC=a,在△PAB中,由PA2+AB2=2a2=PB2知PA⊥AB.同理,PA⊥AD,所以PA⊥平面ABCD.(Ⅱ)解作EG//PA交AD于G,由PA⊥平面ABCD.知EG⊥平面ABCD.作GH⊥AC于H,连结EH,则EH⊥AC,∠EHG即为二面角的平面角.又PE : ED=2 : 1,所以从而(3)解法一以A为坐标原点,直线AD、AP分别为y轴、z轴,过A点垂直平面PAD的直线为x轴,建立空间直角坐标系如图.由题设条件,相关各点的坐标分别为所以设点F是棱PC上的点,则令得解得即时,亦即,F是PC的中点时,、、共面.又 BF平面AEC,所以当F是棱PC的中点时,BF//平面AEC. 20.(1);(2)±y=0.解:(1)由题意可得:,解得a=2,c=,b2=2.∴椭圆C的方程为.(2)设直线l的方程为:my=x﹣1,M(x1,y1),N(x2,y2).联立,化为(m2+2)y2+2my﹣3=0,∴y1+y2=,y1y2=.∴|MN|===.点A到直线l的距离d=,∴|BC|d==,化为16m4+14m2﹣11=0,解得m2=解得m=.∴直线l的方程为,即±y=0.21.解:(1)由题知,函数的定义域为,且 2分令可得当时,;当时,.所以,函数的单调递增区间为,单调递减区间为,在时取得极小值,在定义域内无极大值. 6分(2)由(1)知,函数在上单调递增,故在区间上的最小值为. 8分因此,只需在上恒成立即可,即在上恒成立.设,,由二次函数的图像和性质可得且即:且解得:,即实数m的取值X围是22.解:(Ⅰ)由已知可得解得所以椭圆C的标准方程是.(Ⅱ)(ⅰ)由(Ⅰ)可得,F点的坐标是(2,0).设直线的方程为,将直线的方程与椭圆C的方程联立,得消去x,得,其判别式设则于是设为的中点,则点的坐标为.因为,所以直线的斜率为,其方程为.当时,,所以点的坐标为,此时直线OT的斜率为,其方程为.将点的坐标为代入,得. 解得. (ⅱ)由(ⅰ)知T为直线上任意一点可得,点T的坐标为.于是,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上饶县中学2017届高二年级下学期第二次月考数 学 试 卷(理奥赛)时间:120分钟 总分:150分一 、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设a 是实数,且211ai i+++是实数,则a =( ) A .1- B .1 C .12 D .322.下列命题中是假命题的是( ) A .(0,),>2x x sin x π∀∈B .000,+=2x R sin x cos x ∃∈C .,3>0xx R ∀∈D .00,=0x R lg x ∃∈3.若a ,b∈R,则21a >21b 成立的一个充分不必要的条件是( )A .b >a >0B .a >b >0C .b <aD .a <b4.椭圆的离心率为b ,点(1,b )是圆x 2+y 2﹣4x ﹣4y+4=0的一条弦的中点,则此弦所在直线的方程是( )A .3x+2y ﹣4=0B .3x ﹣2y ﹣2=0C .4x+6y ﹣7=0D .4x ﹣6y ﹣1=0.5.若曲线2y x ax b =++在点0)b (,处的切线方程是10x y -+=,则( )A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-6.已知直线1y x =-+与椭圆22221(0)x y a b a b +=>>相交于A 、B 两点,若椭圆的离心率为,焦距为2,则线段AB 的长是( )ABC.27.在R 上可导的函数()f x 的图象如图示,()f x '为函数()f x 的导数,则关于x 的不等式()0x f x '⋅<的解集为( )A .)1,0()1,( --∞B .),1()0,1(+∞-考试时间:2016年4月28—29日C .)2,1()1,2( --D .),2()2,(+∞--∞8.已知函数32()1f x x ax x =-+--在R 上不是单调函数,则实数a 的取值范围是( )A.⎡⎣ B.(C.(,(3,)-∞+∞D .(),3,⎡-∞+∞⎣9.如图所示,ABCD -A 1B 1C 1D 1是棱长为6的正方体,E ,F 分别是棱AB ,BC 上的动点,且AE =BF.当A 1,E ,F ,C 1共面时,平面A 1DE 与平面C 1DF 所成二面角的余弦值为( )A.2 B.12C.15D.510.若函数()'()()y f x R xf x f x =>-在上可导,且满足不等恒成立,,a b 且常数满足,b a >则下列不等式一定成立的是( )A .()()af b bf a >B .()()af a bf b >C .()()af a bf b <D .()()af b bf a <11.已知函数())0(212<-+=x e x x f x与())ln(2a x x x g ++=图象上存在关于y 轴对称的点,则a 的取值范围是( ) A.)1,(e -∞ B.),(e -∞ C.),1(e e - D.)1,(ee - 12.已知椭圆C 1:2222x y a b+ =1(a >b >0)与圆C 2:x 2+y 2=b 2,若在椭圆C 1上存在点P ,过P 作圆的切线PA ,PB ,切点为A ,B 使得∠BPA=3π,则椭圆C 1的离心率的取值范围是( ) A . B .C .D .二、填空题(本大题共4小题,每题5分,共20分,把答案填在题中横线上)13.计算定积分3x )dx= .14.设命题p :⎪⎩⎪⎨⎧≥+-≤-->-+06208201243y x y x y x (Ry x ∈,),命题q :222r y x ≤+(0,,,>∈r R r y x ),若命题q是命题p⌝的充分非必要条件,则r 的取值范围是 .15.设椭圆22221(0)x y a b a b+=>>的两个焦点分别为12,F F ,点在椭圆上,且120PF PF ⋅=,12tan PF F ∠=,则该椭圆的离心率为 . 16.已知椭圆方程22x a +22y b =1(0a b >>),当2a +()16b a b -的最小值时,椭圆的离心率e = .三、解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.) 17.(本小题满分10分)已知命题p :∀x ∈[1,2],x 2-a ≥0.命题q :∃x 0∈R,使得x 20+(a -1)x 0+1<0.若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围.18.(本小题12分)已知数列{}n x 满足112x =,且1()2nn nx x n x *+=∈-N (1)用数学归纳法证明:01n x <<;(2)设1n na x =,求数列{}n a 的通项公式.19.(本小题12分)如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1. (1)证明PA⊥平面ABCD ;(2)求以AC 为棱,EAC 与DAC 为面的二面角θ的大小;(3)在棱PC 上是否存在一点F ,使BF//平面AEC ?证明你的结论.20.(本小题12分)已知椭圆C :22221(0)x y a b a b +=>>的一个顶点为A (2,0)过点G (1,0)的直线l 与椭圆C 相交于不同的两点M ,N . (1)求椭圆C 的方程; (2)当△AMN的面积为5时,求直线l 的方程.21.(本小题满分12分)已知函数xx x f 1ln 2)(+= (1)求函数)(x f 的单调区间和极值;(2)若对于任意的),∞+∈1[x 及]2,1[∈t ,不等式22)(2+-≥mt t x f 恒成立,试求m 的取值范围.22.(本小题满分12分)已知椭圆C :)0(12222>>=+b a by a x 的焦距为4,其长轴长和短轴长之比BD为1:3.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的右焦点,T 为直线)2,(≠∈=t t t x R 上纵坐标不为0的任意一点,过F 作TF的垂线交椭圆C 于点P ,Q .(ⅰ)若OT 平分线段PQ (其中O 为坐标原点),求t 的值; (ⅱ)在(ⅰ)的条件下,当||||PQ TF 最小时,求点T 的坐标.上饶县中学2017届高二年级下学期第二次月考数学试卷(理奥)答案1—5 BBACA 6--10 BACBB 11--12 BA13. 14. 15. 16.17.(本小题满分12分)解: 由条件知,a ≤x 2对∀x ∈[1,2]成立,∴a ≤1;∵∃x 0∈R,使x 02+(a -1)x 0+1<0成立,∴不等式x 2+(a -1)x +1<0有解,∴Δ=(a -1)2-4>0,∴a >3或a <-1; ∵p 或q 为真,p 且q 为假, ∴p 与q 一真一假. ①p 真q 假时,-1≤a ≤1; ②p 假q 真时,a >3.∴实数a 的取值范围是a >3或-1≤a ≤1.18.解:(1)证明时,假设时成立当 时在(0,1)递增(2)19证明 因为底面ABCD 是菱形,∠ABC=60°,所以AB=AD=AC=a , 在△PAB 中, 由PA 2+AB 2=2a 2=PB 2知PA ⊥AB. 同理,PA ⊥AD ,所以PA ⊥平面ABCD. (Ⅱ)解 作EG//PA 交AD 于G ,由PA⊥平面ABCD.知EG⊥平面ABCD.作GH⊥AC于H,连结EH,则EH⊥AC,∠EHG即为二面角的平面角.又PE : ED=2 : 1,所以从而(3)解法一以A为坐标原点,直线AD、AP分别为y轴、z轴,过A点垂直平面PAD的直线为x轴,建立空间直角坐标系如图.由题设条件,相关各点的坐标分别为所以设点F是棱PC上的点,则令得解得即时,亦即,F是PC的中点时,、、共面.又 BF平面AEC,所以当F是棱PC的中点时,BF//平面AEC.20.(1);(2)±y=0.解:(1)由题意可得:,解得a=2,c=,b2=2.∴椭圆C的方程为.(2)设直线l的方程为:my=x﹣1,M(x1,y1),N(x2,y2).联立,化为(m2+2)y2+2my﹣3=0,∴y1+y2=,y1y2=.∴|MN|===.点A到直线l的距离d=,∴|BC|d==,化为16m4+14m2﹣11=0,解得m2=解得m=.∴直线l的方程为,即±y=0.21.解:(1)由题知,函数的定义域为,且 2分令可得当时,;当时,.所以,函数的单调递增区间为,单调递减区间为,在时取得极小值,在定义域内无极大值. 6分(2)由(1)知,函数在上单调递增,故在区间上的最小值为. 8分因此,只需在上恒成立即可,即在上恒成立.设,,由二次函数的图像和性质可得且即:且解得:,即实数m的取值范围是22.解:(Ⅰ)由已知可得解得所以椭圆C的标准方程是.(Ⅱ)(ⅰ)由(Ⅰ)可得,F点的坐标是(2,0).设直线的方程为,将直线的方程与椭圆C的方程联立,得消去x,得,其判别式设则于是设为的中点,则点的坐标为.因为,所以直线的斜率为,其方程为.当时,,所以点的坐标为,此时直线OT的斜率为,其方程为.将点的坐标为代入,得. 解得. (ⅱ)由(ⅰ)知T为直线上任意一点可得,点T的坐标为.于是,。