条件概率与全概率公式
事件的独立性条件概率与全概率公式

事件的独立性条件概率与全概率公式事件的独立性是概率论中一个非常重要的概念。
当两个事件A和B的发生与否不会相互影响时,我们称这两个事件是独立的。
具体来说,事件A的发生与否不会对事件B的发生概率造成影响,同样,事件B的发生与否也不会对事件A的发生概率造成影响。
独立性是概率论中一种核心的概念,它可以帮助我们简化计算过程,提高计算的效率。
在实际问题中,我们通常会用到一些已知的概率,利用独立性可以快速计算出我们所关心的概率。
条件概率是指在另一个事件已经发生的条件下,一些事件发生的概率。
具体来说,设A和B是两个事件,已知事件B已经发生,那么事件A发生的概率记作P(A,B),读作“A在B发生的条件下发生的概率”。
条件概率可以通过以下公式计算:P(A,B)=P(A∩B)/P(B)其中,P(A∩B)表示事件A和B同时发生的概率,P(B)表示事件B发生的概率。
条件概率在实际问题中非常常见,它可以帮助我们确定一些事件在给定条件下的概率。
例如,在进行疾病检测时,我们可以根据患者的年龄、性别、家族病史等条件,计算出患病的概率,为疾病的早期预防提供重要依据。
全概率公式是概率论中一个非常重要的公式,它可以帮助我们计算复杂事件的概率。
全概率公式的核心思想是将一个事件分解为不同的互斥事件,并将这些事件的概率加和起来。
具体来说,设B1、B2、…、Bn是一组互斥事件,且它们的并集构成了样本空间S,那么对于任意一个事件A,全概率公式可以表示为:P(A)=P(A,B1)P(B1)+P(A,B2)P(B2)+…+P(A,Bn)P(Bn)全概率公式的应用场景非常广泛。
例如,在市场调查中,我们希望了解其中一特定群体的消费习惯,但由于无法直接获取到该群体的信息,我们可以通过对不同市场细分的消费者进行调查,然后利用全概率公式将这些细分市场的调查结果综合起来,推断出整个特定群体的消费习惯。
总结起来,事件的独立性、条件概率和全概率公式都是概率论中非常重要的概念和工具。
条件概率公式与全概率公式

2021/3/27
CHENLI
9
推论2 在 A 与 B, A 与 B,A 与 B , A 与 B这四对事件中,若 有一对独立,则另外三对也相互独立。
证明 不妨设A.B独立,则
P (A B ) P (A B ) P (A ) P (A) B P (A ) P (A )P (B ) P (A )1 ( P (B ) )P (A )P (B )
20课上练习小王忘了朋友家电话号码的最后一位故只能随意拨最后一个号求他至多拨三次由乘法公式设事件表示三次拨号至少一次拨通表示第i次拨通他只能随意拨最后一个号他连拨三次由乘法公式表示第i次拨通10件产品中有3件次品从中任取2在所取2件中有一件是次品的条件下设事件表示所取2件中有一件次品事件表示另一件也是次品
3
14 1 10 10 10
3. 5
2021/3/27
CHENLI
16
一般 B 1, : ,B n为 设 的一个 A 为划 一分 事, 件
P(Bi
|
A)
P( P
AB (A
i
)
)
P(Bi )P(A| Bi ) P( A)
P(Bi )P(A | Bi )
n
P(BK )P(A | BK )
❖——贝叶斯(Bayes)公式
2021/3/27
CHENLI
2
例2 10个人为两张球票抽签,依次抽取,取后不 放回,若已知第一个人抽到球票,求第2个人也 抽到球票的概率。
解1:设A=“第一个人抽到球票”。 B=“第二个人抽到球票”。
1
则所求为
9
记为 P ( B A)
2021/3/27
CHENLI
3
定义P(: B| A)P(AB) P(A)
条件概率与全概率公式

条件概率与全概率公式
条件概率是指在一定条件下某事件发生的概率,例如,已知某人感染了疾病,求这个人的年龄在40岁以下的概率。
这里,已知某人感染了疾病就是条件,年龄在40岁以下是事件。
条件概率的公式为:P(A|B) = P(A∩B)/P(B),其中,P(A|B)表示在条件B下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
全概率公式是指将一个事件拆分成多个互不重叠的子事件,并计算每个子事件的概率,然后将它们相加得到整个事件发生的概率。
例如,某医院有三个科室,分别是内科、外科和儿科,每个科室的病人比例为60%、30%和10%。
现在需要求这个医院的所有病人中,感染肺炎的比例。
这里,感染肺炎是整个事件,内科、外科和儿科是子事件。
全概率公式为:P(A) = Σ P(A|Bi) * P(Bi),其中,P(A)表示事件A的概率,P(A|Bi)表示在条件Bi下事件A发生的概率,P(Bi)表示事件Bi发生的概率,Σ表示对所有的i求和。
在这个例子中,感染肺炎的比例为:P(肺炎) = P(肺炎|内科) * P(内科) + P(肺炎|外科) * P(外科) + P(肺炎|儿科) * P(儿科)。
- 1 -。
1.3,1.4条件概率,全概率公式

C表示抽到的人有色盲症。
则
1 P( A) P( B) , P(C | A) 0.05, P(C | B) 0.0025 2
由Bayes公式有
P( A) P(C | A) 0.5 0.05 P( A | C ) P( A) P(C | A) P( B) P(C | B) 0.5 0.05 0.5 0.0025
2 1 3 2 2 , 5 4 5 4 5
P( A3 ) P( A3) P( A3 ( A1 A2 A1 A2 A1 A2 ))
P ( A1 A2 A3 ) P ( A1 A2 A3 ) P ( A1 A2 A3 )
P ( A1 ) P ( A2 A1 ) P ( A3 A1 A2 ) P ( A1 ) P ( A2 A1 ) P ( A3 A1 A2 ) P ( A1 ) P ( A2 A1 ) P ( A3 A1 A2 )
i 1 n
全概率公式
证明 B B B ( A A A ) 1 2 n
BA1 BA2 BAn .
由 Ai A j ( BAi )( BAj ) P( B) P( BA1 ) P( BA2 ) P( BAn ) P( B) P( A1 ) P( B | A1 ) P( A2 ) P( B | A2 )
解
设A表示取得一等品,B表示取得合格品,则
(1)因为100 件产品中有 70 件一等品,所以 70 P( A) 0.7 100 因为95 件合格品中有 70 件一等品,所以 (2)方法1: 70 P( A B) 0.7368 95 方法2:
高中数学 全概率公式

n
P( Ai )P(B | Ai ) i 1
——求和符号
二、探读与思考
n
P( Ai ) 1
i 1
全概率公式
一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,
且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有
P(B)= =
P(A1)P(B | A1) P( A2 )P(B | A2 ) P(An )P(B | An ) .
由贝叶斯公式得
P(A|B)=PAPPBB |A=00..8858×7 51≈0.958.
堂 21 小 结
1.设事件 2.写概率 3.代公式
条件概率 P(B|A)=PAB―→乘法公式 P(AB)=P(A)P(B|A) PA
↓
全概率公式 由因求果
P(B)=P(BA1)+P(BA2)+…+P(BAn) 加法公式
易知, A1∪A2∪A3∪A4=Ω,
且两两互斥,
A4 0.4
四、引导与迁移
由因求果
n
P(B) P( Ai )P(B | Ai ) i 1
例2:某人去某地,乘火车、轮船、汽车、飞机的概
率分别为0.3,0.2,0.1,0.4,乘坐这四种交通工具迟到
的概率分别为
由已知得
0.25,0.3,0.1,0.2,
我们称该式为概率的乘法公式.
回顾旧知
1.某地区气象台统计,该地区下雨的概率是145,刮风的概率为125,既刮
风又下雨的概率为 1 ,则在下雨天里,刮风的概率为( C ) 10
A.2825
B.12
C.38
D.34
条件概率
1
解:设A=“下雨”,B=“刮风”,AB=“既刮风又下雨”,则
条件概率、乘法公式、全概率公式

• 条件概率的定义与性质 • 乘法公式及其应用 • 全概率公式及其应用 • 条件概率、乘法公式、全概率公式的
联系与区别 • 案例分析
01
条件概率的定义与性质
条件概率的定义
条件概率是指在某一事件B已经发生的情况下,另一事件A发生的概率。数学上表示为P(A|B),读作“在B 的条件下A的概率”。
总结词
应用乘法公式
详细描述
天气预报中经常使用概率模型来预测未来天 气情况。例如,预测明天下雨的概率是70%, 那么应用乘法公式可以计算出在明天下雨的 条件下,明天是阴天的概率是30%。
案例三:保险业务中的风险评估
总结词
利用全概率公式
详细描述
在保险业务中,全概率公式用于评估风险。例如,一辆 汽车在一年内发生事故的概率是0.01,那么可以根据全 概率公式计算出在1000辆汽车中,预计有10辆汽车会 发生事故。
条件概率的定义公式为:P(A|B) = P(A∩B) / P(B),其中P(A∩B)表示事件A和事件B同时发生的概率,P(B) 表示事件B发生的概率。
条件概率的性质
非负性
01
P(A|B) ≥ 0,即条件概率不能是负数。
归一性
02
P(A|B) = 1 - P(¬A|B),即条件概率满足归一化条件,其中¬A
05
案例分析
案例一:赌博游戏中的概率计算
总结词
理解条件概率
VS
详细描述
在赌博游戏中,条件概率是一个重要的概 念。例如,在掷骰子游戏中,如果已知前 一个骰子的点数,那么下一个骰子的点数 与此无关。这可以通过条件概率公式来描 述,即P(A|B) = P(A∩B) / P(B)。
案例二:天气预报的概率模型
第十章 第四节 事件的独立性、条件概率与全概率公式

6.(全概率公式应用致误)在 A,B,C 三地爆发了流感,这三个地区分别有 6%,5%,4%的人患了流感.设这三个地区人口数的比为 3∶1∶1,现从这三个地 区中任选一人,这个人患流感的概率是__________.
答案:52070 解析:由全概率公式可得,现从这三个地区中任选一人,这个 人患流感的概率为 6%×3+31+1 +5%×3+11+1 +4%×3+11+1 =52070 .
2.事件 A 与事件 B 相互独立性
若事件 A 与事件 B 相互独立,则事件 A 的发生不会影响事件 B 发生的概率,
即有
P(B|A) = P(B). 反 之 , 若
P(B|A) = P(B) 成 立 , 则
P(AB)
= P(A)
P(AB) P(A)
=
P(A)P(B|A)=P(A)P(B).
3.n 个事件的相互独立
答案:25 解析:设事件 A 为“解题成功”,即甲乙两个小组至少有一个小 组解题成功,
其概率为 P(A)=1-1-23 ·1-12 =56 ,
事件 B 为“乙小组解题失败”,则 P(AB)=23 ×1-12 =13 , 所以在解题成功的条件下,乙小组解题失败的概率为
1 P(B|A)=PP((AAB)) =35 =25 .
5.天气预报,在元旦假期甲地降雨概率是 0.2,乙地降雨概率是 0.3.假设在这 段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率 为________.
答案:0.38 解析:设甲地降雨为事件 A,乙地降雨为事件 B,则两地恰有一 地降雨为 A-B ∪-A B,
所以 P(A-B ∪-A B)=P(A-B )+P(-A B)= P(A)P(-B )+P(-A )P(B)=0.2×0.7+0.8×0.3=0.38.
概率论公式

n
注:如果有 n 个变量服从同一个 0-1 分布, Xi ~ b(1, p) ,则其和 X Xi 服从二项 i
分布 X ~ b(n, p)
11. Poisson 分布
X ~ P() P( X k) k e , k 0,1,...
F
(x)
0, 1,
x x
c c
E(X ) c
Var( X ) 0
9. 二项分布
X ~ b(n, p)
P( X k) Cnk pk (1 p)nk E(X ) np
Var( X ) np(1 p)
10. 二点分布(0-1 分布)
X ~ b(1, p)
P( X x) px (1 p)1x , x 0,1
p(
x)
2
n 2
1 (
n
)
e
x 2
x
n 2
1
,
x
0
2
0, x 0
E(X ) n
Var( X ) 2n
Gamma 分布变为 2 分布:
当 X ~ Ga(,) ,则 2 X ~ Ga(, 1) 2 (2 ) 2
20. 严格单调函数Y g(X )
pY ( y) px[h(x)] | h '(x) |
21. K 阶原点矩和中心矩
k E(X k ) k E( X E( X ))k
中心矩和原点矩关系:
k
k Cik i (i )ki i0
22. 变异系数
Cv
(
X
)
( E(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条件概率与全概率公式
条件概率是指在已知某一事件发生的情况下,另一事件发生的概率。
表示为P(A|B),读作“B发生下A的概率”。
其中,A和B都是事件。
全概率公式是指在多个互斥事件的情况下,求解某事件发生的概率。
表示为P(A)=∑P(Bi)P(A|Bi),其中,A和B1~Bn都是事件,且
B1~Bn互斥(即只能有一个事件发生)且构成全集(即所有事件的并集是样本空间)。
意思是将A发生的情况分别在B1到Bn分别发生下计算,再加起来就是A发生的概率。
例如,某次摇色子,摇出的数为1~6之一,设事件A为“得到奇数”,事件B为“得到4点以下的数”。
则P(A|B)表示在已知得到4以下的数的情况下,得到奇数的概率。
全概率公式中需要先考虑各个条件下得到4以下的数的概率,再乘以相应条件下得到奇数的概率,最后将得到奇数的结果相加,就可以得到最终的结果。