圆的方程(复习课)

合集下载

(江苏专用)高考数学总复习 第八章第3课时 圆的方程课件

(江苏专用)高考数学总复习 第八章第3课时 圆的方程课件

【解】 设点M的坐标是(x,y),点A 的坐标是(x0,y0),由于点B的坐标是 (4,3)且M是线段AB的中点,
所以 x=x0+2 4,y=y0+2 3, 于是有 x0=2x-4,y0=2y-3. ① 因为点 A 在圆(x+1)2+y2=4 上运动,
所以点 A 的坐标满足方程(x+1)2+y2= 4, 即(x0+1)2+y20=4. ② 把 ①代入 ②, 得(2x- 4+ 1)2+ (2y- 3)2 =4,
(2)求圆的方程有两类方法 ①几何法,即通过研究圆的性质、直 线和圆、圆和圆的位置关系,进而求 得圆的基本量(圆心、半径)和方程;
②代数法,即用“待定系数法”求圆 的方程,其一般步骤是:a.根据题意 选择方程的形式——标准形式或一般 形式(本例题中涉及圆心及切线,故设 标准形式较简单);b.利用条件列出关 于a,b,r或D,E,F的方程组;c.解 出a,b,r或D,E,F,代入所设的标 准方程或一般方程.
第八章 平面解析几何
第3课时 圆的方程
回归教材•夯实双基
基础梳理 1.圆的方程 (1)标准方程:(x-a)2+(y-b)2=r2,其中 (a_,__b_)____为圆心,r为半径.
(2)一般方程:x2+y2+Dx+Ey+F=
0(D2+E2-4F>0)其中圆心为
__-__D2_,__-__E2___,半径为_12__D__2_+__E_2- __4_F_.
d=|2--1-1|= 2.
1+1
又直线y=x-1被圆截得的弦长为2, ∴2=2,即2=2,解得r=2. ∴所求圆的方程为(x-2)2+(y+1)2= 4.
(2)法一:设圆的标准方程为(x-a)2+(y
-b)2=r2,则有
b=-4a,
3-a2+-2-b2=r2, |a+b-1|=r, 2

人教A版必修二第四章圆与方程复习课件

人教A版必修二第四章圆与方程复习课件
A
y
B
O
x
2 2 2 2 x y 4 25 x y 3.已知直线 y=x+1 与圆 相交于A,B两点,求弦长
|AB|的值
解法二:(弦长公式)
x 2 y 2 25
y x 1 由 2 消去y 2 x y 4 得2 x 2 2 x 3 0 3 x1 x2 1, x1 x2 2
联立方程组 消去二次项
2 2 x y 2x 8 y 8 0 ① 2 2 x y 4x 4 y 2 0 ②
①-②得 x 2 y 1 0 ③ 把上式代入①
x 2x 3 0 ④ (2)2 4 1 (3) 16
• 1.圆的定义:平面内到一个定点的距离等 于定长的点的集合(轨迹)叫做圆,定点 叫做圆心,定长叫做圆的半径. • 2.圆的方程 • (1)标准方程:以(a,b)为圆心,r (r>0)为半径的圆的标准方程为(x-a) 2+(y-b)2=r2.
• (2)一般方程:x2+y2+Dx+Ey+F=0. • 当D2+E2-4F>0时,表示圆的一般方程,其圆心的
画板 直线与圆的位置关系的判断方法: 一般地,已知直线Ax+By+C=0(A,B不同时为零)
和圆(x-a)2+(y-b)2=r2,则圆心(a,b)到此直线 的距离为 d
| Aa Bb C | A B
2 2

位置 d与 r
图形
相离
d>r
d
相切 d=r
d r
相交 d<r
d r
r
交点个数
当-2 2 <b<2

034圆的方程复习课

034圆的方程复习课

034 圆的方程复习课【学习目标】1.掌握圆的定义及标准方程、一般方程.2.会用待定系数法求圆的方程,处理较为简单的有关圆的实际问题.【学习重难点】重点:圆的定义及标准方程、一般方程难点:会用待定系数法求圆的方程【学法指导及要求】熟练记忆并理解两种圆的方程,体会待定系数法和轨迹法求圆的方程的一般方法.【学习过程】一、复习回顾:(或者新课引入)知识点一圆的标准方程:222)()(r b y a x =-+-,其中圆心为(,)A a b ,半径为r .特别地,当圆心为原点O (0,0),圆的标准方程为222x y r +=.知识点二圆的一般方程:当D 2+E 2-4F >0时,二元二次方程x 2+y 2+Dx +Ey +F =0称为圆的一般方程.二、典型例题:(2-3个例题)例1.已知圆C 经过点A (0,-6),B (1,-5),且圆心在直线l :x -y +1=0上,求圆C 的方程.变式训练 求经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上的圆的标准方程.例2.如果圆的方程为x 2+y 2+kx +2y +k 2=0,那么当圆的面积最大时,圆心坐标为________.变式训练 已知定点P 1(-1,0),P 2(1,0),动点M 满足|MP 1|=2|MP 2|,则构成△MP 1P 2面积的最大值是( ) A. 2 B .2 2 C.233D .23反思:(也可留白让学生总结)四、课堂反馈:(2-3个题)1.以两点A (-3,-1)和B (5,5)为直径端点的圆的标准方程是__________________.2.与y 轴相切,且圆心坐标为(-5,-3)的圆的标准方程为________________.五、课堂总结:1、2、智慧作业:(30分钟, 2--3个单选+1--2个多选+1--2个填空+1--2个解答)(总共6-8个题)一、单选题1.圆心为(1,-2),半径为3的圆的方程是( )A .(x +1)2+(y -2)2=9B .(x -1)2+(y +2)2=3C .(x +1)2+(y -2)2=3D .(x -1)2+(y +2)2=92.点P (1,3)与圆x 2+y 2=24的位置关系是( )A .在圆外B .在圆内C .在圆上D .不确定3.圆心在y 轴上,半径为1,且过点(1,2)的圆的标准方程是( )A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1二、多选题4.已知方程x 2+y 2+3ax +ay +52a 2+a -1=0,若方程表示圆,则a 的值可能为( )A.-2B.0C.1D.3三、填空题5.已知点A (3,-2),B (-5,4),以线段AB 为直径的圆的标准方程是________.6.若点(a +1,a -1)在圆x 2+y 2-2ay -4=0的内部(不包括边界),则a 的取值范围是________.四、解答题7.已知一圆的圆心为点A (2,-3),一条直径的端点分别在x 轴和y 轴上,求圆的标准方程.。

高三数学一轮复习圆的方程复习课

高三数学一轮复习圆的方程复习课

典例剖析
【例1】一圆与y轴相切,圆心在直线x-3y=0上,且 直线y=x截圆所得弦长为 2 ,求此圆的方程。 7 分析:巧设方程,利用半弦、半径和弦心距构成的直角三角形. 解:因圆与y轴相切,且圆心在直线x-3y=0上, 故设圆方程为(x-3b)2+(y-b)2=(3b)2. 又因为直线y=x截圆得弦长为 2 7 , 则有(
知识梳理
4、圆的参数方程:
x a r cos y b r sin
( r 0 , 为参数 )
其中圆心为(a, b),半径为r. 说明:1、几何性质比较明显,很好体现半径 与x轴的圆心角的关系。 2、方程中消去θ得(x-a)2+(y-b)2=r2, 把这个方程相对于参数方程又叫做普通方程.
能力培
(1)
y x
的最大值和最小值;
(2)y-x的最小值; (3)x2+y2的最大值和最小值.
思悟小结
1.不论圆的标准方程还是一般方程,都有三个字母(a、b、r或D、E、F) 的值需要确定,因此需要三个独立的条件. 利用待定系数法得到关于a、b、r(或D、E、F)的三个方程组成的方程组, 解之得到待定字母系数的值. 2.求圆的方程的一般步骤: (1)选用圆的方程两种形式中的一种 (若知圆上三个点的坐标,通常选用一般方程; 若给出圆心的特殊位置或圆心与两坐标间的关系,通常选用标准方程); (2)根据所给条件,列出关于D、E、F或a、b、r的方程组; (3)解方程组,求出D、E、F或a、b、r的值, 并把它们代入所设的方程中,得到所求圆的方程. 3.解析几何中与圆有关的问题,应充分运用圆的几何性质帮助解题.
A. a 1
B. a
.
1
C. a

圆与方程复习课件

圆与方程复习课件

所以,
即有a-2b=±1,由此有

解方程组得

于是r2=2b2=2, 所求圆的方程是
(x+1)2+(y+1)2=2,或(x-1)2+(y-1)2=2.
∴所求圆的方程为 (x 2 2 6)2 ( y 4)2 42 ,或 (x 2 2 6)2 ( y 4)2 42
例6.设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧, 其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到 直线l: x-2y=0的距离为 5 的圆的方程.
圆与方程复习
例1 求过两点 A(1 , 4) 、 B(3 , 2) 且圆心在直线 y 0 上的圆的 标准方程并判断点 P(2 , 4)与圆的关系.
解法一:(待定系数法)
设圆的标准方程为 (x a)2 ( y b)2 r 2


∵圆心在直线 y 0上,故 b 0

∴圆的方程为 (x a)2 y2 r 2
例5.求半径为4,与圆 x2 y2 4x 2y 4 0 相切,
且和直线 y 0 相切的圆的方程.
解:则题意,设所求圆的方程为圆 C:(x a)2 ( y b)2 r 2
圆 C 与直线 y 0 相切,且半径为4,
则圆心 C的坐标为 C1(a , 4) 或 C2(a , 4)
又已知圆 x2 y2 4x 2 y 4 0 的圆心 A 的坐标为
(2 ,1) 半径为3.
若两圆相切,则 CA 4 3 7 或 CA 4 3 1
(1)当 C1(a , 4) 时,(a 2)2 (4 1)2 72 或
(a 2)2 (4 1)2 12 (无解) ,故可得a 2 2 10

圆的方程复习课(新2019)

圆的方程复习课(新2019)

4、已知条件和圆心坐标或半径都无直接关系,往 往设圆的一般方程.
;海外公司注册 / 海外公司注册 ;
皇子及尚书九官等在武昌 曹孟德 孙仲谋之所睥睨 黄忠为后将军 嘉靖本又有“陆逊石亭破曹休”一回(毛本只有寥寥数语) 乃将兵袭破之 陛下忧劳圣虑 可以其父质而召之 [72] ②今东西虽为一家 公子光就派专诸行刺吴王僚而后自立为王 历史评价 ?以至将城门堵住 荆州重镇江 陵守将麋芳(刘备小舅子) 公安守将士仁因与关羽有嫌隙而不战而降 3 官至虎贲中郎将 陆逊的确是善于审时度势 《三国志》:黄武元年 而开大业 藤桥离孽多城有六十里 赞曰:“羯贼犯顺 言次 伍子胥拜谢辞行 ?骂仙芝曰:“啖狗肠高丽奴 并嘱托渔丈人千万不要泄露自己的 行踪 以三千军队驻守这里 25.城中吏民皆已逃散 势危若此 由于唐朝在西域实施了有效的对策 知袭关羽以取荆州 但因害怕段韶 刘备却说:“当得到凉州时 人众者胜天 与孙皎 潘璋并鲁肃兵并进 陆逊呵斥谢景说:“礼治优于刑治 ”单恐惧请罪 但由于宦官的诬陷 对比西域各国 准备进攻襄阳(今湖北襄樊) 唐军人数一说2-3万人一说6-7万人 回答说:“是御史中丞您的大力栽培 一生出将入相 时汉水暴溢 就掘开楚平王的坟墓 天宝八载(749)十一月 终年六十三岁 4 恐有脱者后生患 陈志岁:知否申胥本楚人 司马光:昔周得微子而革商命 目的是刺杀他 孙权遂以陆逊代吕蒙守陆口 称相国公 功业昭千载 才能足以担负重任 又攻房陵太守邓辅 南乡太守郭睦 封夫概於堂溪 夜行而昼伏 荆州可忧 阖庐使太子夫差将兵伐楚 拜中军将军 乞息六师 翻手伏尸百万 关羽画像 谓小勃律王曰:“不窥若城 遂顿特勒满川 常清自尔候仙芝出入 加特进 ”遂登山挑战 以威大虏 ”而城中有五六个首领 惊险困难 只好拖着病躯 令关羽入益阳 乞食 清德宗 被吐蕃(今青藏高原)和大食誉为山地之王 臣请将所部以断之

圆的方程复习课

圆的方程复习课

( x 3m )2 ( y 4m )2 5( m 4)
相切,则点A在圆C的______,m的取值范围是_______.
(3)若方程 x 2 y 2 2kx 4 y 3k 8 0
表示一个圆,则实数k的取值范围是_________.
(4)已知圆的方程是 x y 2 x Байду номын сангаас 4 y 3 0 ,
点B(2,0)距离的2倍,求动点P的轨迹方程.
例6 过点Q(2,-4)作的圆O: x y 9
2 2
割线,交圆O于点A,B,求AB中点P的轨迹方程.
比较d和r大小 几何法 直线是否定点,判断 点与圆的位置 关系 代数法:联立方程求解的个数
4、直线与圆位置关系的判断
利用直角三角形 几何法:
5、有关弦长的计算问题
联立方程求交点,求距离 代数法:
二、典例分析
例1 填空题: (1)圆心在x轴上,半径为5且经过原点的圆方程是 ________________. (2)若过点A(4,2)可以作两条直线与圆C:
必修②
第四章
学习目标
圆与方程
1、掌握圆的标准方程和一般方程的形式; 2、会判断点和圆、直线和圆的位置关系; 3、会求圆的方程; 4、会求切线方程和轨迹方程; 5、会求有关弦长的问题
一、基础知识
1、圆的标准方程:
( x a) ( y b) r
2 2
2
圆心C(a,b),半径r x 2、圆的一般方程:2+y2+Dx+Ey+F=0(D2+E2-4F>0) D E 1 圆心 ( , ) 半径 D2 E 2 4F 2 2 2 3、点与圆位置关系的判断: 将点的坐标代入圆的方程判断

2024年高考数学一轮复习(新高考版)《圆的方程》课件ppt

2024年高考数学一轮复习(新高考版)《圆的方程》课件ppt

设动点P的坐标为(x,y), 因为 M(1,0),N(2,0),且|PN|= 2|PM|, 所以 x-22+y2= 2· x-12+y2,
整理得x2+y2=2, 所以动点P的轨迹C的方程为x2+y2=2.
(2)已知点B(6,0),点A在轨迹C上运动,求线段AB上靠近点B的三等分点Q 的轨迹方程.
(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B
=0,D2+E2-4AF>0.( √ )
(4)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x20+y20+Dx0+Ey0+
F>0.( √ )
教材改编题
1.圆心为(1,1)且过原点的圆的方程是 A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2
若过(0,0),(4,0),(4,2),
F=0,
则16+4D+F=0, 16+4+4D+2E+F=0,
F=0,
解得D=-4, E=-2,
满足 D2+E2-4F>0,
所以圆的方程为x2+y2-4x-2y=0,
即(x-2)2+(y-1)2=5;
若过(0,0),(4,2),(-1,1),
F=0,
则1+1-D+E+F=0, 16+4+4D+2E+F=0,
方法二 设 AB 的中点为 D,由中点坐标公式得 D(1,0),由直角三角 形的性质知|CD|=12|AB|=2.由圆的定义知,动点 C 的轨迹是以 D(1,0) 为圆心,2 为半径的圆(由于 A,B,C 三点不共线,所以应除去与 x 轴 的交点). 所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).
设圆心坐标为(a,-2a+3),则圆的半径 r= a-02+-2a+3-02
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题3:m变化时,求圆心的轨迹
数 学 数学第二册(上) 第一册(上)
普通高级中学实验教科书(信息技术整合本)
1.求圆x2+y2+2ax-2by=0的圆心与半径.
2.若圆x2+y2+mx+ny+12=0的圆心为(-2,3)
求圆的面积. 3.设P(x,y)为圆C1: x2+(y-1)2=1上一点,若不
等式x+y+c0恒成立,求c的取值范围.
的判定方法
数 学 数学第二册(上) 第一册(上)
普通高级中学实验教科书(信息技术整合本)
课本P82
9、10
数 学 数学第二册(上) 第一册(上)
数 学 数学第二册(上) 第一册(上)
普通高中学实验教科书(信息技术整合本)
4.已知圆x2+y2+4x+10y+4=0,直线x+2y-3=0,
求圆上的点到直线距离的最大值及最小值.
5.若x,y满足(x-2)2+y2=3,求 最小值.
y 的最大值及 x
6.圆C1: x2+y2=1与圆C2:x2+y2-6x-8y+m=0 相切,求m的值.
数 学 数学第二册(上) 第一册(上)
普通高级中学实验教科书(信息技术整合本)
小结: 1.解决圆的有关问题时要灵活,恰当地选用
标准方程,一般方程或参数方程,特别要熟练
地用配方法把圆的一般方程化为标准方程.
2.若方程系数中含有参数,要注意参数的取 值范围,及利用题设条件求参数的值或范围.
3.要熟悉点与圆,直线与圆,圆与圆位置关系
普通高级中学实验教科书(信息技术整合本)
例:若方程 x y ( m 1) x ( m 1) y 2m 1 0
2 2
表示圆C,求实数m的取值范围.
围绕例题,请同学们进一步思考如下问题:
l 题1:若圆C的圆心在直线 L:x-y-4=0上, 求圆C的面积 题2:m为何值时,圆C与直线L相割,相切,相 离
>0 圆 =0 点
<0 无
数 学 数学第二册(上) 第一册(上)
圆的一般方程
x y Dx Ey F 0
2 2
普通高级中学实验教科书(信息技术整合本)
圆的参数方程
x a r cos y b r sin
( 为参数)
数 学 数学第二册(上) 第一册(上)
2 2

△>0 △=0 △<0

d<r d=r d>r
数 学 数学第二册(上) 第一册(上)
普通高级中学实验教科书(信息技术整合本)
圆和圆的位置关系
位置关系 外离 外切
相交 内含 内切
判断方法
d>R+r
d=R+r
R-r<d<R+r 0<d<R-r d=R-r
数 学 数学第二册(上) 第一册(上)
普通高级中学实验教科书(信息技术整合本)
点和圆的位置关系
设点P(x0,y0)到圆心的距离为d
d ( x0 a ) ( y0 b) r 点在圆外
2 2 2 2
d ( x0 a ) ( y0 b) r 点在圆上 d ( x0 a ) ( y0 b) r 点在圆内
2 2
数 学 数学第二册(上) 第一册(上)
普通高级中学实验教科书(信息技术整合本)
Ax By C 0 设方程组 2 2 2 ( x a ) ( x b ) r
直线和圆的位置关系
圆心到直线Ax+By+C=0距离d 相割 相切 相离
Aa Bb C A B
普通高级中学实验教科书(信息技术整合本)
数 学 数学第二册(上) 第一册(上) 东莞实验中学
普通高级中学实验教科书(信息技术整合本)
圆的标准方程
a
D E b 2 2
( x a ) ( y b) r
2 2
2
r
D E 4F 2
2 2
展 开
配 方
D E 4F
2 2
相关文档
最新文档