立体几何专题训练
立体几何经典大题(各个类型的典型题目)

1.如图,已知△ABC 是正三角形,EA ,CD 都垂直于平面ABC ,且EA =AB =2a ,DC =a ,F 是BE 的中点.(1)FD ∥平面ABC ;(2)AF ⊥平面EDB .2.已知线段PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点。
(1)求证:MN //平面PAD ; (2)当∠PDA =45°时,求证:MN ⊥平面PCD ;F CBAEDA B C D EF 3.如图,在四面体ABCD 中,CB=CD,BD AD ⊥,点E ,F 分别是AB,BD 的中点.求证: (1)直线EF// 面ACD ; (2)平面⊥EFC 面BCD .4.在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC (1)若D 是BC 的中点,求证 AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1, 求证 截面MBC 1⊥侧面BB 1C 1C ;(3)AM =MA 1是截面MBC 1⊥平面BB 1C 1C 的充要条件吗?请你叙述判断理由]立体几何大题训练(3)C15. 如图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、G 分别是A 1A ,D 1C ,AD 的中点. 求证:(1)MN//平面ABCD ; (2)MN ⊥平面B 1BG .6. 如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1;(2)求证:平面CAA 1C 1⊥平面CB 1D 1.立体几何大题训练(4)7、如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB=4,BC=CD=2,AA 1=2,_ G_ M _ D_1_ C_1_ B_1_ A_1_ N_ D _ C_ B _ ABA 1FE、E1分别是棱AD、AA1的中点(1)设F是棱AB的中点,证明:直线EE1∥面FCC1;(2)证明:平面D1AC⊥面BB1C1C。
【必刷题】2024高一数学下册立体几何初步专项专题训练(含答案)

【必刷题】2024高一数学下册立体几何初步专项专题训练(含答案)试题部分一、选择题:1. 在空间直角坐标系中,点A(1,2,3)关于x轴的对称点的坐标是()A. (1,2,3)B. (1,2,3)C. (1,2,3)D. (1,2,3)2. 下列关于直线l:x=1,y=2+t,z=32t的描述,正确的是()A. 直线l平行于x轴B. 直线l平行于y轴C. 直线l平行于z轴D. 直线l垂直于x轴3. 一个正方体的对角线长度为6根号3,则其表面积为()A. 216B. 54C. 108D. 1444. 若长方体的长、宽、高分别为2cm、3cm、4cm,则其对角线长度为()A. 5cmB. 6cmC. 7cmD. 9cm5. 下列关于平面α:2x3y+z=6的描述,正确的是()A. 平面α平行于x轴B. 平面α平行于y轴C. 平面α平行于z轴D. 平面α垂直于x轴6. 下列关于点P(2,3,4)到平面α:x+y+z=6的距离,正确的是()A. 1B. 2C. 3D. 47. 若三棱锥的底面是边长为1的正三角形,侧棱长为根号3,则其体积为()A. 1/3B. 1/6C. 1/9D. 1/128. 下列关于球体的描述,正确的是()A. 球体的表面积与半径成正比B. 球体的体积与半径成正比C. 球体的表面积与半径的平方成正比D. 球体的体积与半径的平方成正比9. 若四面体的四个面均为等边三角形,边长为a,则其体积为()A. a^3/6B. a^3/12C. a^3/18D. a^3/2710. 下列关于空间向量夹角的描述,正确的是()A. 向量a与向量b的夹角为90°,则a·b=0B. 向量a与向量b的夹角为0°,则a·b=0C. 向量a与向量b的夹角为180°,则a·b=0D. 向量a与向量b的夹角为60°,则a·b=0二、判断题:1. 在空间直角坐标系中,点A(0,0,0)到点B(1,1,1)的距离等于根号3。
立体几何专题测试6

立体几何专题训练6学校:___________姓名:___________班级:___________考号:___________一、单选题A .22.已知l ,m ,n 是不重合的直线,A .若αβ⊥,//n α,则C .若n αβ= ,//m 3.已知某圆锥的高为A .23π c m 24.如图,在长方体ABCD 圆上(不含点C ,D )A .平面ADE ⊥平面C .11//D C 平面ABE 5.如图,在棱长为1的正方体的中点,若直线1D P AA 二、多选题7.下列说法正确的是()A .用一个平面截一个球,得到的截面是一个圆面B .圆台的任意两条母线延长后一定交于一点C .空间中没有公共点的两条直线一定平行D .若直线a 和平面α满足a α∥,那么直线a 与平面α内的任何直线平行8.关于空间两条直线a ,b 和平面α,下列命题错误的是()A .若a α⊥,b α⊂,则a b⊥r r B .若//a α,b α⊂,则//a b C .若a b ⊥r r ,b α⊥,则//a αD .若//a b ,b α⊥,则a α⊥9.如图,四棱锥S ABCD -的底面为正方形,SD ⊥底面ABCD ,则下列结论中正确的是()A .AC SB⊥B .//AB 平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D .AB 与SC 所成的角等于DC 与SA 所成的角三、填空题10.已知A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为_______.11.某同学制作了一个对面图案相同的正方体礼品盒(如图),则这个正方体礼品盒的表面展开图应该为______.12.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根完全一样的正四棱柱体分成三组,经90 榫卯起来.若正四棱柱的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器(容器壁的厚度忽略不计),则该球形容器表面积的最小值为_____.四、解答题13.如图所示,在四棱锥P ABCD -中,底面ABCD 为平行四边形45CDA ∠= ,1AD AC ==,O 为AC 中点,PO ⊥平面ABCD ,2PO =,M 为PD 中点.(1)证明://PB 平面ACM ;(2)证明:平面PAD ⊥平面PAC .14.如图,在长方体1111ABCD A B C D -中,E 为AB 的中点,F 为1CC 的中点.(1)证明://EF 平面1AC D ;(2)若2AD =,3AB =,14AA =,求点E 到平面1AC D 的距离.(Ⅰ)证明:平面AEF ⊥平面(Ⅱ)若2AB EC ==,求三棱锥16.已知M ,N 是长方体(1)若1AA AB =,求异面直线MN (2)若异面直线MN 与1AB 所成角的大小为参考答案:2.D【分析】根据空间中线面、面面位置关系的判定定理与性质定理判断即可;【详解】解:对于A ,若αβ⊥,对于B ,若//m α,//m β,则//α对于C ,若n αβ= ,//m n ,则m 对于D ,若m ,n 是异面直线,m 则由线面垂直的判定定理得l α⊥,故故选:D .3.B【分析】由圆锥的体积和高,得到底面半径,勾股定理得母线长,由圆锥的侧面积公式计算结果.【详解】设该圆锥的底面半径与母线长分别为故选:D.5.BAD CD的中点为【分析】取,括边界)的轨迹为线段GH因为E ,F 分别为棱,AB BC 的中点,所以所以11A C FE 四点共面,直线1D P 与平面1EFC 无公共点,所以因为,G H 为,AD CD 的中点,所以正方体中,11//D G C F ,1D G ⊂/又1D G GH G = ,所以平面1D GH P 在正方形ABCD 内(包括边界)的轨迹为线段因为11D G D H =,所以当P 为GH 此时,2111()12D G D H ==+=所以221154D P D H PH =-=-故选:B.【点睛】关键点点睛:本题解题的关键是由平面(包括边界)的轨迹为线段GH 6.D【分析】先根据线面关系以及三棱锥垂直,最终证得PC ⊥面AMN ,再利用长方体模型求三棱锥【详解】解:由题可知ABC 中,则该长方体的外接球即三棱锥P AMN -故24==PA R ,所以2R =三棱锥P AMN -外接球的体积为:4π3故选:D.7.AB【分析】由截面的性质判断A ,由圆台的概念判断C ,由线面平行的性质判断D.【详解】对A ,用一个平面截一个球,得到的截面是一个圆面,故对B ,由圆台的概念知圆台的任意两条母线延长后一定交于一点,故对C ,空间中没有公共点的两条直线可能异面,不一定是平行,故C 错误;对D ,若直线a 和平面α满足a α∥,那么a 与α内的任何直线平行或异面,故D 错误.故选:AB8.BC【解析】根据空间点线面的位置关系和各判定定理逐项判断即可.【详解】对于B 选项:若//a α,b α⊂,则a 与b 平行或异面,所以B 选项错误;对于C 选项:若a b ⊥r r ,b α⊥,则//a α或a α⊂,故C 选项错误.故选:BC .【点睛】判断空间点线面的位置关系可以借助长方体模型来排除.9.ABC【分析】证明AC ⊥面SBD 即可判断A ;由线面平行的判定定理可判断B ;由线面角的定义求出两个线面角即可判断C ;根据异面直线所成的角可判断D ,进而可得正确选项【详解】解:对于A :因为SD ⊥底面ABCD ,AC ⊂面ABCD ,所以SD AC ⊥,因为底面ABCD 是正方形,所以AC BD ⊥,因为SD BD D = ,,SD BD ⊂平面SBD ,所以AC ⊥平面SBD ,因为SB ⊂平面SBD ,所以AC SB ⊥,故A 正确;对于B :因为底面ABCD 是正方形,所以//AB CD ,因为AB ⊄平面SCD ,CD ⊂平面SCD ,由线面平行的判定定理可得//AB 平面SCD ,故B 正确;对于C :设AC BD O = ,连接SO ,因为AC ⊥平面SBD ,SO ⊂平面SBD ,所以ASO ∠即为SA 与平面SBD 所成的角,CSO ∠即为SC 与平面SBD 所成的角,AC SO ⊥,因为AO CO =,SO SO =,且AC SO ⊥,所以tan tan ASO CSO ∠=∠,可得ASO CSO ∠=∠,所以SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角,故C 正确;对于D :因为//AB CD ,所以SCD ∠即为AB 与SC 所成的角,SAB ∠即为DC 与SA 所成的角,因为AB AD ⊥,AB SD ⊥,AD SD D ⋂=,,AD SD ⊂平面SAD ,所以AB ⊥平面SAD ,因为SA ⊂平面SAD ,所以AB SA ⊥,所以90SAB ∠= ,因为90SDC ∠= ,所以90SCD ∠≠ ,所以SCD SAB ∠≠∠,所以AB 与SC 所成的角不等于DC 与SA 所成的角,故D 不正确;故选:ABC10.212/1212【分析】作出直观图,根据几何关系求出球心到平面【详解】∵,AC BC AC ⊥则ABC 外接圆圆心是AB 又球的半径为OB =1,设∴1133O ABC ABC V S d -=⋅=⨯ 故答案为:212.11.①【分析】对面图案相同的正方体礼品盒,则两个相同图案一定不能相邻【详解】图①正确;图②,③,④均有相邻图案相同,故均错误,14.(1)证明见解析;(【分析】(1)取1C D 的中点2CD GF =,又E 为AB 定定理,即可得证;(2)根据题意,可求得V 即可求得答案.【详解】(1)证明:取C ∵G 为1C D 的中点,F 为CC ∴//GF CD 且2CD GF =,∵E 为AB 的中点,AB CD =∴//AE GF 且AE GF=∴四边行AEFG 为平行四边形,∴//AG EF ,又AG ⊂平面∴//EF 平面1AC D .(2)由长方体1ABCD A B -16.(1)60︒;(2)arctan 【分析】(1)连接11,B D D (2)设1AA t =,由已知条件求出可【详解】(1)连接11,B D D 易知11//MN B D ,所以D ∠因为1111B D B A AD ==,所以1160D B A ∠=︒,所以异面直线MN 与1AB (2)设1AA t =,则1B A =因为异面直线MN 与1AB 所以22111110102B A B D B A AD +-=⋅解得2t =,又//CD AB ,所以1B AB ∠为异面直线CD。
立体几何专题

立体几何专题1. (北京文) (18) (本小题 14 分)如图,在四棱锥 P-ABCD 中,底面 ABCD 为矩形, 平面 PAD⊥平面 ABCD , PA⊥ PD , PA=PD , E , F 分别为 AD , PB 的中点.( Ⅰ ) 求证: PE ⊥BC ; (Ⅱ)求证:平面 PAB ⊥平面 PCD ; (Ⅲ) 求证: EF∥平面 PCD.2. (北京理) (16) (本小题 14 分)如图, 在三棱柱 ABC- A 1B 1C 1 中, CC 1 」平面 ABC , D , E , F , G 分别为 AA 1,AC , A 1C 1,BB 1 的中点, AB=BC= 5, AC= AA 1 =2.( Ⅰ ) 求证: AC⊥平面 BEF ; ( Ⅱ ) 求二面角B-CD-C 1 的余弦值; (Ⅲ) 证明: 直线 FG 与平面 BCD 相交.3. (江苏) (15) (本小题满分 14 分)在平行六面体ABCD 一 A B C D 中,AA = AB, AB 」B C .求证: (1) AB∥平面A B C; (2) 平面ABB A 」平面A BC.4. (浙江) (19) (本题满分 15 分)如图,已知多面体 ABCA1B1C1,A1A, B1B, C1C均垂直于平面 ABC,∠ABC=120°, A1A=4, C1C=1, AB=BC=B1B=2.(Ⅰ)证明:AB1 ⊥平面A1B1C1;(Ⅱ)求直线 AC1 与平面 ABB1 所成的角的正弦值.1 1 1 1 1 1 1 1 1 1 1 1 1第 2 页共 10 页5. (天津文) (17)(本小题满分 13 分)如图,在四面体 ABCD 中,△ABC 是等边三角形,平面 ABC⊥平面 ABD,点 M 为棱AB 的中点, AB=2, AD= 2 3 ,∠BAD=90°.( Ⅰ )求证:AD⊥BC;( Ⅱ ) 求异面直线 BC 与 MD 所成角的余弦值;(Ⅲ)求直线 CD 与平面 ABD 所成角的正弦值.6. (天津理) (17)(本小题满分 13 分)如图,AD∥BC 且 AD=2BC,AD 」CD , EG∥AD且 EG=AD,CD∥FG 且 CD=2FG,DG 」平面ABCD, DA=DC=DG=2.(I)若 M 为 CF 的中点, N 为 EG 的中点,求证:MN∥平面CDE;(II)求二面角E BC F 的正弦值;(III)若点 P 在线段 DG 上,且直线 BP 与平面 ADGE 所成的角为60°,求线段 DP 的长.7. (全国卷一文)(18)(12 分)如图, 在平行四边形 ABCM 中, AB = AC = 3, ∠ACM = 90, 以 AC 为折痕 将△ ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA. (1)证明:平面 ACD ⊥平面 ABC ;(2) Q 为线段 AD 上一点, P 在线段 BC 上, 且 BP = DQ = DA , 求三棱锥3Q ABP 的体积.8. (全国卷一理)(18)(12 分)如图, 四边形 ABCD 为正方形, E, F 分别为 AD, BC 的中点, 以 DF 为折 痕把 △DFC 折起,使点 C 到达点 P 的位置,且 PF 」BF . (1)证明:平面 PEF 」平面 ABFD ; (2)求 DP 与平面 ABFD 所成角的正弦值 .29. (全国卷二文)( 19) (12 分)如图,在三棱锥P ABC 中,AB = BC = 2 2,PA = PB = PC = AC = 4,O为AC 的中点.(1)证明:PO 」平面ABC;(2)若点M 在棱 BC 上,且MC = 2MB,求点C 到平面POM 的距离.10. (全国卷二理)(20)(12分)如图,在三棱锥P ABC 中,AB = BC = 2 2,PA = PB = PC = AC = 4,O 为AC 的中点.(1)证明:PO 」平面ABC;(2) 若点M 在棱BC 上,且二面角M PA C 为30,求PC 与平面 PAM 所成角的正弦值.POA CMB11. (全国卷三文)(19)(12分)如图,矩形ABCD所在平面与半圆弧 CD 所在平面垂直,M 是CD 上异于C, D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM 上是否存在点 P ,使得MC∥平面PBD ?说明理由.12. (全国卷三理)(19)(12分)如图,边长为 2 的正方形ABCD所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C, D 的点.(1)证明:平面 AMD⊥平面BMC;(2) 当三棱锥M ABC 体积最大时,求面 MAB 与面MCD所成二面角的正弦值.13. (12 分)如图,四棱锥 P-ABCD 中,侧面 PAD 为等比三角形且垂直于底面 ABCD,1AB = BC = AD, 三BAD = 三ABC = 90o , E 是 PD 的中点.2(1) 证明:直线CE/ / 平面 PAB(2) 点 M 在棱 PC 上,且直线 BM 与底面 ABCD 所成锐角为45o ,求二面角 M-AB-D 的余弦值14. (12 分)如图,在四棱锥 P-ABCD 中, AB//CD,且三BAP = 三CDP = 90(1)证明:平面 PAB⊥平面PAD;(2)若 PA=PD=AB=DC, 三APD = 90 ,求二面角 A-PB-C 的余弦值.15. (12 分)如图,四面体 ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD= ∠CBD,AB=BD.(1) 证明:平面ACD⊥平面 ABC;(2) 过 AC 的平面交 BD 于点 E,若平面 AEC 把四面体 ABCD 分成体积相等的两部分,求二面角 D –AE –C 的余弦值.16.如图,在四棱锥 P-ABCD 中,底面 ABCD 为正方形,平面PAD⊥平面 ABCD,点 M在线段 PB 上, PD//平面 MAC, PA=PD= 6, AB=4.(I)求证: M 为 PB 的中点;(II)求二面角 B-PD-A 的大小;(III)求直线 MC 与平面 BDP 所成角的正弦值.17.如图,在三棱锥 P-ABC 中,PA⊥底面 ABC,三BAC = 90o .点 D, E, N 分别为棱PA, PC, BC 的中点, M 是线段 AD 的中点, PA=AC=4, AB=2.(Ⅰ)求证: MN∥平面BDE;(Ⅱ)求二面角 C-EM-N 的正弦值;7(Ⅲ) 已知点 H 在棱 PA 上,且直线 NH 与直线 BE 所成角的余弦值为,求线段 AH21的长.18.如图,几何体是圆柱的一部分,它是由矩形为旋转轴旋转得到的,是的中点.(Ⅰ)设是(Ⅱ)当上的一点,且,求的大小;,,求二面角的大小.(及其内部) 以边所在直线19. (本题满分 15 分)如图,已知四棱 P–ABCD,△PAD 是以 AD 为斜边的等腰直角三角形,BC∥AD,D⊥AD, PC=AD=2DC=2CB, E 为 PD 的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.。
专题03 立体几何大题基础练(原卷版)

【一专三练】 专题03 立体几何大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·河北·校联考模拟预测)在斜三棱柱111ABC A B C -中,ABC V 是等腰直角三角形,,AB BC AC ==,平面11ACC A ⊥底面ABC ,112A B AA ==.(1)证明:1A B AC ⊥;(2)求二面角11A BC C --的正弦值.2.(2023·浙江金华·浙江金华第一中学校考模拟预测)如图,在直三棱柱111ABC A B C -中,2CA CB ==,AB =,13AA =,M 为AB 的中点.(1)证明:1//AC 平面1B CM ;(2)求点A 到平面1B CM 的距离.3.(2023·江苏泰州·统考一模)如图,在ABC V 中,AD 是BC 边上的高,以AD 为折痕,将ACD V 折至APD △的位置,使得PB AB ⊥.(1)证明:PB ⊥平面ABD ;(2)若4,2AD PB BD ===,求二面角B PA D --的正弦值.4.(2023·辽宁阜新·校考模拟预测)如图,在等腰直角三角形ABC 中(如图1),∠A =90°,点E ,F 分别是AB ,BD 的中点,将△ABC 沿AD 折叠得到图2所示图形,设l 是平面EFC 和平面ACD 的交线.(1)求证:l ⊥平面BCD ;(2)求平面ACD 和平面BCD 夹角的余弦值.5.(2023·江苏南通·统考模拟预测)三棱柱111ABC A B C -中,112AB AB AA AC ====,120BAC ∠= ,线段11A B 的中点为M ,且BC AM ⊥.(1)求1AA 与BC 所成角的余弦值;(2)若线段11B C 的中点为P ,求二面角11P AB A --的余弦值.6.(2023·福建莆田·统考二模)如图,直三棱柱111ABC A B C -的侧面11BCC B 为正方形,22AB BC ==,E ,F 分别为AC ,1CC 的中点,11BF A B ⊥.(1)证明:BF ⊥平面11A B E ;(2)求平面11A B E 与平面11ACC A 夹角的余弦值.7.(2023·辽宁·校联考一模)如图,四棱锥P ABCD -中,底面ABCD 是菱形,PD ⊥底面ABCD ,PD DA =,M 为AD 的中点,且平面PBM ⊥平面PDA .(1)证明:BM AD ⊥;(2)求二面角M PB C --的正弦值.8.(2022·河北邯郸·统考二模)如图,在三棱锥P -ABC 中,△ABC 为等腰直角三角形,且2AB AC ==,△ABP 是正三角形.(1)若PC BC =,求证:平面ABP 平面ABC ;(2)若直线PC 与平面ABC 所成角为π4,求二面角P AB C --的余弦值.9.(2023·江苏·统考一模)在三棱柱111ABC A B C -中,平面11A B BA ⊥平面ABC ,侧面11A B BA 为菱形,1π3ABB ∠=,1AB AC ⊥,2AB AC ==,E 是AC 的中点.(1)求证:1A B ⊥平面1AB C ;(2)点P 在线段1A E 上(异于点1A ,E ),AP 与平面1A BE 所成角为π4,求1EP EA 的值.10.(2022·山东·潍坊一中校考模拟预测)在如图所示的多面体AFDCBE 中,AB ⊥平面BCE ,////AB CD EF ,BE EC ⊥,4AB =,2EF =,24EC BE ==.(1)在线段BC 上是否存在一点G ,使得//EG 平面AFC ?如果存在,请指出G 点位置并证明;如果不存在,请说明理由;(2)当三棱锥D AFC -的体积为8时,求二面角D AF C --的余弦值.11.(2022·山东日照·校联考二模)如图,等腰梯形ABCD 中,AD BC ∥,12AB BC CD AD ===,现以AC 为折痕把ABC V 折起,使点B 到达点P 的位置,且PA CD ⊥.(1)证明:平面APC ⊥平面ADC ;(2)若M 为PD 上一点,且三棱锥D ACM -的体积是三棱锥P ACM -体积的2倍,求二面角P AC M --的余弦值.12.(2022·湖北武汉·武汉二中校考模拟预测)如图(1),平面四边形ABDC 中,90ABC D ∠=∠=︒,2AB BC ==,1CD =,将ABC V 沿BC 边折起如图(2),使AD =,点M ,N 分别为AC ,AD 中点.(1)判断直线MN 与平面ABD 的位置关系,并说明理由;(2)求二面角A MN B --的正弦值.13.(2022·湖北·校联考模拟预测)如图,四棱台1111ABCD A B C D -中,上底面1111D C B A 是边长为1的菱形,下底面ABCD 是边长为2的菱形,1D D ⊥平面ABCD 且11=D D(1)求证:平面11AA C C ⊥平面11BB D D ;(2)若直线AB 与平面11BB C C 1111ABCD A B C D -的体积.14.(2022·湖北宜昌·宜昌市夷陵中学校考模拟预测)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,90ACB ∠=︒,112BC AC CC ===,.(1)证明:11AC A B ⊥;(2)若12A C =,求二面角1A AB C --的余弦值.15.(2022·湖北十堰·丹江口市第一中学校考模拟预测)如图,在多面体ABCDEF 中,四边形CDEF 是边长为2的正方形,//,,33,2AB CD AD CD BE AB AD ⊥===.(1)求证:平面ADF ⊥平面BCE ;(2)求平面ADF 与平面BCF 所成锐角的余弦值.16.(2022·湖南岳阳·统考三模)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,F 是PD 的中点.(1)证明://PB 平面AFC ;(2)若直线PA ⊥平面ABCD ,2AC AP ==,且PA 与平面AFC ,求锐二面角F AC D --的余弦值.17.(2022·湖南·校联考模拟预测)如图,在直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,点P 为棱11B C 的中点,点Q 为线段1A B 上的一动点.(1)求证:当点Q 为线段1A B 的中点时,PQ ⊥平面1A BC ;(2)当点Q 位于线段1A B 的什么位置时,1B Q 与平面1A BP 请说明理由.18.(2022·湖南长沙·长郡中学模拟预测)如图,已知直三棱柱111ABC A B C -,O ,M ,N 分别为线段BC ,1AA ,1BB 的中点,P 为线段1AC 上的动点,116AA =,8AC =.(1)若12AO BC =,试证1C N CM ⊥;(2)在(1)的条件下,当6AB =时,试确定动点P 的位置,使线段MP 与平面11BB C C 所.19.(2023·湖南长沙·雅礼中学校考模拟预测)如图,在三棱锥-P ABC 中,已知PA PB PC AB AC ====,E 是PA .(1)求证:平面PAB ⊥平面BCE ;(2)若BC AB =,求平面ABC 与平面ABE 夹角的正弦值.20.(2022·湖南长沙·长郡中学校考模拟预测)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点,11BF A B ⊥.(1)证明:BF DE ⊥;(2)求当面11BB C C 与面DFE 所成的二面角的正弦值最小时,三棱锥1E BDB -的体积.21.(2022·广东·统考模拟预测)如图,已知AB BC ⊥, //BE CD ,90DCB ∠=︒,平面BCDE ⊥平面ABC , 2AB BC BE ===,4CD =,F 为AD 的中点.(1)证明:EF ⊥平面ACD ;(2)求平面ACE 与平面ABD 所成锐二面角的余弦值.22.(2022·江苏·统考二模)如图,在四棱锥P ABCD -中,四边形ABCD 是边长为2的菱形,PAB V 是边长为2的等边三角形,PD AB ⊥,PD =(1)求证:平面PAB ⊥平面ABCD ;(2)求平面PAB 和平面PCD 所成锐二面角的大小.23.(2022·江苏南通·校联考模拟预测)如图,在四棱锥P -ABCD 中,底面ABCD 是4长为的正方形,侧面PAD ⊥底面ABCD ,M 为PA 的中点,PA =PD(1)求证:PC ∥平面BMD ;(2)求二面角M -BD -P 的大小.24.(2022·江苏徐州·统考模拟预测)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD BC CD ⊥⊥,,O 为BD 的中点,,22AB AD BD CD ===.(1)证明:OA ⊥平面BCD ;(2)点E 在棱AD 上,若DE DA λ= ,二面角E BC D --的大小为π4,求实数λ的值.25.(2022·江苏泰州·统考模拟预测)如图,在正三棱柱111ABC A B C -中,1AB =,1CC =D 为BC 的中点,E 为侧棱1AA 上的点.(1)当E 为1AA 的中点时,求证://AD 平面1BC E ;(2)若平面1BC E 与平面ABC 所成的锐二面角为60 ,求AE 的长度.26.(2022·江苏常州·华罗庚中学校联考三模)如图,ABCD 是边长为6的正方形,已知2AE EF ==,且////ME NF AD 并与对角线DB 交于G ,H ,现以ME ,NF 为折痕将正方形折起,且BC ,AD 重合,记D ,C 重合后为P ,记A ,B 重合后为Q .(1)求证:平面PGQ ⊥平面HGQ ;(2)求平面GPN 与平面GQH 所成二面角的正弦值.27.(2022·海南省直辖县级单位·校联考一模)如图,在三棱台ABC DEF -中,已知平面ABED ⊥平面BCFE ,BA BC ⊥,3BC =,112BE DE DA AB ====(1)求证:直线⊥AE 平面BCFE ;(2)求平面CDF 与平面AEF 所成角的正弦值.28.(2023·广东惠州·如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,2PA AB ==,E 为线段PB 的中点,F 为线段BC 上的动点.(1)证明:平面AEF ⊥平面PBC ;(2)若直线AF 与平面PAB ,求点P 到平面AEF 的距离.29.(2023·安徽蚌埠·统考二模)如图,正方体1111ABCD A B C D -的棱长为1,E ,F 是线段11B D 上的两个动点.(1)若//BF 平面ACE ,求EF 的长度;(2)若11114D E D B = ,求直线BE 与平面ACE 所成角的正弦值.30.(2023·山东·沂水县第一中学校联考模拟预测)已知多面体ABCDEF 中,四边形CDEF 是边长为4的正方形,四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,36BE AB ==,4=AD .(1)求证:平面ADF ⊥平面BCE ;(2)求直线AF 与平面BCF 所成角的正弦值.。
高中数学立体几何经典题型专题训练试题(含答案)

高中数学立体几何经典题型专题训练试题姓名 班级 学号 得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)评卷人得 分一.单选题(共10小题,每题3分,共30分)1、如图,在正方体中ABCD-A1B1C1D1,M为BC的中点,点N在四边形CDD1C1及其内部运动.⊥1C1,则N点的轨迹为( )若MN AA.线段B.圆的一部分C.椭圆的一部分D.双曲线的一部分2、如图,正方体ABCD-A1B1C1D1的棱长为1,过点A作平面A1BD的垂线,垂足为H,则以下命题中,错误的是( )A.点H是△A1BD的垂心B.直线AH与CD1的成角为900C.AH的延长线经过点C1D.直线AH与BB1的成角为4503、如图,正方体ABCD-A1B1C1D1中,点P为线段AD1上一动点,点Q为底面ABCD内(含边界)一动点,M为PQ的中点,点M构成的点集是一个空间几何体,则该几何体为( )A.棱柱B.棱锥C.棱台D.球4.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形5.用一个平面去截一个正方体,所得截面不可能是(1)钝角三角形;(2)直角三角形;(3)菱形;(4)正五边形;(5)正六边形.下述选项正确的是( )A.(1)(2)(5)B.(1)(2)(4)C.(2)(3)(4)D.(3)(4)(5)6、如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=,则下列结论中错误的是( )⊥A.AC BEB.A1C⊥平面AEFC.三棱锥A-BEF的体积为定值D.异面直线AE、BF所成的角为定值7.已知一个正六棱锥的体积为12,底面边长为2,则它的侧棱长为( )A.4B.C.D.28.一正四棱锥的高为2,侧棱与底面所成的角为45°,则这一正四棱锥的斜高等于()A.2B.C.2D.29、如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是( )A.D1O∥平面A1BC1B.D1O⊥平面AMCC.异面直线BC1与AC所成的角等于60°D.点B到平面AMC的距离为10.如图,E为正方体的棱AA1的中点,F为棱AB上的一点,且∠C1EF=90°,则AF:FB=()A.1:1B.1:2C.1:3D.1:4第Ⅱ卷(非选择题)评卷人得 分二.填空题(共14小题,每题3分,共42分)11、正方体ABCD-A1B1C1D1中,M,N分别是AA1和BB1的中点,G是BC上一点,使⊥,则∠D1NG=______.C1N MG12、已知如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为棱DD1,AB上的点(不含顶点).则下列说法正确的是______.①A1C⊥平面B1EF;②△B1EF在侧面上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E位置有关,与点F位置无关;⑤当E,F分别为中点时,平面B1EF与棱AD交于点P,则三棱锥P-DEF的体积为.⊥,∠BAC=θ(0<θ≤),且13、如图,三棱锥A-BCD中,AB AD⊥,AC ADAB=AC=AD=2,E、F分别为AC、BD的中点,则EF的最大值为______.14、如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记,,那么M,N的大小关系是______.15.若空间四边形ABCD的两条对角线AC,BD的长分别为4,6,过AB的中点E且平行BD,AC的截面四边形的周长为______.⊥1D则EF和BD1的关系是______.16、正方体ABCD-A1B1C1D1中,EF AC⊥,EF A17、已知正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,则线段PQ的长为______.18、如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A1C⊥平面B1EF;②△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关.其中正确结论的序号为______(写出所有正确结论的序号).19、如图,正方体ABCD-A1B1C1D1的棱长为4,E,F分别是棱CD、C1D1的中点,长为2的线段MN的一个端点M在线段EF上运动,另一个端点N在底面A1B1C1D1上运动,则线段MN 的中点P的轨迹(曲面)与二面角D-C1D1-B1所围成的几何体的体积为______.∈1,且AM=BN,有以下四个结论:20、如图,正方体ABCD-A1B1C1D1中,点M AB∈1,N BC⊥;①AA1MN∥;②A1C1MN③MN与面A1B1C1D1成0°角;④MN与A1C1是异面直线.其中正确结论的序号是______.21、在正方体ABCD-A1B1C1D1中,过对角线BD1的一个平面交AA1于点E,交CC1于F,①四边形BFD1E一定是平行四边形②四边形BFD1E有可能是正方形③四边形BFD1E在底面ABCD内的投影一定是正方形④四边形BFD1E点有可能垂直于平面BB1D以上结论正确的为______(写出所有正确结论的编号)22、如图,正方体ABCD-A1B1C1D1中,对角线BD1与过A1、D、C1的平面交于点M,则=______.23.设A是自然数集的一个非空子集,如果k2A∉,且A,那么k是A的一个“酷元”,⊆,且集合M中的两个元素都是“酷元”那么这样的结给定S={0,1,2,3,4,5},设M S合M有______个.24、如图,AC为圆O的直径,B为圆周上不与A、C重合的点,SA⊥圆O所在的平面,连接SB、SC、AB、BC,则图中直角三角形的个数是______.评卷人得 分三.简答题(共28分)25、四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,点P为平面ABCD所在平面外的⊥.一点,若△PAD为等边三角形,求证:PB AD26、如图,设三棱锥S-ABC的三个侧棱与底面ABC所成的角都是60°,又∠BAC=60°,且⊥.SA BC(1)求证:S-ABC为正三棱锥;(2)已知SA=a,求S-ABC的全面积.27、如图,E、F、G、H分别是空间四边形ABCD四边上的中点.(1)若BD=2,AC=6,则EG2+HF2等于多少?(2)若AC与BD成30°的角,且AC=6,BD=4,则四边形EFGH的面积等于多少?28、已知三棱锥S-ABC的三条侧棱SA、SB、SC两两互相垂直且长度分别为a、b、c,设O 为S在底面ABC上的射影.求证:(1)O为△ABC的垂心;(2)O在△ABC内;(3)设SO=h,则++=.29.已知正三棱锥的高为1,底面边长为2,其内有一个球和该三棱锥的四个面都相切,求:(1)棱锥的全面积;(2)球的半径R.30、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.参考答案评卷人得 分一.单选题(共__小题)1、如图,在正方体中ABCD-A1B1C1D1,M为BC的中点,点N在四边形CDD1C1及其内部运动.⊥1C1,则N点的轨迹为( )若MN AA.线段B.圆的一部分C.椭圆的一部分D.双曲线的一部分答案:A解析:解:正方体中ABCD-A1B1C1D1中,M为BC的中点,点N在四边形CDD1C1及其内部运动;如图所示,取CD、C1D1的中点Q、P,连接PQ,⊥1C1;当点N在线段PQ上时,MN A因为正方体ABCD-A1B1C1D1中,⊥1D1,连接B1D1,交A1C1于点O,∴B1D1A取B1C1的中点E,连接PE,则PE B∥1D1,⊥1C1;∴PE A∥1,又CC1⊥平面A1B1C1D1,PQ CC∴PQ⊥平面A1B1C1D1,∵A1C1⊂平面A1B1C1D1,⊥1C1;∴PQ A且PQ∩PE=P,∴A1C1⊥平面PQME,PQ⊂平面PQME,⊥;∴A1C1PQ∴N点的轨迹为线段PQ.故选:A.2、如图,正方体ABCD-A1B1C1D1的棱长为1,过点A作平面A1BD的垂线,垂足为H,则以下命题中,错误的是( )A.点H是△A1BD的垂心B.直线AH与CD1的成角为900C.AH的延长线经过点C1D.直线AH与BB1的成角为450答案:D解析:解:由ABCD-A1B1C1D1是正方体,得A-A1BD是一个正三棱锥,因此A点在平面A1BD上的射影H是三角形A1BD的中心,故A正确;⊥1B,又CD1A∥1B,可得直线AH与CD1的成角为90°,故B正确;∵AH⊥面A1BD,∴AH A连接AC1,由三垂线定理及线面垂直的判定可得AC1⊥面A1DB,再由过一点与已知平面垂直的直线有且只有一条可得AH与AC1重合,可得C正确;直线AH与BB1所成的角,即为AH与AA1所成的角,设为θ,由正方体棱长为1,可得正三棱锥的底面边长为,从而求得AH=,则cos,∴D错误.故选:D.3、如图,正方体ABCD-A1B1C1D1中,点P为线段AD1上一动点,点Q为底面ABCD内(含边界)一动点,M为PQ的中点,点M构成的点集是一个空间几何体,则该几何体为( )A.棱柱B.棱锥C.棱台D.球答案:A解析:解:∵Q点不能超过边界,若P点与A点重合,设AB中点E、AD中点F,移动Q点,则此时M点的轨迹为:以AE、AF为邻边的正方形;下面把P点从A点向上沿线段AD1移动,在移动过程中可得M点轨迹为正方形,…,最后当P点与D1点重合时,得到最后一个正方形,故所得几何体为棱柱,故选:A4.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形答案:A解析:解:棱柱的定义是,有两个面互相平行,其余各面都是四边形,相邻的公共边互相平行,有这些面围成的几何体是棱柱;可以判断A正确;B不正确,例如正六棱柱的相对侧面;C 不正确,只有直棱柱满足C的条件;D不正确,例如长方体.故选A5.用一个平面去截一个正方体,所得截面不可能是(1)钝角三角形;(2)直角三角形;(3)菱形;(4)正五边形;(5)正六边形.下述选项正确的是( )A.(1)(2)(5)B.(1)(2)(4)C.(2)(3)(4)D.(3)(4)(5)答案:B解析:解:如图所示截面为三角形ABC,OA=a,OB=b,OC=c,AC2=a2+c2,AB2=a2+b2,BC2=b2+c2∠=>0,∴cos CAB=∴∠CAB为锐角,同理∠ACB与∠ABC也为锐角,即△ABC为锐角三角形;如右图,取相对棱的中点,得到的四边形是菱形;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,如图为正六边形;经过正方体的一个顶点去切就可得到5边形.但此时不可能是正五边形.故不可能是(1)(2)(4).故选:B.6、如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=,则下列结论中错误的是( )⊥A.AC BEB.A1C⊥平面AEFC.三棱锥A-BEF的体积为定值D.异面直线AE、BF所成的角为定值答案:D解析:解:∵AC⊥平面BB1D1D,又BE⊂平面BB1D1D,⊥.故A正确.∴AC BE∵EF垂直于直线AB1,AD1,∴A1C⊥平面AEF.故B正确.C中由于点B到直线B1D1的距离不变,故△BEF的面积为定值.又点A到平面BEF的距离为,故V A-BEF为定值.C正确当点E在D1处,F为D1B1的中点时,异面直线AE,BF所成的角是∠FBC1,当E在上底面的中心时,F在C1的位置,异面直线AE,BF所成的角是∠EAA1显然两个角不相等,D不正确.故选D.7.已知一个正六棱锥的体积为12,底面边长为2,则它的侧棱长为( )A.4B.C.D.2答案:A解析:解:由于正六棱锥可知底面是六个正三角形组成,∴底面积S=6×=6,∴体积V==12,∴h=,夺直角三角形SOB中,侧棱长为SB=.故选A.8.一正四棱锥的高为2,侧棱与底面所成的角为45°,则这一正四棱锥的斜高等于()A.2B.C.2D.2答案:C解析:解:如图PO⊥底面ABCD,连接OA,取AD的中点E,连接OE,PE,则PE为斜高.∠PAO为侧棱与底面所成的角,且为45°,在直角△PAO中,PO=2,AO=2,PA=4,在直角△AEO中,AE=2,故在直角△PEA中,PE==2.故选C.9、如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是( )A.D1O∥平面A1BC1B.D1O⊥平面AMCC.异面直线BC1与AC所成的角等于60°D.点B到平面AMC的距离为答案:D解析:解:如图,∥,连接B1D1,交A1C1于N,则可证明OD1BN由OD1⊄面A1BC1,BN⊂面A1BC1,可得D1O∥面A1BC1,A正确;⊥,由三垂线定理的逆定理可得OD1AC设正方体棱长为2,可求得OM2=3,,,⊥,由线面垂直的判定可得D1O⊥平面AMC,B正确;则,有OD1OM由正方体的面对角线相等得到△A1BC1为正三角形,即∠A1C1B=60°,∴异面直线BC1与AC所成的角等于60°,C正确;设点B到平面AMC的距离为d,正方体的棱长为2a,则,,由V B-AMC=V A-BCM,得,即,解得:d=,D错误.故选:D.10.如图,E为正方体的棱AA1的中点,F为棱AB上的一点,且∠C1EF=90°,则AF:FB=()A.1:1B.1:2C.1:3D.1:4答案:C解析:解:解:设正方体的棱长为:2,由题意可知C1E==3,∠C1EF=90°,所以设AF=x,12+x2+C1E2=22+22+(2-x)2,解得:x=,所以AF:FB=:=1:3;故选:C.评卷人得 分二.填空题(共__小题)11、正方体ABCD-A1B1C1D1中,M,N分别是AA1和BB1的中点,G是BC上一点,使⊥,则∠D1NG=______.C1N MG答案:90°解析:解:连接MN,∵M,N分别是AA1和BB1的中点,∥1D1,由正方体的几何特征可得MN C在正方体ABCD-A1B1C1D1中,D1C1⊥平面B1C1CB∵C1N⊂平面B1C1CB⊥1N∴D1C1C⊥1N∴MN C⊥,MN∩MG=M,MD1,MG⊂平面MNG又∵C1N MG∴C1N⊥平面MNG又∵NG⊂平面MNG⊥∴C1N NG故∠D1NG=90°故答案为:90°12、已知如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为棱DD1,AB上的点(不含顶点).则下列说法正确的是______.①A1C⊥平面B1EF;②△B1EF在侧面上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E位置有关,与点F位置无关;⑤当E,F分别为中点时,平面B1EF与棱AD交于点P,则三棱锥P-DEF的体积为.答案:②③⑤解析:解:对于①A1C⊥平面B1EF,不一定成立,因为A1C⊥平面AC1D,而两个平面面B1EF与面AC1D不一定平行.对于②△B 1EF 在侧面BCC 1B 1上 的正投影是面积为定值的三角形,此是一个正确的结论,因为其投影三角形的一边是棱BB 1,而E 点在面上的投影到此棱BB 1的距离是定值,故正确;对于③在平面A 1B 1C 1D 1内总存在与平面B 1EF 平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面,此结论正确;对于④平面B 1EF 在平面ABCD 中的射影为△DFB ,面积为定值,但△B 1EF 的面积不定,故不正确;对于⑤由面面平行的性质定理可得EQ B ∥1F ,故D 1Q=,B 1Q PF ∥,故AP=,所以三棱锥P-DEF 的体积为,故正确故答案为:②③⑤.13、如图,三棱锥A-BCD 中,AB AD ⊥,AC AD ⊥,∠BAC=θ(0<θ≤),且AB=AC=AD=2,E 、F 分别为AC 、BD 的中点,则EF 的最大值为______.答案:解析:⊥,垂足为G,连接GE,解:过F作FG AB⊥,∵AD AB∥,∴G为AB的中点,∴AD FG∴FG=1,AG=1,∵E为AC的中点,∴AE=1,∠BAC=θ,∴EG=∵AD⊥平面ABC,∴FG⊥平面ABC,△中,EF===,在Rt FGE∵0,∴EF≤.故答案是.14、如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记,,那么M,N的大小关系是______.答案:M=N解析:解:根据平面中直角三角形的勾股定理类比得,S ABC△2=S PAB△2+S PBC△2+S PAC△2①,由等体积法得,∴②,①÷②整理得M=N.故答案为:M=N.15.若空间四边形ABCD的两条对角线AC,BD的长分别为4,6,过AB的中点E且平行BD,AC的截面四边形的周长为______.答案:10解析:解:设截面四边形为EFGH,F、G、H分别是BC、CD、DA的中点,∴EF=GH=2,FG=HE=3,∴周长为2×(2+3)=10.故答案为:10.16、正方体ABCD-A1B1C1D1中,EF AC⊥,EF A⊥1D则EF和BD1的关系是______.答案:平行解析:解:法一:根据图象可知:⊥,AC∩B1C=C,⊥1D,A1D B∥1C,B1C EFEF AC⊥,EF A∥.∴EF⊥面AB1C,而BD1⊥面AB1C,即BD1EF法二:建立以D1为原点的空间直角坐标系D1-xyz,且设正方形的边长为1所以就有D1(0,0,0),B(1,1,0),A1(1,0,0),D(0,0,1),A(1,0,1),C(0,1,1)所以=(-1,0,1),=(-1,1,0),=(-1,-1,1)⊥1,所以•=-1+1=0 所以A1D BD⊥1,•=1-1=0 所以AC BD所以BD1与A1D和AC都垂直又∵EF是AC、A1D的公共垂线,∥.∴BD1EF故答案为:平行.17、已知正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,则线段PQ的长为______.答案:解析:解:∵正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,连结AD1,AB1,∴由正方体的性质,得:AD1∩A1D=P,P是AD1的中点,∥1,PQ AB∴PQ=AB1==.故答案为:.18、如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A 1C ⊥平面B 1EF ;②△B 1EF 在侧面BCC 1B 1上的正投影是面积为定值的三角形;③在平面A 1B 1C 1D 1内总存在与平面B 1EF 平行的直线;④平面B 1EF 与平面ABCD 所成的二面角(锐角)的大小与点E 的位置有关,与点F 的位置无关.其中正确结论的序号为______(写出所有正确结论的序号).答案:②③解析:解:若A 1C ⊥平面B 1EF ,则A 1C B ⊥1F ,由三垂线逆定理知:B 1F A ⊥1B ,又当F 与A 不重合时,B 1F 与A 1B 不垂直,∴①错误;∵E 在侧面BCC 1B 1上的投影在CC 1上,F 在侧面BCC 1B 1上的投影是B ,∴△B 1EF 在侧面BCC 1B 1上的正投影是三角形,三角形的面积S=×棱长×棱长为定值.∴②正确;设平面A 1B 1C 1D 1∩平面B 1EF=l ,∵平面A 1B 1C 1D 1内总存在与l 平行的直线,由线面平行的判定定理得与l 平行的直线,与平面B 1EF 平行,∴③正确;设E 与D 重合,F 位置变化,平面B 1EF 与平面ABCD 所成的二面角(锐角)的大小也在变化,∴④错误.故答案为:②③.19、如图,正方体ABCD-A 1B 1C 1D 1的棱长为4,E ,F 分别是棱CD 、C 1D 1的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A 1B 1C 1D 1上运动,则线段MN 的中点P 的轨迹(曲面)与二面角D-C 1D 1-B 1所围成的几何体的体积为______.答案:解析:解:依题意知|FP|=|MN|=1,因此点P的轨迹是以点F为球心、1为半径的球的.∴所求几何体的体积是×π×13=.故答案为:.∈1,且AM=BN,有以下四个结论:∈1,N BC20、如图,正方体ABCD-A1B1C1D1中,点M AB⊥;①AA1MN∥;②A1C1MN③MN与面A1B1C1D1成0°角;④MN与A1C1是异面直线.其中正确结论的序号是______.答案:①③解析:解:当M 为A ,N 为B ,排除②;当M 为B 1,N 为C 1,排除④.作MM′A ⊥1B 1于M′,作NN′B ⊥1C 1于N′,易证|MM′|=|NN′|,MM′NN′∥∴MN M′N′∥,由此知①③正确.故答案为:①③21、在正方体ABCD-A 1B 1C 1D 1中,过对角线BD 1的一个平面交AA 1于点E ,交CC 1于F ,①四边形BFD 1E 一定是平行四边形②四边形BFD 1E 有可能是正方形③四边形BFD 1E 在底面ABCD 内的投影一定是正方形④四边形BFD 1E 点有可能垂直于平面BB 1D以上结论正确的为______(写出所有正确结论的编号)答案:①③④解析:解:如图:①由平面BCB 1C 1∥平面ADA 1D 1,并且B 、E 、F 、D 1四点共面,∴ED 1BF ∥,同理可证,FD 1EB ∥,故四边形BFD 1E 一定是平行四边形,故①正确;②若BFD 1E 是正方形,有ED 1BE ⊥,这个与A 1D 1BE ⊥矛盾,故②错误;③由图得,BFD 1E 在底面ABCD 内的投影一定是正方形ABCD ,故③正确;④当点E 和F 分别是对应边的中点时,平面BFD 1E ⊥平面BB 1D 1,故④正确.故答案为:①③④.22、如图,正方体ABCD-A 1B 1C 1D 1中,对角线BD 1与过A 1、D 、C 1的平面交于点M ,则=______.答案:2解析:解:由正方体的性质可得:D 1B ⊥平面DA 1C 1,∴D 1M 是三棱锥D 1-A 1DC 1的高.不妨设正方体的棱长为1.∵=,∴=,解得D 1M==.∴=2.故答案为:2.∉,且A,那么k是A的一个“酷元”,23.设A是自然数集的一个非空子集,如果k2A⊆,且集合M中的两个元素都是“酷元”那么这样的结给定S={0,1,2,3,4,5},设M S合M有______个.答案:5解析:解:∵S={0,1,2,3,4,5},由题意可知:集合M不能含有0,1,也不能同时含有2,4故集合M可以是{2,3}、{2,5}、{3,5}、{3,4}、{4,5},共5个故答案为:524、如图,AC为圆O的直径,B为圆周上不与A、C重合的点,SA⊥圆O所在的平面,连接SB、SC、AB、BC,则图中直角三角形的个数是______.答案:4解析:解:题题意SA⊥圆O所在的平面,AC为圆O的直径,B为圆周上不与A、C重合的点,可得出AB,BC垂直由此两个关系可以证明出CB垂直于面SAB,由此可得△ADB,△SAC,△ABC,△SBC都是直角三角形故图中直角三角形的个数是4个故答案为:4.评卷人得 分三.简答题(共__小题)25、四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,点P为平面ABCD所在平面外的⊥.一点,若△PAD为等边三角形,求证:PB AD答案:证明:如图,连结BD ,取AD 的中点E ,连结PE ,BE ;从而易知△ABD 也是等边三角形,又∵△PAD 为等边三角形,∴AD PE ⊥,AD BE ⊥,又∵PE∩BE=E ;故AD ⊥平面PBE ;故AD PB ⊥.解析:证明:如图,连结BD ,取AD 的中点E ,连结PE ,BE ;从而易知△ABD 也是等边三角形,又∵△PAD 为等边三角形,∴AD PE ⊥,AD BE ⊥,又∵PE∩BE=E ;故AD ⊥平面PBE ;故AD PB ⊥.26、如图,设三棱锥S-ABC 的三个侧棱与底面ABC 所成的角都是60°,又∠BAC=60°,且SA BC ⊥.(1)求证:S-ABC 为正三棱锥;(2)已知SA=a ,求S-ABC 的全面积.答案:(1)证明:正棱锥的定义中,底面是正多边形;顶点在底面上的射影是底面的中心,两个条件缺一不可.作三棱锥S-ABC 的高SO ,O 为垂足,连接AO 并延长交BC 于D .因为SA BC ⊥,所以AD BC ⊥.又侧棱与底面所成的角都相等,从而O 为△ABC 的外心,OD 为BC 的垂直平分线,所以AB=AC .又∠BAC=60°,故△ABC 为正三角形,且O 为其中心.所以S-ABC 为正三棱锥.(2)解:在Rt SAO △中,由于SA=a ,∠SAO=60°,所以SO=a ,AO=a .因O 为重心,所以AD=AO=a ,BC=2BD=2ADcot60°=a ,OD=AD=a .在Rt SOD △中,SD 2=SO 2+OD 2=(a )2+(a )2=,则SD=a .于是,(S S-ABC )全=•(a )2sin60°+3••a•a=a 2.解析:(1)证明:正棱锥的定义中,底面是正多边形;顶点在底面上的射影是底面的中心,两个条件缺一不可.作三棱锥S-ABC 的高SO ,O 为垂足,连接AO 并延长交BC 于D .因为SA BC ⊥,所以AD BC ⊥.又侧棱与底面所成的角都相等,从而O 为△ABC 的外心,OD 为BC 的垂直平分线,所以AB=AC .又∠BAC=60°,故△ABC 为正三角形,且O 为其中心.所以S-ABC 为正三棱锥.(2)解:在Rt SAO △中,由于SA=a ,∠SAO=60°,所以SO=a ,AO=a .因O 为重心,所以AD=AO=a ,BC=2BD=2ADcot60°=a ,OD=AD=a .在Rt SOD △中,SD 2=SO 2+OD 2=(a )2+(a )2=,则SD=a .于是,(S S-ABC )全=•(a )2sin60°+3••a•a=a 2.27、如图,E 、F 、G 、H 分别是空间四边形ABCD 四边上的中点.(1)若BD=2,AC=6,则EG 2+HF 2等于多少?(2)若AC 与BD 成30°的角,且AC=6,BD=4,则四边形EFGH 的面积等于多少?答案:解:(1)∵E 、F 、G 、H 分别是空间四边形ABCD 四边上的中点,∴EH BD ∥,且EH=BD ;FG BD ∥,且FG=BD ;∴EH FG ∥,且EH=FG ,∴四边形EFGH 是平行四边形;又BD=2,AC=6,∴EH=BD=1,EF=AC=3,在△EFG 和△HFG 中,由余弦定理得,EG 2=EF 2+FG 2-2EF•FG•cos EFG∠=32+12-2×3×1×cos EFG∠=10-6cos EFG ∠,HF 2=HG 2+FG 2-2HG•FG•cos FGH∠=32+12-2×3×1×cos (π-EFG ∠)=10+6cos EFG ∠,∴EG 2+HF 2=20;(2)∵AC 与BD 成30°的角,且EF AC ∥,FG BD ∥,∴∠EFG=30°,又AC=6,BD=4,∴EF=AC=3,FG=BD=2;∠.∴四边形EFGH的面积为S=EF•FG•sin EFG=3×2×sin30°=3解析:解:(1)∵E、F、G、H分别是空间四边形ABCD四边上的中点,∥,且EH=BD;∴EH BDFG BD∥,且FG=BD;∥,且EH=FG,∴EH FG∴四边形EFGH是平行四边形;又BD=2,AC=6,∴EH=BD=1,EF=AC=3,在△EFG和△HFG中,由余弦定理得,∠EG2=EF2+FG2-2EF•FG•cos EFG∠=32+12-2×3×1×cos EFG∠,=10-6cos EFG∠HF2=HG2+FG2-2HG•FG•cos FGH∠)=32+12-2×3×1×cos(π-EFG=10+6cos EFG∠,∴EG2+HF2=20;(2)∵AC 与BD 成30°的角,且EF AC ∥,FG BD ∥,∴∠EFG=30°,又AC=6,BD=4,∴EF=AC=3,FG=BD=2;∴四边形EFGH 的面积为S=EF•FG•sin EFG=3×2×sin30°=3∠.28、已知三棱锥S-ABC 的三条侧棱SA 、SB 、SC 两两互相垂直且长度分别为a 、b 、c ,设O 为S 在底面ABC 上的射影.求证:(1)O 为△ABC 的垂心;(2)O 在△ABC 内;(3)设SO=h ,则++=.答案:证明:(1)∵SA SB ⊥,SA SC ⊥,∴SA ⊥平面SBC ,BC ⊂平面SBC .∴SA BC ⊥.而AD 是SA 在平面ABC 上的射影,∴AD BC ⊥.同理可证AB CF ⊥,AC BE ⊥,故O 为△ABC 的垂心.(2)证明△ABC 为锐角三角形即可.不妨设a≥b≥c ,则底面三角形ABC 中,AB=为最大,从而∠ACB 为最大角.用余弦定理求得cos ACB=∠>0,∴∠ACB 为锐角,△ABC 为锐角三角形.故O 在△ABC 内.(3)SB•SC=BC•SD ,故SD=,=+,又SA•SD=AD•SO ,∴===+=++=.解析:证明:(1)∵SA SB ⊥,SA SC ⊥,∴SA ⊥平面SBC ,BC ⊂平面SBC .∴SA BC ⊥.而AD 是SA 在平面ABC 上的射影,∴AD BC ⊥.同理可证AB CF ⊥,AC BE ⊥,故O 为△ABC 的垂心.(2)证明△ABC 为锐角三角形即可.不妨设a≥b≥c ,则底面三角形ABC 中,AB=为最大,从而∠ACB 为最大角.用余弦定理求得cos ACB=∠>0,∴∠ACB 为锐角,△ABC 为锐角三角形.故O 在△ABC 内.(3)SB•SC=BC•SD ,故SD=,=+,又SA•SD=AD•SO ,∴===+=++=.29.已知正三棱锥的高为1,底面边长为2,其内有一个球和该三棱锥的四个面都相切,求:(1)棱锥的全面积;(2)球的半径R.答案:解:(1)设正三棱锥的底面中心为H,由题意知PH=1,边长BC=2,取BC中点E,连接HE、PE,则HE=S全=3×=9⊥于点G,(2)过O作OG PE∽△,且OG=OH=R,则△POG PEH∴,∴R=解析:解:(1)设正三棱锥的底面中心为H,由题意知PH=1,边长BC=2,取BC中点E,连接HE、PE,则HE=S全=3×=9⊥于点G,(2)过O作OG PE∽△,且OG=OH=R,则△POG PEH∴,∴R=30、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC 的表面积;(2)求证AC ⊥平面DEF ;(3)若M 为BD 的中点,问AC 上是否存在一点N ,使MN ∥平面DEF ?若存在,说明点N 的位置;若不存在,试说明理由.答案:解:(1)∵AB ⊥平面BCD ,∴AB BC ⊥,AB BD ⊥.∵△BCD 是正三角形,且AB=BC=a ,∴AD=AC=.设G 为CD 的中点,则CG=,AG=.∴,,.三棱锥D-ABC 的表面积为.(2)取AC 的中点H ,∵AB=BC ,∴BH AC ⊥.∵AF=3FC ,∴F 为CH 的中点.∵E 为BC 的中点,∴EF BH ∥.则EF AC ⊥.∵△BCD 是正三角形,∴DE BC ⊥.∵AB ⊥平面BCD ,∴AB DE ⊥.∵AB∩BC=B ,∴DE ⊥平面ABC .∴DE AC ⊥.∵DE∩EF=E ,∴AC ⊥平面DEF .(3)存在这样的点N ,当CN=时,MN ∥平面DEF .连CM ,设CM∩DE=O ,连OF .由条件知,O 为△BCD 的重心,CO=CM .∴当CF=CN 时,MN OF ∥.∴CN=.解析:解:(1)∵AB ⊥平面BCD ,∴AB BC ⊥,AB BD ⊥.∵△BCD 是正三角形,且AB=BC=a ,∴AD=AC=.设G 为CD 的中点,则CG=,AG=.∴,,.三棱锥D-ABC 的表面积为.(2)取AC 的中点H ,∵AB=BC ,∴BH AC ⊥.∵AF=3FC ,∴F 为CH 的中点.∵E 为BC 的中点,∴EF BH ∥.则EF AC ⊥.∵△BCD 是正三角形,∴DE BC ⊥.∵AB ⊥平面BCD ,∴AB DE ⊥.∵AB∩BC=B ,∴DE ⊥平面ABC .∴DE AC ⊥.∵DE∩EF=E ,∴AC ⊥平面DEF .(3)存在这样的点N ,当CN=时,MN ∥平面DEF .连CM ,设CM∩DE=O ,连OF .由条件知,O 为△BCD 的重心,CO=CM .∴当CF=CN 时,MN OF ∥.∴CN=.。
立体几何大题训练题(含答案)

立体几何大题训练题一、解答题(共17题;共150分)1.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,在四边形ABCD中,∠ABC= ,AB=4,BC=3,CD= ,AD=2 ,PA=4.(1)证明:CD⊥平面PAD;(2)求二面角B-PC-D的余弦值..2.如图,在四棱锥中,平面,在四边形中,,,,,,.(1)证明:平面;(2)求B点到平面的距离3.如图,在四棱锥中,底面为长方形,底面,,,为的中点,F 为线段上靠近B 点的三等分点.(1)求证:平面;(2)求平面与平面所成二面角的正弦值.4.如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.5.如图,在三角锥中,, , 为的中点.(1)证明:平面;(2)若点在棱上,且MC=2MB,求点C到平面POM的距离.6.如图,在三角锥中,, , 为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值. 7.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.8.如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.9.如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60°,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值。
10.已知三棱柱,底面三角形为正三角形,侧棱底面,,为的中点,为中点.(1)求证:直线平面;(2)求平面和平面所成的锐二面角的余弦值.11.如图,已知三棱柱ABC-A1B1C1,平面A1AC1C⊥平面ABC,∠ABC=90°.∠BAC=30°,A1A=A1C=AC,E,F 分别是AC,A1B1的中点(1)证明:EF⊥BC(2)求直线EF与平面A1BC所成角的余弦值.12.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(Ⅰ)证明:平面ACD⊥平面ABC;(Ⅱ)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C 的余弦值.13.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.14.如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.15.如图所示多面体中,AD⊥平面PDC,四边形ABCD为平行四边形,点E,F分别为AD,BP的中点,AD =3,AP=3 ,PC .(1)求证:EF//平面PDC;(2)若∠CDP=120°,求二面角E﹣CP﹣D的平面角的余弦值.16.如图,四棱锥中,侧棱垂直于底面,,,为的中点,平行于,平行于面,.(1)求的长;(2)求二面角的余弦值.17.如图,在斜三棱柱中,侧面,,,,.(Ⅰ)求证:平面平面;(Ⅱ)若为中点,求二面角的正切值.答案解析部分一、解答题1.【答案】(1)解:连接,由∠ABC= ,AB=4,BC=3,则,又因为CD= ,AD=2 ,所以,即,因为PA⊥平面ABCD,平面ABCD,所以,因为,所以CD⊥平面PAD;(2)解:以点D为坐标原点,的延长线为x,为y轴,过点D与平行线为z轴,建立空间直角坐标系,如图:作交与点G,,即,所以,,所以,所以,,,,则,,,设平面的一个法向量为,则,即,令,则,,即,设平面的一个法向量为,则,即,令,则,,即,由,所以二面角B-PC-D的余弦值为.【解析】【分析】(1)连接,证出,利用线面垂直的性质定理可得,再利用线面垂直的判定定理即可证出.(2)以点D为坐标原点,的延长线为x,为y轴,过点D与平行线为轴,建立空间直角坐标系,分别求出平面的一个法向量与平面的一个法向量,利用向量的数量积即可求解.2.【答案】(1)解:在平面中,,,,则,又,∴,即,又平面,则,又,∴平面.(2)解:在平面中,过A作BC的平行线交CD的延长线于M,因为,,,则,又因为,,所以.所以又,则,所以,在中,.因为,则面,所以由可知:,,所以,则,因此P点到平面的距离为.【解析】【分析】(1)在三角形中,由勾股定理可证得,由平面,可得,根据线面垂直的判定定理即可证得结论;(2) 在平面中,过A作BC的平行线交CD 的延长线于M,因为利用等体积转换即可求得距离.3.【答案】(1)证明:,为线段中点,.平面,平面,.又底面是长方形,.又,平面.平面,. 又,平面.(2)解:由题意,以为轴建立空间直角坐标系,则,,,,,.所以, ,,,设平面的法向量,则,即,令,则,,,同理可求平面的法向量,,,即平面与平面所成角的正弦值为.【解析】【分析】(1)通过,可证明平面,进而可得,结合证明线面垂直.(2)以为轴建立空间直角坐标系,可求出平面的法向量,平面的法向量,则可求出两向量夹角的余弦值,从而可求二面角的正弦值.4.【答案】(1)解:由已知可得,BF⊥PF,BF⊥EF,又,∴BF⊥平面PEF.∴又平面ABFD,平面PEF⊥平面ABFD.(2)解:作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE= .又PF=1,EF=2,故PE⊥PF.可得.则为平面ABFD的法向量. 设DP与平面ABFD所成角为,则.∴DP与平面ABFD所成角的正弦值为.【解析】【分析】(1)在翻折过程中,作于H,由得到,从而得到面面垂直;(2)DP与平面所成的角就是,在三角形中求其正弦值.5.【答案】(1)∵PA=PC=AC=4 且O是AC的中点∴PO⊥AC∵AB=BC=2 ,AC=4,∴∴∠ABC=90°连接BO则OB=OC∴PO2+BO2=PB2PO⊥OB,PO⊥OCOB∩OC=O∴PO⊥平面ABC(2)过点C作CH⊥OM交OM于点H又∵PO⊥平面ABC∴∴CH的长度为点C到平面POM的距离在△COM中,CM= ,OC=2,∠OCM=45°∴∴OM=∴【解析】【分析】(1)由线面垂直的判定定理易得;(2)由线面垂直可得面面垂直,易找点面距,可求.6.【答案】(1)PA=PC=AC=4 且O是AC的中点PO⊥AC∵AB=BC=2 ,AC=4,∴∴∠ABC=90°连接BO则OB=OC∴PO2+BO2=PB2PO⊥OB,PO⊥OCOB∩OC=O∴PO⊥平面ABC(2)∵PO⊥平面ABC,∴PO⊥OB∴AB=BC=2 O是AC的中点∴OB⊥AC OB⊥平面PAC如图所示以O为坐标原点,为x轴正方向建立如图所示的直角坐标系O-xyz则P(0,0,)A(,0,-2,0),C(0,2,0),B(2,0,0)平面PAC法向量为=(1,0,0)设M(x,2-x,0)平面PAC法向量为=(1,λ,μ),=(0,2,), = (x,4-x,0)则即即得到,∴x=-4(舍),x=即M∴PAM的法向量记PC与平面PAM所成的角为θ∴即PC与平面PAM所成的角为的正弦值为.【解析】【分析】(1)由线面垂直的判定定理易得;(2)先由条件建系,找到点M的位置,再用公式求线面角.7.【答案】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>= = .由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【解析】【分析】(1.)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2.)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD 为矩形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.8.【答案】(1)解:由已知得,平面,平面,故.又,所以平面.(2)由(1)知.由题设知,所以,故,.以为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系D-xyz,则C(0,1,0),B(1,1,0),(0,1,2),E(1,0,1),,.设平面EBC的法向量为=(x,y,x),则即所以可取= .设平面的法向量为=(x,y,z),则即所以可取=(1,1,0).于是.所以,二面角的正弦值为.【解析】【分析】(1)根据题意由线面垂直的性质得出线线垂直,再由线线垂直的判定定理出线面垂直。
六年级数学专题思维训练—立体几何(含答案及解析)

六年级数学专题思维训练—立体几何1、下面四个图形都是由六个相同的正方形组成的,其中,折叠后不能围成正方体的是______________.(填序号)2、如下图所示,棱长分别为1厘米、2厘米、3厘米的三个正方体紧贴在一起,则所得到的立体图形的表面积是平方厘米.3、下图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形,问这个直三棱柱的体积是多少?4、有一个足够深的水槽,底面是长为16厘米、宽为12厘米的长方形,原本在水槽里盛有6厘米深的水和6厘米深的油(油在水的上方).在水槽中放人一个长、宽、高分别为8厘米、8厘米、12厘米的铁块,那么此时油层的层高是厘米。
5、圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是立方厘米。
(结果用兀表示)6、如下图所示,从正方形ABCD 上截去长方形DEFG ,其中AB=1厘米,DE=21厘米, DG=31厘米,将ABCGFE 以GC 边为轴旋转一周,所得几何体的表面积是 平方厘米,体积是 _____________ 立方厘米。
(结果用兀表示)7、若长方体的三个侧面的面积分别是6,8,12,则长方体的体积是 。
8、一个圆柱和一个圆锥(如下图所示),它们的高和底面直径都标在图上,单位是厘米。
请回答:圆锥体积与圆柱体积的比是多少?9、如下图所示,一个圆柱体形状的木棒,沿着底面直径竖直切成两部分,已知这两部分的表面积之和比圆柱体的表面积大2008平方厘米,则这个圆柱体木棒的侧面积是 平方厘米。
(兀取3. 14)10、两个同样材料做成的球A 和B ,一个实心,一个空心。
A 的直径为7、重量为22,B 的直径为10.6、重量为33.3。
问:哪个球是实心球?(球的体积公式V=34πr ³)11、铁路油罐车由两个半球面和一个圆柱面钢板焊接而成,尺寸如下图所示.问:该油罐车的容积是多少立方米?(兀=3. 1416)(球的体积公式V=34πr ³)12、某工厂原用长4米,宽1米的铁皮围成无底无顶的的正方体形状的围栏,现要将围栏容量增加27%,问:能否还用原来的铁皮围成?13、一个正方体的纸盒中,恰好能放人一个体积为6. 28立方厘米的圆柱体,纸盒的容积有多大?(兀=3. 14).14、用若干个小正方体拼成下图所示的造型.其中有一个小孔分别由左至右、由上至下以及由前至后穿透整个造型.拼成此造型共需使用多少个小正方体?15、一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如下图所示,若用甲容器取水来注满乙容器,问:至少要注水多少次?(球的体积公式:V=34πr ³)16、下图是一个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内,当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,最多能露出4厘米.则这个玻璃杯的容积为立方厘米.(取兀=3. 14)17、威力集团生产的某种洗衣机的外形是长方体,装衣物部分是圆柱形的桶,直径40厘米,深36厘米,已知该洗衣机装衣物的空间占洗衣机体积的25% ,长方体外形的长为52厘米,宽50厘米.问:高是多少厘米?(兀取3. 14,结果保留整数)18、有两个高度一样的水瓶,瓶子的底部被钉子分别戳了一个同样大的小洞.粗瓶子的水12分钟可以漏完,细瓶子的水8分钟可以漏完.若两个瓶子同时漏水,过了一段时间后,粗瓶子中水的高度是细瓶子中的2倍.这两个瓶子同时漏了分钟.19、世界上最早的灯塔建于公元270年,塔分三层,如下图所示,每层都高27米,底座呈正四棱柱,中间呈正八棱柱,上部呈正圆锥.上部的体积是底座的体积的 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一 立体几何
班级: _____ 姓名: _____ 学号: _____
一、选择题(4分×10=40分)
1.直线12,l l 和α,12//l l ,a 与1l 平行,则a 与2l 的关系是
A .平行
B .相交
C .垂直
D .以上都可能
2.若线段AB 的长等于它在平面内射影长的3倍,则这条斜线与平面所成角的余弦值为
A .1
3
B .
3 C
.2 D .23
3.在正方体ABCD-A 1B 1C 1D 1中,B 1C 与平面DD 1B 1B 所成的角的大小为
A .15
B .30
C .45
D .60
4.有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点不共线,则此四点不共面.其中正确的命题是
A .②③
B .①②③
C .①③
D .②③④
5.有一山坡,倾斜度为300,若在斜坡平面上沿着一条与斜坡底线成450角的直线前进1公里,则升高了
A
.米 B .
米 C
.米 D . 500米 6.已知三条直线,,a b l 及平面,αβ,则下列命题中正确的是
A .,//,//b a b a αα⊂若则
B .若,a b αα⊥⊥,则//a b
C . 若,a b αα
β⊂=,则//a b D .若,,,,a b l a l b αα⊂⊂⊥⊥则l α⊥
7.已知P 是△EFG 所在平面外一点,且PE=PG ,则点P 在平面EFG 内的射影一定在△EFG 的
A .∠FEG 的平分线上
B .边EG 的垂直平分线上
C .边EG 的中线上
D .边EG 的高上 8
.若一正四面体的体积是3,则该四面体的棱长是
A . 6cm
B .
C .12cm D
.9.P 是△ABC 所在平面α外一点,PA ,PB ,PC 与α所成的角都相等,且PA ⊥BC ,则 △ABC 是
A .等边三角形
B .直角三角形
C .等腰三角形
D .等腰直角三角形
10.如图,在多面体ABCDEF 中,已知ABCD 是边长为3的正方形,EF//AB ,EF=
32
,C
D
E F
EF 与面AC 的距离为2,则该多面体的体积为
A .2
B .4
C .22
D .42
二、填空题(4分×4=16分)
11.空间四边形ABCD 中,AB=6,CD=8,E 、F 、G 分别是BD ,AC ,BC 的中点,若异
面直线AB 和CD 成600的角,则EF= 。
12.如图, '''A O B ∆表示水平放置的AOB ∆的直观
图,'B 在'X 轴上,'A O 和'X 轴垂直,且
''2A O =.则AOB ∆的边OB 上的高为_______ _________________________
13.已知正四棱台的上、下底面边长分别为4和10,侧棱长为5.它的主视图和左视图是
两个全等的等腰梯形,则该等腰梯形的面积为_________________________________
14.如图,已知圆台的上、下底面半径分别为1cm ,3cm ,母线长
为8cm ,P 是母线MN 的中点,由M 出发,沿圆台侧面绕一周到达点P ,则经过的最短路程为 。
一、选择题 (每小题4分共40分)
题号 1 2 3 4 5 6 7 8 9 10 答案
二、填空题: (每小题4分共16分)
11._________________________ 12._________________________
13._________________________ 14._________________________
三、解答题(10分+12分+10分+12分=44分)
15.一个正方体的顶点都在球面上,它的棱长等于2cm . (1)求这个外接球的表面积和体积;
'O ' 'Y
'A 'B
45
(2)求这个正方体的内切球的表面积和体积.
16.如图,OO 1为圆柱的轴,A,B分别为两底面圆周上的点,且O A ⊥OB . (1)判断OO 1与底面的位置关系,并证明你的结论;
(2)若为BB 1圆柱的母线,求证:平面ABB 1垂直于圆柱的底面;
(3)若圆柱的轴截面是一个正方形,求异面直线AB 与OO 1所成角的正切值.
B
B 1 O 1
O
17.如图,ABCD是边长为2a的正方形,PB⊥平面ABCD,MA//PB,且PB=2MA=2a,E是PD中点.
(1)求证:ME//平面ABCD;(2) 求点
18.如图1为等腰梯形PDCB,DC=1,PB=3,DA为底边PB上的高,垂足为A,且AD=1.现将等腰梯形PDCB沿DA折成直二面角P﹣AD﹣B,如图2.
(1)求四棱锥P﹣ABCD的体积;
(2)求二面角P BC A
--的余弦值;
(3)求证:平面PAC⊥平面PBC.
A
P
DCB
A
P
C
B
图2
图1。