重型载重汽车车架轻量化设计研究
一种重卡车架轻量化结构设计及有限元分析

作者简介:严国祥(1982-),男,山西运城人,本科,工程师,主要从事商用物流车、专用汽车的轻量化结构设计工作。
收稿日期:2021-10-18一种重卡车架轻量化结构设计及有限元分析严国祥,薛士博,王雪飞,蒋岩(辽宁忠旺集团有限公司,辽阳111003)摘要:介绍一种基于有限元分析的钢铝混合重卡车架的结构设计:车架材料主要是500L 大梁钢及6×××系铝合金挤压型材,由左右两支钢制纵梁、若干铝合金横梁组成主要受力框架。
纵梁采用原主机厂设计结构样式,横梁断面设计成抗弯刚度和连接性较好的工字型,各零部件之间通过铆钉或高强螺栓连接。
设计过程中通过有限元分析模拟了满载状态下的侧向工况和对扭工况,并重点分析了平衡悬架连接处的结构强度。
经过反复分析、结构优化,车架各处应力均低于材料屈服强度,抗弯和抗扭刚度与原钢车架相当。
对比结果表明,相比同类钢制车架,铝合金车架可减重40%。
关键词:铝合金;卡车;车架;有限元分析;轻量化中图分类号:TG146.21文献标识码:A文章编号:1005-4898(2022)01-0046-04doi:10.3969/j.issn.1005-4898.2022.01.100前言随着我国经济的快速发展,电商、快递业呈爆发式增长,货物运输量剧增,导致商用物流车需求加大,物流运输行业竞争加剧。
为控制成本,增加货运量,各物流企业对车辆的性能、油耗、载质量利用率要求越来越高,而解决上述问题的最佳方案莫过于减重。
轻量化设计对传统燃油汽车而言可显著降低油耗;对新能源汽车则可增加续航能力;对于商用物流车最明显的优势是多拉货物,空载时降低油耗,从而在相同运费情况下增加收益,显著提升竞争力。
车架材料主要是500L 大梁钢及6×××系铝合金挤压型材,是负责承载整车上部载荷的核心部件[1-2]。
因此,在车架轻量化设计时就要充分考虑其强度。
目前钢制车架的纵梁、横梁普遍采用高强钢板折弯成型,再铆接而成。
基于有限元法的车架轻量化设计和仿真分析

基于有限元法的车架轻量化设计和仿真分析有限元法在车架轻量化设计和仿真分析中是一种常用的工具。
该方法基于数学模型,将结构划分成一系列小的单元,通过计算每个单元的应力、变形等物理量,反推得到整个结构的力学性能。
在车架轻量化方面,有限元法可以帮助我们快速地找到轻量化的设计方案,并通过仿真分析验证其性能,从而提高车架的安全性和可靠性。
首先,在轻量化设计中,我们需要寻找轻量化的潜在方案。
有限元法可以帮助我们划分车架结构,并计算不同部件的受力情况。
通过对受力情况的分析,我们可以找到那些不必要的部件或重量过剩的区域,从而进行删减。
例如,我们可以尝试使用高强度材料或降低材料使用量等方式来达到轻量化的目的。
其次,在设计轻量化方案后,需要通过仿真分析来验证其性能。
在有限元法中,我们可以将车架结构的物理特性输入到数学模型中,并通过计算得出其应力分布、变形情况等。
通过这种方式,我们可以在实际试验之前,快速地评估轻量化方案的性能,并进行修改和优化。
最后,有限元法还可以帮助我们改进设计方案,以进一步提高车架的性能。
例如,在仿真分析中,我们可以调整材料的类型和厚度,以达到更好的性能。
我们还可以通过优化部件的形状和尺寸,来减少结构的应力集中和变形等问题。
总之,有限元法在车架轻量化设计和仿真分析中是一种非常有效的工具。
通过使用该方法,我们可以快速地找到轻量化方案,并通过性能仿真进行验证和优化,最终提高车架的安全性和可靠性。
为了能更清楚地了解车架轻量化设计和仿真分析的数据,我们可以以一辆小型轿车为例,尝试列出相关数据并进行分析。
首先,我们需要了解该汽车原始的车架结构的总重量、尺寸和材料类型及数量等情况。
假设该汽车的车架总重量为1000千克,尺寸为4000毫米长、1500毫米宽和1500毫米高,使用的材料为钢材和铝材,其中钢材使用量为80%。
我们可以看到,该车架的重量相对较高,需要进行轻量化设计。
接下来,我们可以通过有限元法对该车架进行轻量化设计。
汽车车架的轻量化设计 (1)

V90680‘西华大学硕士学位(毕业)论文题目:汽车车架的轻量化设计研究生指导教师:专、№研究方向:培养单位:论文起止日期曲昌荣巢凯年f教授1车辆工程汽车陛能测试与分析西华大学2005年5月至2006年5月2。
6年5月西华人学硕十学位论文1.具有良好的图形用户接口(GuI)(如图2l所示)Fi醇.1GulofANSYS例2.1ANsYs软件图形用户界面通过GUI可方便的交互访问程序的各种功能、命令、用户手册和参考材料,并可一步一步完成整个分析,因而使ANSYs易于使用。
在用户接口中,ANSYS程序提供了四种通用方法输入命令:菜单、对话框、工具杆、直接输入命令。
菜单出运行ANSYS程序是相关的命令和功能组成,位于各自的窗口中,用户在任何时候均可用鼠标访问这些窗口,这些窗口也可用鼠标移动或隐去操作。
ANSYS命令根据其功能分组,保证了用户快速访问到合适的命令。
2全交互式图形它是ANSYs程序中不可分割的组成部分,图形对于校验前处理数据和在后处理中检查求解结果都是非常重要的。
西华人学硕十学位论文Fi醇.3Geome廿icmodeIofatnJck图2.3载货汽车车架的几何模型2.2.4模型的网格划分汽车的车架大多数是由薄壁型钢焊接和铆接而成,其中槽钢就是最常用的一种型钢,该货车也采用槽钢。
由于载荷常常不通过这些薄壁截面的弯曲中心,由材料力学可知,这些杆件不但要发生弯曲变形,而且还要发生扭转变型。
薄壁杆件抗扭的能力较差,当汽车在高低不平的路面上行驶时,必须考虑到杆件的扭转变型。
在建立板壳单元刚度矩阵时,板壳单元有三节点、四节点、六节点、八节点等几种类型的单元,由于货车车架纵梁和横梁均为平直的槽钢,故可以采用四节点和八节点单元,而八节点单元精度较高。
对于高次单元由于内部应力不是常量,可以较好的适应结构变化的应力场,用较少的单元可以得到较好的效果。
但是高次单元的刚度矩阵比较复杂,形成结构刚度矩阵要花很长的计算时间。
重型载货汽车车架结构的有限元仿真及优化

优化方案
优化方案
根据有限元仿真结果,针对重型载货汽车车架结构的薄弱环节和潜在问题, 提出以下优化方案:
优化方案
1、结构改进:对车架结构进行优化设计,减少不必要的焊接部位,增加结构 强度。例如,采用局部加强板或增加加强筋等方式对车架关键部位进行加固。
优化方案
2、材料替换:采用高强度材料替代传统钢材,如铝合金、高强度钢等,以减 轻车架重量,提高抗疲劳性能。
优化方案
3、尺寸调整:通过对车架结构的关键部位进行尺寸调整,优化结构布局,提 高承载能力。例如,调整横梁和纵梁的长度、宽度和高度等参数,以改善车架的 抗弯和抗扭性能。
优化方案
4、增加附件:如加强板、减震器等附件,提高车架的抗载荷能力和减震效果。
优化效果
优化效果
实施上述优化方案后,重型载货汽车车架结构的效果显著。以下是优化效果 的几个方面:
结论
结论
本次演示通过对重型载货汽车车架进行有限元分析,了解了车架的应力、应 变分布情况,并提出了优化建议。这些建议对于提高车架的承载能力和稳定性具 有重要意义。在实践中,可以根据具体需求和条件,综合考虑选择适合的优化措 施。有限元分析作为一种有效的数值模拟方法,可以为重型载货汽车车架的设计 和优化提供重要参考。
1、结构强度提高:通过结构改进和材料替换,车架的强度得到了显著提高, 能够有效应对各种复杂工况下的载荷。
优化效果
2、重量减轻:采用高强度材料和尺寸调整,车架重量得到了显著减轻,从而 提高整车的燃油经济性。
优化效果
3、疲劳性能改善:优化后的车架结构具有更好的抗疲劳性能,减少了车辆在 使用过程中的断裂等现象。
Байду номын сангаас
参考内容
引言
汽车轻量化论文

汽车轻量化论文引言汽车轻量化是当前汽车工业中的一个重要领域,其主要目标是减轻汽车整体重量,以提高燃油效率和减少尾气回排放。
本文将探讨汽车轻量化的重要性、常用的轻量化材料以及相关的设计方法和技术,旨在为进一步推动汽车轻量化技术的发展提供参考。
1. 汽车轻量化的重要性1.1 减少燃油消耗汽车的重量对其燃油消耗有直接影响。
通过减轻汽车的整体重量,可以降低车辆在行驶中消耗的燃油量,从而减少能源消耗和对环境的污染。
据统计,每减少车辆100公斤的重量,可实现每百公里燃油消耗量降低约6%的效果。
1.2 提高车辆性能轻量化可以提高汽车的动力性能、行驶稳定性和制动效果。
减少汽车的整体重量可以提高车辆的加速性能,使车辆更具灵活性和响应能力。
此外,减轻车身重量还可以降低车辆的重心,从而提高车辆的稳定性和操控性能,并减少制动距离。
1.3 减少尾气回排放汽车尾气排放是环境污染的主要原因之一,而汽车重量的减轻可以减少排放物质的产生和排放。
轻量化降低了车辆的燃油消耗,从而减少了尾气排放,对改善空气质量和环境保护起到积极作用。
2. 汽车轻量化材料2.1 高强度钢材(RHS)高强度钢材具有较高的强度和良好的可塑性,可以替代传统的低强度钢材,减轻车身重量。
使用高强度钢材可以在保证安全的前提下实现车身轻量化。
2.2 铝合金(Aluminum Alloy)铝合金具有优良的机械性能和较低的密度,可以替代部分钢材,减少车辆的整体重量。
同时,铝合金还具有良好的耐腐蚀性,有助于提高汽车的耐久性和使用寿命。
2.3 高性能塑料(Composites)高性能塑料材料具有轻质化和高强度的特点,可以替代钢材和铝合金,帮助汽车实现更大程度的轻量化。
高性能塑料还具有优秀的绝缘性能和耐腐蚀性,适用于车身和内部零部件的制造。
3. 汽车轻量化设计方法和技术3.1 多材料结构设计多材料结构设计是一种常用的汽车轻量化设计方法,通过在车身结构中使用不同材料的组合,可以充分发挥不同材料的优势,同时减轻整体重量。
载重汽车驾驶室悬置翻转支架的轻量化设计及应用

在现代载重汽车中,发动机大都位于驾驶室座椅下 方,为了改善发动机的接近性,便于维修,往往采用可 翻转驾驶室,而翻转机构是连接车身和车架总成,是翻 转车型的悬置部件,同时也是驾驶室翻起时的运动部件。 翻转机构主要有 3 大功能:(1)连接驾驶室和车架, 有适当的弹性,对车架的震动起减震、缓冲的作用;(2) 作为驾驶室翻起时的运动部件,由扭杆提供适当的翻转 力矩;(3)有适当的刚度,在驾驶室受到冲击时发生 变形从而保护驾驶室。
表 2 铸钢材料的性能要求
Tab.2 Performance requirements for cast steel materialsຫໍສະໝຸດ 牌号抗拉强度 /MPa
屈服强度 /MPa
伸长率 (%)
ZGD410-700 ≥ 700
收稿日期:2019-10-18 修定日期:2019-11-18 作者简介:高峰(1970-),男,研究员级高工,首席工程师, 主要从事铸造工艺、熔炼技术及质量管理工作。
是有较小的缺口敏感性、较高的减震性、良好的耐磨性 及良好的铸造性能和可切削性能。球铁的熔点比铸钢低
(a)ZGD410-700 左翻转臂
(b)ZGD410-700 左翻转支架 - 前悬置
(c)ZGD410-700 下支架 - 后悬置
(d)ZG45 翻转臂
(e)ZGD410-700 左过渡支架 - 前悬置
(f)ZGD410-700 左上支架总成 - 前悬置
图 1 悬置支架产品
Fig.1 Products of mount bracket
技术验证路线:产品结构优化→受力分析模拟→零 件制造→台架试验→整车试验→批量生产。
重型载重汽车车架轻量化设计研究

重型载重汽车车架轻量化设计研究一、概览重型载重汽车作为现代运输行业的重要支柱,其性能与效率直接影响到物流运输的成本与速度。
而车架作为重型载重汽车的核心部件,其重量不仅关系到整车的燃油经济性、动力性,还直接影响到汽车的安全性能。
车架轻量化设计成为提升重型载重汽车性能的重要途径,也是当前汽车制造业研究的热点之一。
车架轻量化设计的核心在于通过优化结构和材料选择,减轻车架的重量,同时保证车架的强度、刚度和耐久性。
这需要对车架的受力情况、材料性能以及制造工艺进行深入的研究和分析。
随着科学技术的不断进步,新型材料如高强度钢、铝合金、碳纤维复合材料等的应用为车架轻量化设计提供了更多的可能性。
在车架轻量化设计过程中,除了考虑材料的选用外,还需要对车架的结构进行优化设计。
通过合理的结构设计,可以减小车架的截面尺寸和厚度,进一步降低车架的重量。
还需要考虑车架与发动机、底盘等部件的连接方式和配合关系,确保整车的稳定性和安全性。
车架轻量化设计还需要考虑生产工艺和制造成本。
在满足性能要求的前提下,应尽量采用简单易行、成本较低的制造工艺和材料,以降低整车的生产成本,提高市场竞争力。
重型载重汽车车架轻量化设计是一个涉及材料、结构、工艺等多方面的复杂问题。
通过深入研究和分析,采用合理的设计方法和手段,可以实现车架的轻量化,提高重型载重汽车的性能和效率,为物流运输行业的发展做出贡献。
1. 重型载重汽车在社会经济中的地位与作用重型载重汽车作为道路交通的重要载体,在社会经济发展中占据着举足轻重的地位。
它们不仅是货物运输的主要工具,还是基础设施建设、物流运输、农业生产等领域不可或缺的力量。
随着全球经济一体化的加速推进,重型载重汽车的需求日益增长,对社会经济的发展起着重要的支撑作用。
重型载重汽车在货物运输中发挥着关键作用。
无论是长途运输还是短途配送,重型载重汽车都能以其强大的承载能力和稳定的性能,确保货物安全、高效地到达目的地。
在国际贸易中,重型载重汽车更是扮演着重要角色,它们穿梭于世界各地的港口、仓库和物流中心,将货物运送到各个角落,为国际贸易的繁荣做出了巨大贡献。
轿车副车架轻量化技术研究及应用

第17卷第5期塑性工程学报V。
1.17No.51111111望』Q堕基丛△垦12E£L垒苎!!竺!!羔堡丛g!盟堡垦垦!堕鱼!!!!:!!!!doi:10.3969/j.issn.1007—2012.2010.05.015轿车副车架轻量化技术研究及应用*(北京汽车研究总院,北京100021)张立玲黄黎叶子青林逸(密歇根大学,美国48109)赵红伟马正东摘要:文章将多.r况强度分析方法与拓扑优化技术相结合,制定了基于刚度日标及应力约束的轿车副午架结构优化分析流程,并对几种车型的副车架分别进行厂结构强度评价分析、轻昔化优化分析。
工程实际应用表明,采用多工况强度分析方法。
能够准确地预测副车架强度薄弱部位,CAE分析与试验结果吻合;采用拓扑优化方法,选取适当的优化参数,可以得到该文给f{j的减重约15%、符合制造工艺要求的实用减重方案,并适用于全新副车架的概念模型设计,具有较为重要的学术价值及工程实际意义。
关键词:轻量化;轿车副车架;拓扑优化;数值模拟中图分类号:U463.32文献标识码:A文章编号:1007—2012(2010)05-0071—05ResearchandapplicationoflightweighttechnologyforpassengercarsubframesZHANGLi-lingHUANGLiYEZi—qingLINYi(BeijingAutomotiveTechnologyCenter,Beijing100021China)ZHAOHong-weiMAZheng-dong(UniversityofMichigan,AnnArbor,MI48109,USA)Abstract:CAEanalysismethodsandproceduresofstructuraloptimizationforpassengercarsubframesweresetupbasedonmulti—pieloadcasesstrengthanalysismethodsandtopologyoptimizationtechnology,bywhichthestructuralstiffness。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉理工大学
硕士学位论文
重型载重汽车车架轻量化设计研究
姓名:朱容庆
申请学位级别:硕士
专业:车辆工程
指导教师:邓楚南;乐玉汉
20060501
的精度也不商。
后一种方法既适用于建立简单结构也适用于建立复杂结构的几何模型,使用面十分广泛。
由于现在CAD软件在产品设计中的广泛使用,采用CAD软件建立结构的几何模型,是现在的主流。
使用CAD软件建模可以有效的节省工作时间,提高建模的工作效率。
本文采用uG软件建立所研究车架的几何模型,建立的主要步骤为:
(1)利用uG软件,按照车架上各零件的实际尺寸绘制所有零件的三维实体的几何模型;
(2)按照前文所述的车架坐标系对车架各个零件进行装配,得到整个车架的三维几何模型。
车架装配模型如图4—1所示。
图4-1车架装配图
4.2车架有限元模型的建立
4.2。
1将车架豹几何模型转化为igs格式的文件
由于Ansys软件不能直接处理uG软件形成的.part文件,所有在车架的装配模型完成后应浚将模型转化为Ansys软件可以识别的.igs格式,在uG软件中可以通过Traslate模块实现这个操作a启动Ansys软件后,通过其import选项导入车架的三维几何模型.igs格式的文件。
4.2.2车架有限元模型的建立
4.2.2.1设置材料参数
启动AnsyS软件,设置分析类型为结构分析Structure,然后设置有限元单元类型为SOlid45,同时设置材料参数。
车架的材料参数如表4一l所示。
表4—1材料特性
材料类弹性模量密度
泊松比PRXY型EX(N/mm2)DENS(豫/mr,,3)
槽钢2.11×1057.85x10“O.29
4.2.2.2划分有限元网格
然后,划分有限元网格。
由于车架是以装配件的形式导入AnSYS软件的,因此在划分网格时相邻的零部件之间的连接处理尤其重要。
零部件相接触的部位在划分网格时要一体划分,这样可以保证零部件在有限元软件中的有效连接。
划分网格后的车架有限元模型如图4—2所示。
图4-2划分网格
武汉理工大学硕士学位论文
图4-3加载图
武汉理丁大学硕士学位论文
本文要求的分析类型应为静态分析。
启动AnsYS,定义分析类型为静态分析。
弯曲工况的分析结果如下图所示:
图5-2弯曲工况节点应力云图
武汉理工大学硕士学位论文
图5-3扭转工况节点应力云图
车架分析结果如下表所示:
表5—2车架评价指标表
最人应力口。
工况动荷系数K安全系数n
(Mpa)
满载弯曲2.547.412
满载扭转1.346.4235.1.4车架结构静力分析结果评价
结构静力分析的目的式根据有限元分析的结果数据对车架的强度进行评价。
假设车架材料的屈服极限为仃。
,不同工矿下计算出的最大复合应力(yon—mises)为cr。
一则车架结构的强度安全系数为:。