2014版高中数学复习方略课时提升作业:6.7数学归纳法(北师大版)(北师大版·数学理·通用版)
2014版陕西北师版数学文复习方略:课时提升作业第一章 第二节命题、充分条件与必要条件

课时提升作业(二)一、选择题1.已知命题p:若x>0,y>0,则xy>0,则p的否命题是( )(A)若x>0,y>0,则xy≤0(B)若x≤0,y≤0,则xy≤0(C)若x,y至少有一个不大于0,则xy<0(D)若x,y至少有一个小于或等于0,则xy≤02.(2013·吉安模拟)已知条件p:x≤1,条件q:<1,则 p是q的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件3.(2013·延安模拟)命题“若a,b∈R,a=b=0,则a2+b2=0”的逆否命题是( )(A)若a,b∈R,a2+b2=0,则a≠b≠0(B)若a,b∈R,a2+b2≠0,则a≠b≠0(C)若a,b∈R,a2+b2≠0,则a≠0且b≠0(D)若a,b∈R,a2+b2≠0,则a≠0或b≠04.(2013·合肥模拟)设a>0且a≠1,则“函数f(x)=a x在R上是增函数”是“函数g(x)=x a在R上是增函数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件5.已知a,b,c都是实数,则在命题“若a>b,则ac2>bc2”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )(A)4 (B)2 (C)1 (D)06.(2013·安康模拟)对任意实数a ,b ,c 给出下列命题: ①“a=b ”是“ac=bc ”的充要条件;②“a+5是无理数”是“a 是无理数”的充要条件; ③“a>b ”是“a 2>b 2”的充分条件; ④“a<5”是“a<3”的必要条件. 其中真命题的个数是( )(A)1 (B)2 (C)3 (D)4 7.下列各小题中,p 是q 的充要条件的是( ) (1)p:m<-2或m>6;q:y=x 2+mx+m+3有两个不同的零点. (2)p:=1;q:y=f(x)是偶函数.(3)p:cos α=cos β;q:tan α=tan β. (4)p:A ∩B=A;q: U ðB ⊆U ð A.(A)(1)(2) (B)(2)(3) (C)(3)(4) (D)(1)(4)8.已知向量a =(1,2),b =(2,3),则λ<-4是向量m =λa +b 与向量n =(3,-1)夹角为钝角的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件9.(2013·西安模拟)已知集合M={x|log 2x ≤0},N={x|x 2-2x ≤0},则“a ∈M ”是 “a ∈N ”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件10.(2013·重庆模拟)设非零实数a,b,则“a2+b2≥2ab成立”是“+≥2成立”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件11.(能力挑战题)若m,n∈N+,则“a>b”是“a m+n+b m+n>a n b m+a m b n”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件12.(能力挑战题)已知a,b为实数,集合A={x|ax+b=0},则下列命题为假命题的是( )(A)当a≠0时,集合A是有限集(B)当a=b=0时,集合A是无限集(C)当a=0时,集合A是无限集(D)当a=0,b≠0时,集合A是空集二、填空题13.若“对于任意x∈R,ax2+ax+1>0”为真命题,则实数a的取值范围是.14.sinα≠sinβ是α≠β的条件.15.(能力挑战题)在空间中:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是.16.(2013·渭南模拟)已知p:2x2-9x+a<0,q:且q是p的充分条件,则实数a的取值范围是.三、解答题17.已知集合A={y|y=x2-x+1,x∈[,2]},B={x|x+m2≥1}.若“x∈A”是“x∈B”的充分条件,求实数m的取值范围.答案解析1.【解析】选D.否命题应在否定条件的同时否定结论,而原命题中的条件是“且”的关系,所以条件的否定形式是“x≤0或y≤0”.2.【解析】选A.⌝p:x>1;<1,解得x<0或x>1.所以⌝p是q的充分不必要条件.3.【解析】选D.“a=b=0”的否定为“a≠0或b≠0”,“a2+b2=0”的否定为“a2+b2≠0”,故原命题的逆否命题是“若a,b∈R,a2+b2≠0,则a≠0或b≠0”.4.【解析】选D.当a=2时,函数f(x)=a x在R上为增函数,函数g(x)=x a在R上不是增函数;当a=时,g(x)=x a在R上是增函数,f(x)=a x在R上不是增函数.5.【解析】选B.原命题是一个假命题,因为当c=0时,不等式的两边同乘上0得到的是一个等式;原命题的逆命题是一个真命题,因为当ac2>bc2时,一定有c2≠0,所以必有c2>0,不等式两边除以同一个正数,不等号方向不变,即若ac2>bc2,则a>b成立.根据命题的等价关系,四个命题中有2个真命题.6.【解析】选B.对于①,a=b ⇒ac=bc ,但ac=bc a=b ,故①错.对于②,a+5是无理数⇔a 是无理数,故②正确. 对于③,a>ba 2>b 2,故③错.对于④,a<3⇒a<5,故④正确,故选B.7.【解析】选D.(1)y=x 2+mx+m+3有两个不同的零点的充要条件是m 2-4(m+3)>0,解得m<-2或m>6. (2)由=1可得f(-x)=f(x),函数y=f(x)是偶函数,但函数y=f(x)是偶函数时,有可能f(x)=0,此时无意义.(3)cos α=cos β≠0时,sin α=〒sin β,得出tan α=〒tan β,cos α=cos β=0时,tan α,tan β无意义. (4)A ∩B=A ⇔A ⊆B ⇔U ðB ⊆U ðA.综上可知,p 是q 的充要条件的是(1)(4).8.【解析】选A.m =(λ+2,2λ+3),m ,n 的夹角为钝角的充要条件是m ·n <0且m ≠μn (μ<0).m ·n <0,即3(λ+2)-(2λ+3)<0,即λ<-3;若m =μn ,则λ+2= 3μ,2λ+3=-μ,解得μ=,故m ≠μn (μ<0),所以,m ,n 的夹角为钝角的充要条件是λ<-3.λ<-4是m ,n 的夹角为钝角的充分不必要条件.9.【解析】选A.集合M={x|0<x ≤1},N={x|0≤x ≤2},故“a ∈M ”是“a ∈N ”的充分不必要条件.10.【解析】选B.若a 2+b 2≥2ab,则+≥2不一定成立;若+≥2,则a 2+b 2≥2ab 成立.11.【解析】选D.a m+n +b m+n >a n b m +a m b n ⇔(a m -b m )(a n -b n )>0.当a>b 时,由于a,b 可能为负值,m,n 奇偶不定,因此不能得出(a m -b m )(a n -b n )>0;当(a m -b m )·(a n -b n )>0时,即使在a,b均为正数时也有a<b的可能,因此也得不出a>b.所以“a>b”是“a m+n+b m+n>a n b m+a m b n”的既不充分也不必要条件.【误区警示】因没有注意不等式性质成立的条件而出错.【变式备选】(2012·郑州模拟)若a1x2+b1x+c1<0和a2x2+b2x+c2<0的解集分别为集合M和N,a i,b i,c i(i=1,2)均不为零,那么“a1b2=a2b1且a1c2=a2c1”是“M=N”的( ) (A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件【解析】选D.若a 1b2=a2b1且a1c2=a2c1,则有===k,当k<0时,M≠N;反之,若M=N,则a1b2=a2b1且a1c2=a2c1不一定成立,故“a1b2=a2b1且a1c2=a2c1”是“M=N”的既不充分也不必要条件.12.【思路点拨】集合A是一个含有参数的方程的解的集合,根据参数的不同取值这个方程解的个数也不同,分类讨论即可解决.【解析】选C.A中,当a≠0时,有x=-,此时集合A是有限集;B中,当a=b=0时,一切实数x都是集合A的元素,此时集合A是无限集;C中,当a=0时,方程变为0x+b=0,此时只有b=0集合A才可能是无限集;D中,当a=0,b≠0时,没有实数x 满足ax+b=0,此时集合A是空集.13.【解析】问题等价于对任意实数x,不等式ax2+ax+1>0恒成立.当a=0时,显然成立;当a≠0时,只能是a>0且Δ=a2-4a<0,即0<a<4.故a的取值范围是[0,4). 答案:[0,4)【误区警示】因忽略二次项系数可能为零的情况而出错.14.【解析】即判断α=β是sinα=sinβ的什么条件,显然是充分不必要条件. 答案:充分不必要15.【解析】①中的逆命题是:在空间中,若四点中任何三点都不共线,则这四点不共面.我们用正方体AC1做模型来观察:上底面A1C1内A1,B1,C1,D1四点中任何三点都不共线,但A1,B1,C1,D1四点共面,所以①中逆命题为假命题.②中的逆命题是:在空间中,若两条直线是异面直线,则这两条直线没有公共点.由异面直线的定义可知,成异面直线的两条直线不会有公共点.所以②中逆命题是真命题.答案:②16.【思路点拨】求出条件q,由q是p的充分条件知q p,再转化为不等式恒成立问题求解.【解析】由得≨2<x<3.≧q⇒p,≨x∈(2,3)时,2x2-9x+a<0恒成立.记f(x)=2x2-9x+a,则即≨a≤9.答案:(-≦,9]17.【解析】y=x2-x+1=(x-)2+,≧x∈[,2],≨≤y≤2,≨A={y|≤y≤2}.由x+m2≥1,得x≥1-m2,≨B={x|x≥1-m2}.≧“x∈A”是“x∈B”的充分条件,≨A⊆B,≨1-m2≤,解得m≥或m≤-,故实数m的取值范围是(-≦,-]∪[,+≦).【变式备选】求证:关于x的方程ax2+bx+c=0有一个根为1的充要条件是a+b+c=0.【证明】必要性:若方程ax2+bx+c=0有一个根为1,则x=1满足方程ax2+bx+c=0,≨a+b+c=0.充分性:若a+b+c=0,则b=-a-c,≨ax2+bx+c=0可化为ax2-(a+c)x+c=0,≨(ax-c)(x-1)=0,≨当x=1时,ax2+bx+c=0,≨x=1是方程ax2+bx+c=0的一个根.关闭Word文档返回原板块。
2014版高中数学复习方略课时提升作业:单元评估检测(七)(北师大版)(北师大版·数学理·通用版)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元评估检测(七)第七章(120分钟 150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l∥平面α,P∈α,那么过点P且平行于直线l的直线( )(A)只有一条,不在平面α内(B)有无数条,不一定在平面α内(C)只有一条,且在平面α内(D)有无数条,一定在平面α内2.在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是( )(A)π(B)π(C)π(D)π3.(2013·随州模拟)在空间中,a,b是两条不同的直线,α,β是两个不同的平面,下列命题正确的是( )(A)若a∥α,b∥a,则b∥α(B)若a∥α,b∥a,aÜβ,bÜβ,则β∥α(C)若α∥β,b∥α,则b∥β(D)若α∥β,aÜα,则a∥β4.若圆锥的侧面展开图是圆心角为120°、半径为l的扇形,则这个圆锥的表面积与侧面积之比是( )(A)3∶2 (B)2∶1(C)5∶3 (D)4∶35.(2013·珠海模拟)已知a,b,l表示三条不同的直线,α,β,γ表示三个不同的平面,有下列命题:①若α∩β=a,β∩γ=b,且a∥b,则α∥γ;②若a,b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β,则α∥β;③若α⊥β,α∩β=a,bÜβ,a⊥b,则b⊥α;④若aÜα,bÜα,l⊥a,l⊥b,则l⊥α.其中正确的有( )(A)0个(B)1个(C)2个(D)3个6.(2013·郑州模拟)把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD ⊥平面CBD,形成三棱锥C-ABD,其主视图与俯视图如图所示,则其左视图的面积为( )(A)(B)(C)(D)7.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )(A)36 cm3(B)48 cm3(C)60 cm3(D)72 cm38.如图是正方体的表面展开图,在这个正方体中有如下命题:①AF∥NC;②BE与NC是异面直线;③AF与DE的夹角为60°;④AN与ME的夹角为45°.其中正确命题的个数为( )(A)3个(B)2个(C)1个(D)0个9.已知正四棱锥的侧棱与底面的边长都为3,则这个四棱锥的外接球的表面积为( )(A)12π(B)36π(C)72π(D)108π10.(能力挑战题)已知正方形ABCD的边长是4,对角线AC与BD交于O,将正方形ABCD沿对角线BD折叠,使平面ABD与平面CBD的夹角为60°,给出下面结论: ①AC⊥BD;②AD⊥CO;③△AOC为正三角形;④cos∠ADC=.则其中的结论正确的是( )(A)①③④(B)①②④(C)②③④(D)①②③二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该几何体的表面积为.12.(2012·九江模拟)在棱长为1的正方体AC1中,E为AB的中点,点P为侧面BB1C1C内一动点(含边界),若动点P始终满足PE⊥BD1,则动点P的轨迹的长度为.13.在正方体ABCD-A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN.以下结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1异面,其中有可能成立的有.14.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球体积为.15.等边三角形ABC与正方形ABDE有一公共边AB,平面CAB与平面DAB的夹角的余弦值为,M,N分别是AC,BC的中点,则EM,AN的夹角的余弦值等于.三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°.(1)证明:平面ABD⊥平面BDC.(2)设E为BC的中点,求AE与DB夹角的余弦值.17.(12分)(2013·西安模拟)已知三棱柱ABC -A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,AB=2,AA1=4,E为AA1中点,F为BC中点.(1)求证:直线AF∥平面BEC1.(2)求平面BEC1与平面ABC的夹角的余弦值.18.(12分)如图所示的几何体中,PB⊥平面ABC,PQ∥AB,PQ=PB=1,AB=BC=,∠ABC=90°,M∈PB,N∈PC.(1)求QC与平面ABC的夹角的正弦值.(2)若QC⊥平面AMN,求线段MN的长度.19.(12分)(2013·黄山模拟)如图,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点.(1)求证:A1B∥平面ADC1.(2)求平面C1AD与平面CAD的夹角的余弦值.(3)试问线段A1B1上是否存在点E,使AE与DC1的夹角为60°?若存在,确定E点位置;若不存在,说明理由.20.(13分)(能力挑战题)如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M是CC1的中点,N是BC的中点,点P在直线A1B1上,且满足=λ.(1)当λ取何值时,直线PN与平面ABC的夹角θ最大?(2)若平面PMN与平面ABC的夹角为45°,试确定点P的位置.21.(14分)(能力挑战题)如图,已知四棱锥S-ABCD的底面ABCD是菱形,∠BAD=60°,且SA=SB=SD=AB=2.(1)求证:AB⊥SD.(2)求S到底面ABCD的距离.(3)设G为CD的中点,在线段SA上是否存在一点F,使得GF∥平面SBC?说明理由.(4)在线段AB上是否存在一点P,使得SP与平面SCD的夹角的正切值为?说明理由.答案解析1.【解析】选C.由直线l与点P可确定一个平面β,且平面α,β有公共点,因此它们有一条公共直线,设该公共直线为m,因为l∥α,所以l∥m,故过点P且平行于直线l的直线只有一条,且在平面α内.2.【思路点拨】△ABC绕直线BC旋转一周后所得几何体为一圆锥,但其内部缺少一部分.用大圆锥的体积减去小圆锥的体积即为所求几何体的体积.【解析】选A.旋转后得到的几何体是一个大圆锥中挖去一个小圆锥.故所求体积为V=V 大圆锥-V 小圆锥=πr 2(1+1.5-1)=π.3.【解析】选D.A 中,由条件可以推出b ∥α或b Üα;B 中,由条件可以推出β∥α或α与β相交;C 中,由条件可以推出b ∥β或b Üβ.D 正确. 【变式备选】给定下列命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为真命题的是 ( )(A)①和② (B)②和③ (C)③和④ (D)②和④【解析】选D.对于①,两条直线必须相交,否则不能证明面面平行,错误;对于③,垂直于同一条直线的两条直线还可能异面或相交,错误;②④正确.所以选D. 4.【解析】选D.设圆锥的底面半径为r, 依题意可得扇形的弧长为πl , 从而圆锥的底面半径r=πl ÷2π=l ,l ,所以圆锥的侧面积S 侧=π·3l ·l =3π2l ,圆锥的表面积S 表=3π2l +π(3l )2=πl 2.所以,表面积与侧面积的比为4∶3.5.【思路点拨】可借助正方体模型解决.C1D1-ABCD中,可令平面【解析】选C.如图,在正方体AA1B1CD为α,平面DCC1D1为β,平面A1B1C1D1为γ.又平面A1B1CD∩平面DCC1D1=CD,平面A1B1C1D1∩平面DCC1D1=C1D1,则CD与C1D1所在的直线分别表示a,b,因为CD∥C1D1,但平面A1B1CD与平面A1B1C1D1不平行,即α与γ不平行,故①错误.因为a,b相交,可设其确定的平面为γ,根据a∥α,b∥α,可得γ∥α.同理可得γ∥β,因此α∥β,②正确.由两平面垂直,在一个平面内垂直于交线的直线和另一个平面垂直,易知③正确.a∥b时,由题知l垂直于平面α内两条不相交直线,得不出l⊥α,④错误.6.【解析】选D.如图所示,取BD的中点E,连接AE,CE,则有CE⊥BD,AE⊥BD,又平面ABD⊥平面CBD,所以CE⊥平面ABD,同理,AE⊥平面CBD.所以Rt△ACE就是三棱锥C-ABD的左视图.在Rt△BCD中,DC⊥CB,CD=CB=1,所以CE=BD=,同理AE=.所以三棱锥C-ABD的左视图的面积S=×AE×CE=××=.7.【解析】选B.依题意得知,该几何体的上半部分是一个长为4 cm,宽和高均为2 cm的长方体,下半部分是一个侧着放的直四棱柱,其高为4 cm,其底面是一个上底为2 cm,下底为6 cm,高为2 cm的等腰梯形,故该几何体的体积V=4×2×2+×(2+6)×2×4=48(cm3),故选B.8.【解析】选 C.如图所示,依据正方体的表面展开图,可画出正方体图形,判断可知AF与NC异面,①错;BE∥NC,②错;AF与DE的夹角即为AF与FC的夹角,在等边三角形AFC中,AF与FC的夹角为60°,③对;同理AN与ME的夹角为60°,④错;故正确的有1个,所以选C.9.【思路点拨】外接球的半径为棱锥的中心到各个顶点的距离.【解析】选B.依题意得,该正四棱锥的底面对角线长为3×=6,高为=3,因此底面中心到各顶点的距离均等于3,所以该四棱锥的外接球球心为底面正方形的中心,其外接球的半径为3,所以其外接球的表面积等于4π×32=36π,选B.10.【解析】选A.如图所示,易知∠AOC为平面ABD与平面CBD的夹角,即∠AOC=60°,且AO=OC,故△AOC为正三角形,即③正确;又BD⊥平面AOC,故AC⊥BD,即①正确;在△ADC中,可知AD=DC=4,AC=AO=2,故利用余弦定理可解得cos∠ADC=,故④正确.11.【解析】该几何体为直三棱柱,其表面积为4×6+×4×6×2+4××2 =88(cm2).答案:88cm212.【解析】如图,根据题意,BD1要始终垂直于PE所在的一个平面,取BC,BB1的中点F,G,易证BD1⊥平面EFG,故点P的轨迹为线段FG,易求得这条线段的长度是. 答案:13.【解析】取特殊值,使M,N 分别为线段AB 1,BC 1的中点,取B 1B 的中点为E,连接NE,EM,则NE ∥B 1C 1,ME ∥A 1B 1,又NE ∩ME=E,B 1C 1∩A 1B 1=B 1,故平面MNE ∥平面A 1B 1C 1D 1,∴MN ∥平面A 1B 1C 1D 1,③对;又A 1A ⊥平面A 1B 1C 1D 1,故A 1A ⊥平面MNE,∴A 1A ⊥MN,①对;连接A 1B,∵M 是AB 1的中点,∴M 在A 1B 上,MN 是△A 1C 1B 的中位线,∴MN ∥A 1C 1,②对;当N 与B 重合,M 与A 重合,此时MN 与A 1C 1异面,④对. 答案:①②③④14.【解析】三棱锥图形可画为如图所示.因为△BCD 为等腰直角三角形,则其外接圆圆心在BD 中点O 1处,设外接球的球心为O,半径为R,即|OA|=R,在平面ACO 1O 中,作OE ∥O 1C,则OE ⊥AC.在Rt △AEO 中,|AE|=|AC|-|OO 1|=2-,|OE|=|O 1C|=,由R 2=(2-)2+()2,得R=,故V=πR 3=4π.答案:4π15.【解析】设AB=2,作CO ⊥平面ABDE,OH ⊥AB,则CH ⊥AB,∠CHO 为平面CAB 与平面DAB 的夹角, CH=,OH=CH ·cos ∠CHO=1,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN=EM=CH=.=(+),=-,·=(+)·(-)=.故EM,AN 的夹角的余弦值为=.答案:16.【解析】(1)∵折起前AD是BC边上的高,∴当△ABD折起后,AD⊥DC,AD⊥DB.又DB∩DC=D,∴AD⊥平面BDC.∵AD平面ABD,∴平面ABD⊥平面BDC.(2)由∠BDC=90°及(1)知DA,DB,DC两两垂直,不妨设|DB|=1,以D为坐标原点,以DB,DC,DA所在直线为x,y,z轴建立如图所示的空间直角坐标系,易得D(0,0,0),B(1,0,0),C(0,3,0),A(0,0,),E(,,0),∴=(,,-),=(1,0,0),cos<,>===.∴AE与DB夹角的余弦值为.17.【解析】取B1C1的中点为N,以FA,FB,FN所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则A(,0,0),B(0,1,0),C(0,-1,0),C1(0,-1,4),A1(,0,4), E(,0,2),(1)设平面BEC1的一个法向量为n=(x,y,z),则取z=1,x=0,y=2,得n=(0,2,1),·n=0,∴⊥n,∵AF平面BEC1,∴AF∥平面BEC1.(2)易得平面ABC的一个法向量为m=(0,0,1), ∴cos<m,n>==.平面BEC1与平面ABC的夹角的余弦值为. 18.【解析】(1)以B为原点,分别以BA,BC,BP所在直线为x,y,z轴建立空间直角坐标系,则A(,0,0),B(0,0,0),C(0,,0),P(0,0,1),Q(1,0,1).由题设知为平面ABC的一个法向量,又=(1,-,1),=(0,0,1),所以QC与平面ABC的夹角θ的正弦值sinθ=|cos<,>|=||=.(2)因为M在直线PB上,所以可设M(0,0,t),则=(-,0,t).因为·=-+t=0,所以t=,即M(0,0,),设=λ,N(x,y,z).因为=(x,y,z-1),=(0,,-1),所以x=0,y=λ,z-1=-λ,故N(0,λ,1-λ),=(-,λ,1-λ).由·=--λ+1-λ=-λ=0,得λ=,故N(0,,).所以MN==.交AC1于点O,连接OD.19.【解析】(1)连接A由ABC-A1B1C1是直三棱柱,得四边形ACC1A1为矩形,O为A1C的中点.又D为BC的中点,所以OD为△A1BC的中位线.所以A1B∥OD.因为OD平面ADC1,A1B⊈平面ADC1,所以A1B∥平面ADC1.(2)由ABC-A1B1C1是直三棱柱,且∠ABC=90°,得BA,BC,BB1两两垂直.以BC,BA,BB1所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系.设BA=2,则B(0,0,0),C(2,0,0),A(0,2,0),C1(2,0,1),D(1,0,0),所以=(1,-2,0),=(2,-2,1).设平面C1AD的一个法向量为n=(x,y,z),则有所以取y=1,得n=(2,1,-2).易知平面CAD的一个法向量为v=(0,0,1).所以cos<n,v>==-.所以平面C1AD与平面CAD的夹角的余弦值为.(3)存在点E为A1B1的中点时满足条件.理由如下:假设存在满足条件的点E.因为点E在线段A1B1上,A1(0,2,1),B1(0,0,1),故可设E(0,λ,1),其中0≤λ≤2.所以=(0,λ-2,1),=(1,0,1).因为AE与DC1的夹角为60°,所以|cos<,>|=||=.即=,解得λ=1或λ=3(舍去).所以当点E为线段A1B1的中点时,AE与DC1的夹角为60°.【方法技巧】立体几何中探索性问题的解法探索性问题是近几年高考中出现频率较高的题目,能较好地考查学生的猜想能力和推理能力.一般以判断点的存在性为主,用几何法解答探索性问题的一般步骤是:先假设所求的点存在,然后在这一条件下进行推理论证,得出相关的结论.如果得出矛盾,则说明假设不成立,即不存在满足条件的点;如果得不出矛盾,则说明假设成立,即存在满足条件的点.【变式备选】如图所示,平面多边形ABCDP是由梯形ABCD和等边三角形PAD组成,已知AB∥DC,BD=2AD=4,AB=2DC=2,现将△PAD沿AD折起,使点P的射影O 恰好落在直线AD上.(1)求证:BD⊥平面PAD.(2)求平面PAD与平面PAB的夹角的余弦值.【解析】(1)由题意知平面PAD⊥平面ABCD,又BD=2AD=4,AB=2,可得AB2=AD2+BD2,则BD⊥AD,又AD为平面PAD与平面ABCD的交线,则BD⊥平面PAD.(2)取AD的中点O,OA为x轴,过O作BD的平行线为y轴,OP为z轴,如图建立空间直角坐标系,易知A(1,0,0),B(-1,4,0),P(0,0,),=(-1,4,-),=(2,-4,0),平面PDA的一个法向量为m=(0,1,0),设平面PAB的一个法向量为n=(x,y,z),由得故可取n=(2,1,),则cos<m,n>==,所以平面PAD与平面PAB的夹角的余弦值为.20.【思路点拨】(1)建立空间直角坐标系,求出坐标及平面ABC的一个法向量的坐标,利用向量求解.(2)求出平面PMN的一个法向量的坐标,利用两平面的夹角为45°,列方程求解. 【解析】(1)分别以AB,AC,AA1为x,y,z轴,建立空间直角坐标系,则=(-λ,,-1),平面ABC的一个法向量为n=(0,0,1),则sinθ=|cos<,n>|==(*),于是问题转化为二次函数求最值,而θ∈[0,],当sinθ最大时,θ最大,此时λ=.(2)显然平面ABC的一个法向量为n=(0,0,1),设平面PMN的一个法向量为m=(x,y,z),=(λ,-1,).由得解得令x=3,得m=(3,2λ+1,2(1-λ)),于是由|cos<m,n>|===,解得λ=-,故点P在B1A1的延长线上,且|A1P|=.21.【解析】(1)如图①,取AB的中点E,连接DE,BD,SE,∵底面ABCD是菱形,∠BAD=60°,∴△ABD为正三角形,BD=2.又∵E为AB的中点,∴DE⊥AB.又∵SA=SB,∴SE⊥AB.又∵SE∩DE=E,∴AB⊥平面SDE.∵SD平面SDE,∴AB⊥SD.(2)在平面SDE中,过S作SH⊥DE于H. ∵AB⊥平面SDE,∴AB⊥SH.又∵AB∩DE=E,∴SH⊥平面ABD.∴SH的长即为S到平面ABCD的距离. 在△ABD中,AB=AD=BD=2,∴DE=,在△SAB中,SA=SB=AB=2,∴SE=.在等腰△SDE中,SD=2,∵SD·=SH·DE,∴SH==.(3)假设AS上存在点F使GF∥平面SBC,连接BD,以正三角形ABD的中心O为原点,OA为x轴,OS为z轴,平行于BD的且过点O的直线为y轴,建立如图②所示的空间直角坐标系.A(,0,0),B(-,1,0),C(-,0,0),D(-,-1,0),S(0,0,),G(-,-,0),=(-,0,),设=λ=λ(-,0,),∴F(-λ+,0,λ),=(-λ+,,λ),=(-,-1,0),=(-,0,-).设平面SBC的一个法向量为n=(x,y,z),则有n·=-x-y=0,n·=-x-z=0.令x=1,则y=-,z=-,即n=(1,-,-).则有·n=0,圆学子梦想 铸金字品牌- 21 - 即(-λ+)+(-)+λ×(-)=0. 化简得-2λ+=0,解得λ=. 故=,即F 为SA 的中点.(4)假设线段AB 上存在这样的点P 使SP 与平面SCD 的夹角的正切值为, 即夹角的正弦值为.由(3)知=(-,1,0),设=λ1=(-λ1,λ1,0), 则P(-λ1+,λ1,0), =(-λ1+,λ1,-), =(-,0,-),=(,-1,0). 设平面SDC 的一个法向量为n 1=(x 1,y 1,z 1), 则n 1·=0,n 1·=0, 解得n 1=(1,,-). |cos<,n 1>|==,代入,解得λ1=. 故P 为AB 的中点.关闭Word 文档返回原板块。
2014版高中数学复习方略课时提升作业:单元评估检测(六)(北师大版)(北师大版·数学理·通用版)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元评估检测(六)第六章(120分钟150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·吉安模拟)下列命题正确的是( )(A)存在x∈R,x2+2x+3=0(B)对于任意x∈N,x3>x2(C)x>1是x2>1的充分不必要条件(D)若a>b,则a2>b22.(2013·合肥模拟)观察等式:+=,++=,+++=,根据以上规律,第四个等式应为( )(A)++=(B)++++=(C)+++=(D)++++=3.用数学归纳法证明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是( )(A)(k+1)2+2k2(B)(k+1)2+k2(C)(k+1)2(D)(k+1)[2(k+1)2+1]4.(2013·南昌模拟)已知函数f(x)=则不等式xf(x-1)≤1的解集是( ) (A)[-1,+∞) (B)(-∞,1](C)[1,2] (D)[-1,1]5.已知=2,=3,=4,=5,…,=10,则推测a+b= ( )(A)1033 (B)109(C)199 (D)296.设实数a,b,c满足a+b+c=6,则a,b,c中( )(A)至多有一个不大于2 (B)至少有一个不小于2(C)至多有两个不小于2 (D)至少有两个不小于27.已知则2x+y-2的最大值等于( )(A)1 (B)2 (C)(D)48.设x>0,y>0,x+y-x2y2=4,则+的最小值等于( )(A)2 (B)4 (C)(D)9.已知函数f(x)=x2,g(x)=()x-m,当x∈[1,2]时,不等式f(x)≥g(x)恒成立,则实数m的取值范围是( )(A)[-,+∞) (B)[-,+∞)(C)(3,+∞) (D)(4,+∞)10.某商场中秋前30天月饼销售总量f(t)与时间t(1≤t≤30)的关系大致满足f(t)=t2+10t+16,则该商场前t天平均售出(如前10天的平均售出为)的月饼最少为( )(A)18 (B)27 (C)20 (D)16二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.在约束条件下,目标函数z=ax+by(a>0,b>0)的最大值为,则ab的最大值为.12.若不等式-1<x-b<1成立的必要不充分条件为4-x2>0,则实数b的取值范围是.13.(2013·黄山模拟)不等式3x-3m≤-2m的正整数解为1,2,3,4,则m的取值范围是.14.观察下列数的特点:1,2,2,3,3,3,4,4,4,4,…,其中第100项是.15.(能力挑战题)若实数x,y满足不等式组则当≤2a恒成立时,实数a的取值范围是.三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)已知a>b>c,且a+b+c=0,求证:< a.17.(12分)已知不等式x(ax-1)>a(x-1),其中a∈R.(1)当a=时,解不等式.(2)若不等式在R上恒成立,求实数a的取值范围.18.(12分)在计算“1×2+2×3+…+n(n+1)”时,先改写第k项:k(k+1)=[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),…,n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)].相加,得1×2+2×3+…+n(n+1)=n(n+1)(n+2).(1)类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”的结果.(2)试用数学归纳法证明你得到的等式.19.(12分)(能力挑战题)已知x,y满足若z=x+3y的最大值为12,试求k的值.20.(13分)(2013·宝鸡模拟)某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y和S的函数关系,并给出定义域.(2)怎样设计能使S取得最大值,并求出最大值.21.(14分)(能力挑战题)设数列{a n}满足:a n+1=-na n+1,n=1,2,3,….(1)当a1=2时,求a2,a3,a4,并由此猜想{a n}的一个通项公式.(2)当a1≥3时,证明对所有的n≥1,①a n≥n+2;②+++…+<.答案解析1.【解析】选C.A中≧Δ=4-12=-8>0,故方程x2+2x+3=0无实数解,B中当x<0时不成立,D中当b<a<0时不成立.2.【解析】选B.由所给三个式子规律可得,第四个等式为++++=.3.【解析】选B.当n=k时,左边=12+22+…+(k-1)2+k2+(k-1)2+…+22+12,当n=k+1时,左边=12+22+…+(k-1)2+k2+(k+1)2+k2+(k-1)2+…+22+12,因此由n=k的假设到证明n=k+1时,等式左边应添加的式子是(k+1)2+k2.4.【解析】选D.≧f(x-1)==≨xf(x-1)=≨当x<1时,-x≤1,≨x≥-1,≨-1≤x<1.当x≥1时,x≤1,≨x=1,综上-1≤x≤1.5.【解析】选B.由给出的几个等式可以推测:在=10中,a=10,b=102-1=99,于是a+b=109.6.【解析】选B.假设a,b,c都小于2,即a<2,b<2,c<2,那么a+b+c<6,这与a+b+c=6相矛盾,因此a,b,c中至少有一个不小于2.7.【解析】选B.设t=x+y-2,则要使2x+y-2取得最大值,只要t取到最大值即可,如图,画出可行域,可知当x=1,y=2时t取到最大值1,因此2x+y-2的最大值等于2.8.【解析】选B.由x+y-x2y2=4可得x+y=x2y2+4,因此+===xy+≥2=4,当且仅当xy=2时取等号,故+的最小值等于4.【变式备选】当x>0时,函数f(x)=x++的最小值为.【解析】因为x>0,所以t=x+≥2,于是f(x)=x++=t+=g(t),由于g(t)=t+在[1,+≦)上单调递增,所以其最小值等于g(2)=2+=.答案:9.【思路点拨】采用分离参数法,将参数m分离到不等式的一边,用函数的单调性求出不等式另一边的最值,得到m的取值范围.【解析】选B.不等式f(x)≥g(x),即x2≥()x-m,因此m≥()x-x2.令h(x)=()x-x2,由于h(x)在[1,2]上单调递减,所以h(x)的最大值是h(1)=-,因此实数m的取值范围是[-,+≦).10.【解析】选A.平均销售量y===t++10≥18.当且仅当t=,即t=4∈[1,30]时等号成立,即平均销售量的最小值为18.11.【思路点拨】先由目标函数的最大值为,结合可行域,求出最优解,得到a,b 满足的关系式,然后利用基本不等式求最值.【解析】画出可行域,由z=ax+by得y=-x+,因此当直线y=-x+经过可行域中的点M(1,2)时,z取最大值,所以有a+2b=.又因为a>0,b>0,所以a+2b=≥2,解得ab≤,当且仅当a=2b=时取得.故ab的最大值为.答案:【变式备选】使可行域为的目标函数z=ax+by(ab≠0)在x=2,y=2取得最大值的充要条件是( )(A)|a|≤b (B)|a|≤|b|(C)|a|≥b (D)|a|≥|b|【解析】选A.画出可行域,如图,直线l:ax+by=0的斜率为-,要使目标函数在x=2,y=2取得最大值,必须且只需|-|≤1,且直线向上平移时,纵截距变大,所以必须且只需|-|≤1且b>0,因此|a|≤b.【方法技巧】解决线性规划问题的步骤(1)画出可行域.(2)确定目标函数的斜率.(3)画出过原点、斜率与目标函数斜率相同的直线.(4)平移直线,确定满足最优解的点.(5)求满足最优解的点的坐标.12.【解析】设A={x|4-x2>0}={x|-2<x<2},B={x|b-1<x<b+1},则依题意知,B是A 的真子集,因此或解得-1≤b≤1.答案:-1≤b≤113.【解析】由3x-3m≤-2m,≨x≤,≨4≤<5,≨12≤m<15.答案:[12,15)14.【解析】设第100项所属数字段前面数字段的数字为n,则由<100(n∈N+),解得n的最大值为13,则第100项是13+1=14.故第100项为14.答案:1415.【思路点拨】先利用线性规划的方法,借助斜率模型,求出的最大值,然后根据不等式恒成立,只需2a大于或等于这个最大值即可.【解析】画出可行域(如图).由于==-1,其中表示可行域中的点(x,y)与定点(-1,-1)连线的斜率k,由图形可知k∈[,5],所以-1∈[-,4],因此当≤2a恒成立时,应有2a≥4,解得a≥2.答案:[2,+≦)【方法技巧】恒成立问题的求解技巧解决恒成立问题的关键是分离参数求最值,即把要求范围的参数分离到不等式的一边,然后求出不等式另一边的最值(或取值范围),即可得到参数的取值范围.16.【证明】要证<a,只需证b2-ac<3a2,≧a+b+c=0,只需证b2+a(a+b)<3a2,只需证2a2-ab-b2>0,只需证(a-b)(2a+b)>0,只需证(a-b)(a-c)>0.因为a>b>c,所以a-b>0,a-c>0,所以(a-b)(a-c)>0显然成立.故原不等式成立.17.【解析】(1)当a=时,不等式即为x(x-1)>(x-1),即x2-3x+1>0,解得x>或x<,即不等式的解集为{x|x>或x<}.(2)不等式x(ax-1)>a(x-1)可化为:ax2-(a+1)x+a>0,显然当a=0时,不合题意;因此应有解得a>1.18.【解析】(1)先改写第k项:k(k+1)(k+2)=[k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)],于是有:1×2×3=(1×2×3×4-0×1×2×3),2×3×4=(2×3×4×5-1×2×3×4),…,n(n+1)(n+2)=[n(n+1)(n+2)(n+3) -(n-1)n(n+1)(n+2)],相加得1×2×3+2×3×4+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3).(2)下面用数学归纳法证明上述等式成立.①当n=1时,左边=1×2×3=6,右边=×1×2×3×4=6,左边=右边,所以等式成立;②假设当n=k(k≥1,k∈N+)时等式成立,即1×2×3+2×3×4+…+k(k+1)(k+2)=k(k+1)(k+2)(k+3),则当n=k+1时,1×2×3+2×3×4+…+k(k+1)(k+2)+(k+1)(k+2)(k+3)=k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)=(k+1)(k+2)(k+3)(k+4),因此等式成立,由①②知等式成立.19.【思路点拨】对k的取值进行讨论,分k≥0和k<0两种情况进行求解. 【解析】由于k的不同取值将影响不等式所表示的平面区域,故应对k的取值进行讨论.①若k≥0,在平面直角坐标系中画出不等式组所表示的平面区域(如图),由于z=x+3y,所以y=-x+z,因此当直线y=-x+z经过区域中的点A(0,-k)时,z取到最大值,等于-3k,令-3k=12,得k=-4,这与k≥0相矛盾,舍去.②若k<0,在平面直角坐标系中画出不等式组所表示的平面区域(如图),这时,当直线y=-x+z经过区域中的点A(-,-)时,z取到最大值,等于-,令-=12,得k=-9.综上,所求k的值为-9.20.【解析】(1)由已知xy=3000,y=,x∈(6,500),S=(x-4)a+(x-6)a=(2x-10)a,≧2a+6=y,≨a=-3=-3,≨S=(2x-10)(-3)=3030-(+6x),x∈(6,500).(2)S=3030-(+6x)≤3030-2=3030-2×300=2430,当且仅当=6x,x=50∈(6,500)时取等号,≨设计x=50m,y=60m时运动场地面积最大,最大值为2430平方米.21.【解析】(1)由a 1=2,得a2=-a1+1=3,由a 2=3,得a3=-2a2+1=4,由a 3=4,得a4=-3a3+1=5,由此猜想{a n}的一个通项公式:a n=n+1(n∈N+).(2)①用数学归纳法证明:(i)当n=1时,a1≥3=1+2,不等式成立.(ii)假设当n=k(k≥1,k∈N+)时不等式成立,即a k≥k+2,那么a k+1=a k(a k-k)+1≥(k+2)(k+2-k)+1=2k+5>k+3.也就是说,当n=k+1时,a k+1>(k+1)+2.由(i)和(ii)得对于所有n≥1,有a n≥n+2.②由a n+1=a n(a n-n)+1及①,对k≥2,有a k=a k-1(a k-1-k+1)+1≥a k-1(k-1+2-k+1)+1=2a k-1+1,迭代得a k≥2k-1a1+2k-2+…+2+1=2k-1(a1+1)-1,故结论成立.关闭Word文档返回原板块。
全程复习方略高中数学北师大必修四课时提升作业十四 含解析

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业 (十四)从位移、速度、力到向量一、选择题(每小题3分,共18分)1.(2014·汉中高一检测)下列命题中,正确的是( )A.两个相等的向量的起点、方向、长度必须都相同B.若a,b是两个单位向量,则a=bC.若向量a和b共线,则向量a,b的方向相同D.零向量的长度为0,方向是任意的【解析】选D.两个向量相等,只要长度相等,且方向相同即可,起点可以不同,故A不正确;两个单位向量的方向不一定相同,所以它们不一定相等,故B不正确;方向相同或相反的向量为共线向量,故C不正确;零向量的长度为0,其方向是任意的,故D正确.2.(2014·潍坊高一检测)设O是正△ABC的中心,则向量,,是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量【解析】选C.向量,,分别是以三角形的顶点和中心为起点和终点的向量,因为O是正三角形的中心,所以O到三个顶点的距离相等,即||=||=||,故选C.3.下列三个说法正确的个数是①零向量是长度为0的向量,所以零向量与非零向量不平行.②若非零向量与是共线向量,则A,B,C,D四点共线.③因为向量∥,所以AB∥CD. ( )A.0B.1C.2D.3【解析】选A.零向量与任意向量都平行,故①错误;方向相同或相反的向量为共线向量,若与无公共点,则A,B,C,D四点不一定共线,故②错误;当向量∥,AB与CD平行或共线,故③错误.本题应选A.4.四边形ABCD中,如果=,且||=||,则四边形ABCD为( )A.梯形B.菱形C.矩形D.正方形【解题指南】由=,可得四边形ABCD为平行四边形,再由||=||,可得此平行四边形是矩形,从而得出结论.【解析】选C.四边形ABCD中,如果=,则四边形ABCD为平行四边形.再由||=||,可得平行四边形的对角线相等,四边形ABCD 是矩形,故选C.5.如图,设ABCD是菱形,下列可以用同一条有向线段表示的两个向量是( )A.和B.和C.和D.和【解析】选B.由菱形的性质知:和大小相等,方向相同,故选B. 【误区警示】本题容易出现因概念不清而错选的情况.“用同一条有向线段表示”即“两个向量相等”.6.如图所示,四边形ABCD,CEFG,CGHD是全等的菱形,则下列结论中不成立的是( )A.||=||B.与共线C.与共线D.=【解析】选C.由题目条件可知AB=EF,AB∥CD∥FG,CD=FG,但是∠DEH≠∠BDC,故BD与EH不平行,所以A,B,D成立,C不成立.二、填空题(每小题4分,共12分)7.把所有单位向量的起点集中于一点O,则它们终点的轨迹是.【解析】如图所示,轨迹是以O为圆心,半径为1的圆.答案:以O为圆心,以1为半径的圆8.把平行于某一直线的一切向量平移到同一起点,则这些向量的终点构成的图形是.【解析】由于这些向量平行于同一条直线,故这些向量为共线向量,当把这些向量的起点移到同一起点时,终点在过定点与已知直线平行的直线上.答案:直线9.如图,O是正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形,在图中所示的向量中:(1)与相等的向量有.(2)与共线的向量有.(3)与的模相等的向量有.(4)向量与(填“相等”“不相等”)【解析】因为O是正方形ABCD对角线的交点且四边形OAED,OCFB 都是正方形.(1)结合相等向量的定义可知与相等的向量有.(2)结合共线向量的定义可知与共线的向量有,,.(3)与的模相等的向量有,,,,,,.(4)向量与方向不同,故不相等.答案:(1)(2),,(3),,,,,,(4)不相等【误区警示】解此类题目时一定要分清相等向量、共线向量等概念的区别.三、解答题(每小题10分,共20分)10.(2014·锦州高一检测)如图是4×5的矩形(每个小方格都是正方形),试作出与相等的向量,要求向量的起点和终点都在方格的顶点处.【解析】如图,,为所求.11.如图,四边形ABCD与ABDE都是平行四边形,则:(1)与向量共线的向量有哪些?(2)若||=1.5,求||.【解题指南】(1)根据共线向量的定义,方向相同或相反的向量为共线向量,故在同一直线上或平行直线上的向量都是共线向量.(2)利用向量共线的充要条件将用表示,求出模.【解析】(1),,,,,,.(2)由平行四边形的性质||=||=||,故||=2||=3.一、选择题(每小题4分,共16分)1.(2014·合肥高一检测)已知A={与a共线的向量},B={与a长度相等的向量},C={与a长度相等,方向相反的向量},其中a为非零向量,则下列命题中错误的是( )A.C⊆AB.A∩B={a}C.C⊆BD.A∩B⊇{a}【解析】选B.与a共线的向量是与其方向相同或相反的向量,所以C ⊆A,故A对;A∩B={a,-a},故B错;因为B中的向量与a的长度相同,方向任意,故C⊆B,故C对;A∩B={a,-a},所以{a}⊆A∩B,故D对.故选B. 2.在长方体ABCD-A′B′C′D′的棱所在向量中,与向量模相等的向量有( ) A.0个 B.6个 C.7个 D.9个【解题指南】利用长方体的性质和向量的模相等即可得出.【解析】选 C.如图,与向量模相等的向量有,,,,,,,共7个.故选C.【误区警示】本题容易漏掉而误选B,解题时应紧扣题意,全面考察.3.在四边形ABCD中,=,则相等的向量是( )A.与B.与C.与D.与【解析】选D.由题意可知四边形ABCD是平行四边形,由=知A 不正确,由=知B错误.显然选项C错误,由=,故D正确.4.下列说法中,正确的是( )A.单位向量都共线B.任意向量与0平行C.平行向量不一定是共线向量D.向量就是有向线段【解析】选B.A选项,单位向量间不一定共线;B正确;C选项,平行向量一定是共线向量;D选项混淆了向量与有向线段,故选B.二、填空题(每小题5分,共10分)5.(2014·烟台高一检测)如图所示,△ABC和△A′B′C′是在各边的处相交的两个正三角形,△ABC的边长为a,图中列出了长度均为的若干个向量,则(1)与向量相等的向量是.(2)与向量平行的向量是.【解题指南】(1)在图形中找出与向量相等的向量,即找出和已知向量大小相等,方向相同的向量.(2)与向量平行的向量,是指所有与已知向量方向相同或相反的向量,图中很多,要做到不重不漏.【解析】(1)与向量相等的向量是和.(2)与向量平行的向量是,,,,.答案:(1),(2),,,,6.在如图所示的向量a,b,c,d,e中(小正方形的边长为1)(1)是共线向量的有.(2)模相等的向量有.【解析】(1)因为向量a与d,b与e方向相反,故共线.(2)向量a,d,c的模相等.答案:(1)a与d,b与e(2)a,d,c三、解答题(每小题12分,共24分)7.(2014·太原高一检测)某人从A点出发向西走了10m,到达B点,然后改变方向按西偏北60°走了15m到达C点,最后又向东走了10m到达D点.(1)作出向量,,(用1cm长的线段代表10m长)(2)求||.【解析】(1)如图.(2)因为=,故四边形ABCD为平行四边形,所以||=||=15(m).【拓展延伸】向量相等在判断图形性质中的应用向量相等指两个向量的方向相同,模相等,若两个向量所在的边不共线,则两个边平行且相等,这个特性往往作为判断平行四边形的依据.向量相等还具有判定平行的功能,解题时要注意应用.8.如图,在以长、宽、高分别为AB=3,AD=2,AA1=1的长方体ABCD﹣A1B1C1D1的八个顶点的两点为起点和终点的向量中,(1)单位向量共有多少个?(2)试写出模为的所有向量.(3)试写出与相等的所有向量.【解题指南】(1)根据单位向量的定义及已知条件可得答案.(2)通过计算可得答案.(3)由相等向量的定义可得答案.【解析】(1)由于长方体的高为1,所以长方体4条高所对应的向量,,,,,,,共8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于这个长方体的左右两侧的对角线长均为,故模为的向量有,,,,,,,共8个.(3)与向量相等的所有向量(除它自身之外)共有,及,共3个.【变式训练】O是正六边形ABCDEF的中心,且=a,=b,=c,分别写出图中与a,b,c相等的向量.【解析】与a 相等的向量是:,,;与b相等的向量是:,,;与c相等的向量是:,,.关闭Word文档返回原板块。
2014版高中数学复习方略课时提升作业:单元评估检测(八)(北师大版)(北师大版·数学理·通用版)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元评估检测(八)第八章(120分钟 150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·宝鸡模拟)函数f(x)=+2x在x=1处切线的倾斜角为( )(A)(B)(C)(D)2.“a=3”是“直线ax+2y+2a=0和直线3x+(a-1)y-a+7=0平行”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分又不必要条件3.(2013·南昌模拟)已知圆O:x2+y2=4,直线l过点P(1,1),且与直线OP垂直,则直线l的方程为( )(A)x+3y-4=0 (B)y-1=0(C)x-y=0 (D)x+y-2=04.连接椭圆+=1(a>b>0)的一个焦点和一个顶点得到的直线方程为x-2y+2=0,则该椭圆的离心率为( )(A)(B)(C)(D)5.(2013·蚌埠模拟)已知m∈R,则“m>2”是“方程+y2=1表示椭圆”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件6.设M(x0,y0)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,则x0的取值范围是( )(A)(2,+∞) (B)(4,+∞)(C)(0,2) (D)(0,4)7.(2013·淮南模拟)过点P(4,2)作圆x2+y2=4的两条切线,切点分别为A,B,O为坐标原点,则△OAB的外接圆方程是( )(A)(x-2)2+(y-1)2=5(B)(x-4)2+(y-2)2=20(C)(x+2)2+(y+1)2=5(D)(x+4)2+(y+2)2=208.(2013·西安模拟)已知直线x+y=a与圆x2+y2=4交于A,B两点,且|+|=|-|,则实数a的值为( )(A)2 (B)-2(C)2或-2 (D)或-9.(2013·榆林模拟)若双曲线-=1(a>0,b>0)上不存在点P使得右焦点F关于直线OP(O为双曲线的中心)的对称点在y轴上,则该双曲线离心率的取值范围为( )(A)(,+∞) (B)[,+∞) (C)(1,] (D)(1,)10.(能力挑战题)已知圆(x-4)2+y2=a(a>0)上恰有四个点到直线x=-1的距离与到点(1,0)的距离相等,则实数a的取值范围为( )(A)12<a<16 (B)12<a<14 (C)10<a<16 (D)13<a<15二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.(2013·西安模拟)椭圆+=1的焦距为2,则m的值为.12.已知椭圆C的离心率e=,且它的焦点与双曲线x2-2y2=4的焦点重合,则椭圆C的方程为.13.(2013·合肥模拟)已知直线ax+y+2=0与双曲线x2-=1的一条渐近线平行,则这两条平行直线之间的距离是.14.(2013·九江模拟)已知圆C的圆心是抛物线y=x2的焦点,直线4x-3y-3=0与圆C相交于A,B两点,且|AB|=8,则圆C的方程为.15.(能力挑战题)曲线C:y=(a>0,b>0)与y轴的交点关于原点的对称点称为“望点”,以“望点”为圆心,凡是与曲线C有公共点的圆,皆称之为“望圆”,则当a=1,b=1时,所有的“望圆”中,面积最小的“望圆”的面积为.三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)已知直线l:x=4与x轴相交于点M,圆的方程(x-2)2+y2=22(x≠0且x≠4),过直线l上一点D(与M不重合)作圆的切线,切点为E,与x轴相交点为F,若=,求切线DE的方程.17.(12分)(2013·咸阳模拟)已知△ABC的两个顶点B,C的坐标分别为(-1,0)和(1,0),顶点A为动点,如果△ABC的周长为6.(1)求动点A的轨迹M的方程.(2)过点P(2,0)作直线l,与轨迹M交于点Q,若直线l与圆x2+y2=2相切,求线段PQ的长.18.(12分)(2013·淮北模拟)已知椭圆C:+=1(a>b>0)的两焦点与短轴的一个端点的连线构成等腰直角三角形,且直线x-y+b=0是抛物线y2=4x的一条切线.(1)求椭圆C的方程.(2)过点S(0,-)且斜率为1的直线l交椭圆C于M,N两点,求|MN|的值.19.(12分)(2012·湖南高考)在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2-4x+2=0的圆心.(1)求椭圆E的方程.(2)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2,当直线l1,l2都与圆C相切时,求P的坐标.20.(13分)已知抛物线x2=4y的焦点为F,过焦点F且不平行于x轴的动直线l交抛物线于A,B两点,抛物线在A,B两点处的切线交于点M.(1)求证:A,M,B三点的横坐标成等差数列.(2)设直线MF交该抛物线于C,D两点,求四边形ACBD面积的最小值.21.(14分)已知椭圆C的离心率e=,长轴的左、右端点分别为A1(-2,0),A2(2,0).(1)求椭圆C的方程.(2)设直线x=my+1与椭圆C交于R,Q两点,直线A1R与A2Q交于点S,试问:当m变化时,点S是否恒在一条直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.答案解析1.【解析】选A.因为f′(x)=-+2,所以在x=1处切线的斜率k=f′(1)=-1+2= 1=tanα.又倾斜角α∈[0,π),所以α=.2.【解析】选A.a=3代入得,直线ax+2y+2a=0和直线3x+(a-1)y-a+7=0平行,反之由直线ax+2y+2a=0和3x+(a-1)y-a+7=0平行得a(a-1)=2〓3,a=3或a=-2,可验证满足两直线平行,所以“a=3”是“直线ax+2y+2a=0和直线3x+(a-1)y-a+7=0平行”的充分不必要条件.3.【解析】选D.由已知直线l的斜率k l=-=-1,所以直线l的方程为y-1=-(x-1),即x+y-2=0.4.【解析】选 A.直线x-2y+2=0与坐标轴的交点为(-2,0),(0,1),依题意得c=2,b=1⇒a=,e=.5.【解析】选A.因为m>2,所以m-1>1,此时方程+y2=1表示焦点在x轴上的椭圆,而当该方程表示椭圆时有m-1>1或0<m-1<1,即m>2或1<m<2.故为充分不必要条件.6.【解析】选A.∵(x0,y0)为抛物线C:y2=8x上一点,∴x0≥0,又∵以F为圆心,|FM|为半径的圆和抛物线C的准线相交,∴在水平方向上,点M应在点F的右侧,∴x0>2.7.【解析】选A.由题意得△OAB的外接圆是以OP为直径的圆,其圆心C(2,1),半径r=|OP|==,所以△OAB外接圆方程为(x-2)2+(y-1)2=5.8.【解析】选C.由|+|=|-|知,以,为邻边的平行四边形为正方形,所以△AOB为等腰直角三角形,即||=||=2,∠AOB=90°,∴|AB|=2,则点O到直线x+y-a=0的距离为,所以有=,解得a=〒2.9.【思路点拨】按照正难则反思想求解.【解析】选C.这里给出否定形式,直接思考比较困难,按照正难则反,考虑存在点P使得右焦点F关于直线OP(O为双曲线的中心)的对称点在y轴上,因此只要在这个双曲线上存在点P使得斜率大于1,也就是离心率大于,求其大于1的补集得e∈(1,].【方法技巧】求椭圆、双曲线离心率的技巧求离心率的值是解析几何中常见的问题,求解时,可根据题意列出关于a,b,c的相应等式,并把等式中的a,b,c转化为只含有a,c的齐次式,再转化为含e的等式,最后求出e.【变式备选】已知F1(-c,0),F2(c,0)为椭圆+=1(a>b>0)的两个焦点,P为椭圆上一点且〃=c2,则此椭圆离心率的取值范围是.【解析】设P(x,y),则〃=(-c-x,-y)〃(c-x,-y)=x2-c2+y2=c2①将y2=b2-x2代入①式解得x2=,又x2∈[0,a2],∴2c2≤a2≤3c2,∴e=∈[,].答案:[,]10.【解析】选A.由已知,圆(x-4)2+y2=a(a>0)与抛物线y2=4x有四个不同的交点,则方程组消去y所得的一元二次方程x2-4x+16-a=0有两相异正实根即可,所以有解得:12<a<16.11.【解析】由已知当椭圆焦点在x轴上时,有4-m=1,得m=3.当椭圆焦点在y轴上时,有m-4=1,得m=5.综上可知,m=3或5.答案:3或512.【解析】由x2-2y2=4,得-=1,其中c2=4+2=6,在椭圆C中e==,∴=,∴a2=8, ∴b2=a2-c2=2,则椭圆的方程为+=1.答案:+=113.【解析】双曲线x2-=1的渐近线为x2-=0,不妨设双曲线x2-=1的一条渐近线为2x-y=0,ax+y+2=0与2x-y=0平行,∴a=-2,在直线2x-y=0上取一点A(1,2),A 到ax+y+2=0的距离就是这两条平行直线之间的距离,即=.答案:14.【解析】由y=x2,得x2=16y,其焦点为(0,4).即圆C的圆心C(0,4),其到直线4x-3y-3=0的距离d==3.又|AB|=8,设圆C的半径为r,所以r2=d2+42,得r2=32+42=25,∴圆C的方程为x2+(y-4)2=25.答案:x2+(y-4)2=2515.【解析】因为曲线C:y=(a>0,b>0)与y轴的交点关于原点的对称点称为“望点”,以“望点”为圆心,凡是与曲线C有公共点的圆,皆称之为“望圆”,所以当a=1,b=1时望圆的方程可设为x2+(y-1)2=r2,面积最小的“望圆”的半径为(0,1)到y=上任意点之间的最小距离,d2=x2+(-1)2=x2+()2= (|x|-1)2++2(|x|-1)-+2≥3,所以半径r≥,最小面积为3π.答案:3π16.【解析】DE,DM都是圆(x-2)2+y2=22的切线,所以DE=DM.因为=,所以DF=2DE=2DM,所以∠DFM=,设C(2,0),在△CEF中,∠CEF=,∠CFE=,CE=2,所以CF=4,F(-2,0),切线DE的倾斜角α=或,所以切线DE的斜率k=或-,切线DE的方程为y=〒(x+2).17.【解析】(1)据题意有|AB|+|AC|=4,而4>|BC|=2,所以动点A的轨迹是以B,C 为焦点的椭圆,但须除去B,C两点,所以,轨迹M的方程为+=1(y≠0).(2)由于直线l不可能是x轴,故设其方程为x=my+2,由直线l与圆x2+y2=2相切,得=,解得m=〒1.把方程x=my+2代入方程+=1中得(3m2+4)y2+12my=0,即得7y2〒12y=0,解得y=0或y=〒.所以点Q的坐标为(,)或(,-),所以|PQ|=,即线段PQ的长为.18.【解析】(1)由⇒x2+(2b-4)x+b2=0.因直线x-y+b=0与抛物线y2=4x相切,∴Δ=(2b-4)2-4b2=0⇒b=1.∵椭圆+=1(a>b>0)的两焦点与短轴的一个端点的连线构成等腰直角三角形,∴a=b=.故所求椭圆方程为+y2=1.(2)由已知得直线l的方程为y=x-,与+y2=1联立消y得3x2-2x-=0.设M(x1,y1),N(x2,y2),则x1+x2=,x1〃x2=-,∴(y1-y2)2=(x1-x2)2=(x1+x2)2-4x1x2=,∴|MN|==.19.【解析】(1)由x2+y2-4x+2=0,得(x-2)2+y2=2.故圆C的圆心为点(2,0);从而可设椭圆E的方程为+=1(a>b>0),其焦距为2c,由题设知c=2,e==,∴a=2c=4,b2=a2-c2=12.故椭圆E的方程为:+=1.(2)设点P的坐标为(x0,y0),l1,l2的斜率分别为k1,k2,则l1,l2的方程分别为l1:y-y0=k1(x-x0),l2:y-y0=k2(x-x0),且k1k2=.由l1与圆C:(x-2)2+y2=2相切得=.即[(2-x 0)2-2]+2(2-x0)y0k1+-2=0.同理可得[(2-x 0)2-2]+2(2-x0)y0k2+-2=0.从而k1,k2是方程[(2-x 0)2-2]k2+2(2-x0)y0k+-2=0的两个实根,于是①且k1k2==.由得5-8x 0-36=0.解得x0=-2或x0=.由x0=-2得y0=〒3;由x0=得y0=〒,它们均满足①式,故点P的坐标为(-2,3),或(-2,-3)或(,)或(,-).20.【解析】(1)由已知,得F(0,1),显然直线AB的斜率存在且不为0, 则可设直线AB的方程为y=kx+1(k≠0),A(x1,y1),B(x2,y2),由消去y,得x2-4kx-4=0,显然Δ=16k2+16>0.所以x1+x2=4k,x1x2=-4.由x2=4y,得y=x2,所以y′=x,所以,直线AM的斜率为k AM=x1,所以,直线AM的方程为y-y1=x1(x-x1),又=4y 1,所以,直线AM的方程为x1x=2(y+y1) ①.同理,直线BM的方程为x2x=2(y+y2) ②.②-①并据x1≠x2得,点M的横坐标x=,即A,M,B三点的横坐标成等差数列.(2)由①②易得y=-1,所以点M的坐标为(2k,-1)(k≠0).所以k MF==-,则直线MF的方程为y=-x+1,设C(x3,y3),D(x4,y4),由消去y,得x2+x-4=0,显然Δ=+16>0,所以x3+x4=-,x3x4=-4.又|AB|====4(k2+1).|CD|====4(+1).因为k MF〃k AB=-1,所以AB⊥CD,所以,S四边形ACBD=|AB|〃|CD|=8(+1)(k2+1)=8(k2++2)≥32,当且仅当k=〒1时,四边形ACBD的面积取到最小值32.【方法技巧】解决解析几何中最值问题的常用方法解析几何中的最值问题是高考考查的一个重要方向,既可以出现在选择题、填空题中,也可以出现在解答题中,根据待求量的特点,常用以下两种思想方法: (1)数形结合思想:当待求量有几何意义时,一般利用其几何性质,数形结合求解.(2)函数思想:当待求量与其他变量有关时,一般引入该变量构造函数,然后求最值,但要注意待求量的取值范围.【变式备选】设椭圆M:+=1(a>)的右焦点为F 1,直线l:x=与x轴交于点A,若+2=0(其中O为坐标原点).(1)求椭圆M的方程.(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E,F为直径的两个端点),求〃的最大值.【解析】(1)由题设知,A(,0),F 1(,0),由+2=0,得=2(-),解得a2=6.所以椭圆M的方程为:+=1.(2)方法一:设圆N:x2+(y-2)2=1的圆心为N,则〃=(-)〃(-)=(--)〃(-)=-=-1.从而求〃的最大值转化为求的最大值.因为P是椭圆M上的任意一点,设P(x0,y0),所以+=1,即=6-3.因为点N(0,2),所以=+(y 0-2)2=-2(y0+1)2+12.[-,],所以当y0=-1时,取得最大值12.因为y所以〃的最大值为11.方法二:设点E(x1,y1),F(x2,y2),P(x0,y0),因为E,F的中点坐标为(0,2),所以所以〃=(x1-x0)(x2-x0)+(y1-y0)(y2-y0)=(x1-x0)(-x1-x0)+(y1-y0)(4-y1-y0)=-+-+4y1-4y0=+-4y+-4y1).因为点E在圆N上,所以+(y 1-2)2=1,即+-4y1=-3.因为点P在椭圆M上,所以+=1,即=6-3.所以〃=-2-4y 0+9=-2(y0+1)2+11.因为y[-,],所以当y0=-1时,(〃)max=11.21.【解析】方法一:(1)设椭圆方程为+=1(a>b>0),半焦距为c,则由已知得a=2,=,所以a=2,c=,∴b2=a2-c2=4-3=1,∴椭圆方程为+y2=1.(2)①取m=0,若R(1,),Q(1,-),直线A1R的方程是y=x+,直线A 2Q的方程是y=x-,交点为S1(4,).若R(1,-),Q(1,),由对称性可知交点为S 2(4,-).若点S在同一条直线上,则直线只能为l:x=4.②以下证明对于任意的m,直线A1R与直线A2Q的交点S均在直线l:x=4上.事实上,由得(my+1)2+4y2=4,即(m2+4)y2+2my-3=0,记R(x1,y1),Q(x2,y2),则y1+y2=,y1y2=.设A 1R与l交于点S0(4,y0),由=,得y0=.设A 2Q与l交于点S′0(4,y′0),由=,得y′0=.∵y0-y′0=-====0,∴y0=y′0,即S0与S′0重合,这说明,当m变化时,点S恒在定直线l:x=4上.方法二:(1)同方法一.(2)取m=0,不妨设R(1,),Q(1,-),则直线A1R的方程是y=x+,直线A2Q的方程是y=x-,交点为S 1(4,).取m=1,不妨设R(,),Q(0,-1),直线A1R的方程是y=x+,直线A2Q的方程是y=x-1,交点为S2(4,1).∴若交点S在同一条直线上,则直线只能为l:x=4.以下证明对于任意的m,直线A1R与直线A2Q的交点S均在直线l:x=4上.事实上,由得(my+1)2+4y2=4,即(m2+4)y2+2my-3=0,记R(x 1,y1),Q(x2,y2),则y1+y2=,y1y2=.A1R的方程是y=(x+2),A2Q的方程是y=(x-2),消去y,得(x+2)=(x-2) ①,以下用分析法证明x=4时,①式恒成立.要证明x=4时,①式恒成立,只需证明=,即证3y1(my2-1)=y2(my1+3),即证2my1y2=3(y1+y2) ②,∵2my1y2-3(y1+y2)=-=0,∴②式恒成立.这说明,当m变化时,点S恒在定直线l:x=4上.方法三:(1)同方法一.(2)由,得(my+1)2+4y2=4,即(m2+4)y2+2my-3=0.记R(x1,y1),Q(x2,y2),则y1+y2=,y1y2=.A 1R的方程是y=(x+2),A2Q的方程是y=(x-2),由得(x+2)=(x-2),即x=2〃=2〃=2〃=2〃=4.这说明,当m变化时,点S恒在定直线l:x=4上.关闭Word文档返回原板块。
2014版高中数学复习方略课时提升作业:单元评估检测(五)(北师大版)(北师大版·数学理·通用版)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元评估检测(五)第五章(120分钟150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知数列{a n}为等差数列,若a2=3,a1+a6=12,则a7+a8+a9= ( )(A)27 (B)36 (C)45 (D)632.(2013·开封模拟)已知等差数列{a n}的前n项和为S n,且S3=6,则5a1+a7的值为( )(A)12 (B)10 (C)24 (D)63.(2013·南阳模拟)已知数列{a n}是等比数列,其前n项和为S n,若a4=2a3,S4=1,则S8= ( )(A)17 (B)16 (C)15 (D)2564.(2013·吉安模拟)等比数列{a n}的公比q>1,+=3,a1a4=,则a3+a4+a5+a6+a7+a8=( )(A)64 (B)31 (C)32 (D)635.已知数列{a n}满足a1=1,a n+1·a n=2n(n∈N+),则a10= ( )(A)64 (B)32 (C)16 (D)86.已知函数f(x)满足f(x+1)=+f(x),x∈R,且f(1)=,则数列{f(n)}(n∈N+)的前20项的和为( )(A)305 (B)315 (C)325 (D)3357.(2013·黄冈模拟)等差数列{a n}的前n项和为S n,若a3+a9+a15+a17=0,则S21的值是( )(A)1 (B)-1 (C)0 (D)不能确定8.在等差数列{a n}中,a1=-2012,其前n项和为S n.若-=2,则S2012的值等于( ) (A)-2011 (B)-2012(C)-2010 (D)-20139.(2013·宜春模拟)设数列{a n}的前n项和为S n,a1=1,a n=+2(n-1)(n∈N+),若S1+++…+-(n-1)2=2013,则n的值为( )(A)1007 (B)1006 (C)2012 (D)201310.(2013·南昌模拟)已知数列{a n}是各项均为正数且公比不等于1的等比数列.对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的如下函数:①f(x)=,②f(x)=x2,③f(x)=e x,④f(x)=,则为“保比差数列函数”的所有序号为( )(A)①②(B)③④(C)①②④(D)②③④二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知数列{a n}的前n项和为S n=(-1)n n,则a n= .12.设{lga n}成等差数列,公差d=lg3,且{lga n}的前三项和为6lg3,则{a n}的通项公式为.13.已知函数f(x)对应关系如表所示,数列{a n}满足a1=3,a n+1=f(a n),则a2013= .14.(2013·咸阳模拟)设数列{a n}为等差数列,其前n项和为S n,a1+a4+a7=99,a2+a5+a8=93,若对任意n∈N+,都有S n≤S k成立,则正整数k的值为.15.(能力挑战题)已知数列{a n}的前n项和为S n,f(x)=,a n=log2,则S2013= .三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)(2013·宝鸡模拟)已知函数f(x)=log2x-x+1(x∈[2,+∞)),数列{a n}满足a 1=2,=2(n∈N+).(1)求数列{a n}的通项公式a n.(2)求f(a1)+f(a2)+…+f(a n).17.(12分)(2013·万州模拟)已知数列{a n}是首项a1=4,公比q≠1的等比数列,S n 是其前n项和,且4a1,a5,-2a3成等差数列.(1)求公比q的值.(2)设A n=S1+S2+S3+…+S n,求A n.18.(12分)已知数列{a n}中,a1=3,a n+1=2a n-1(n∈N+).(1)求证:数列{a n-1}是等比数列.(2)设b n=,求证:数列{b n}的前n项和S n<.19.(12分)某牛奶厂2009年初有资金1000万元,由于引进了先进设备,资金年平均增长率可达到50%.每年年底扣除下一年的消费基金x万元后,剩余资金投入再生产.(1)分别写出这家牛奶厂2010年初和2011年初投入再生产的剩余资金的表达式.(2)预计2013年底,这家牛奶厂将转向经营,需资金2000万元(该年底不再扣除下年的消费基金),当消费基金x不超过多少万元时,才能实现转向经营的目标(精确到万元)?20.(13分)(2012·山东高考)在等差数列{a n}中,a3+a4+a5=84,a9=73.(1)求数列{a n}的通项公式.(2)对任意m∈N+,将数列{a n}中落入区间(9m,92m)内的项的个数记为b m,求数列{b m}的前m项和S m.21.(14分)(能力挑战题)已知数列{a n}中a1=2,a n+1=2-,数列{b n}中b n=,其中n ∈N+.(1)求证:数列{b n}是等差数列.(2)设S n是数列{b n}的前n项和,求++…+.(3)设T n是数列{()n·b n}的前n项和,求证:T n<.答案解析1.【解析】选 C.设公差为d,则a1+d=3,2a1+5d=12,解得a1=1,d=2,所以a7+a8+a9=3a1+21d=3+42=45.2.【解析】选A.设公差为d,则S3=3a1+3d=6,即a1+d=2,所以5a1+a7=6a1+6d=12.3.【解析】选A.∵a4=2a3,S4=1,则q≠1,∴∴q=2,a1=,∴S8==17.4.【解析】选D.由+=3,得=3,又a2a3=a1a4=,则解得则q=2.所以a3+a4+a5+a6+a7+a8==63.5.【思路点拨】寻找数列的偶数项组成的数列的特点.【解析】选B.由题a n+1·a n=2n,a n+2·a n+1=2n+1,故=2,又a1=1,可得a2=2,故a10=25=32,选B.6.【解析】选D.由已知f(x+1)-f(x)=,得数列{f(n)}是等差数列,公差为,其前20项和为20×+×=335,故选D.7.【解析】选C.a3+a9+a15+a17=4a11=0,∴a11=0,S21=21a11=0.8.【解析】选B.∵-=2,∴-=2,故a12-a10=4,∴2d=4,d=2.∴S2012=2012a1+=-2012.9.【解析】选A.∵a n=+2(n-1),∴S n=na n-2n(n-1) ①∴S n+1=(n+1)a n+1-2(n+1)·n ②由②-①得:a n+1=(n+1)a n+1-na n-2n(n+1)+2n(n-1),化简得:na n+1-na n-4n=0,∴a n+1-a n=4,故数列{a n}是以a1=1为首项,d=4为公差的等差数列, a n=4n-3.∵S1+++…+-(n-1)2=2013,又∵=2n-1,∴1+3+5+…+(2n-1)-(n-1)2=2013,即-(n-1)2=2013⇒n=1007.10.【解析】选C.设数列{a n}的公比为q.①中,lnf(a n+1)-lnf(a n)=ln=ln=-lnq.故①中的函数符合要求;②中,lnf(a n+1)-lnf(a n)=ln=2lnq,也符合要求;③中,lnf(a n+1)-lnf(a n)=a n+1-a n,不符合要求;④中,lnf(a n+1)-lnf(a n)=ln=lnq,符合要求.11.【解析】当n≥2时,a n=S n-S n-1=(-1)n n-(-1)n-1(n-1)=(-1)n(2n-1),当n=1时也适合这个公式.答案:(-1)n(2n-1)12.【解析】根据等差数列性质可得lga2=2lg3,故数列{lga n}的通项公式是lga n=lga2+(n-2)lg3=nlg3=lg3n,所以a n=3n.答案:a n=3n13.【思路点拨】解答此类题目应先找规律,即先求a2,a3,a4,从中找出周期变化的规律.【解析】由题意知a2=f(a1)=f(3)=1,a3=f(a2)=f(1)=3,a4=f(a3)=f(3)=1,∴数列{a n}是周期为2的数列,∴a2013=a1=3.答案:314.【解析】方法一:由对任意n∈N+,都有S n≤S k成立,S k是S n的最大值.由等差数列的性质,有a1+a7=2a4,a2+a8=2a5,代入已知条件,得a4=33,a5=31,则公差d=a5-a4=-2,a1=33-3d=39,∴S n=39n+×(-2)=-n2+40n=-(n-20)2+400,则当n=20时,S n有最大值,故k的值为20.方法二:由题设对任意n∈N+,都有S n≤S k成立,求k的值即求S n最大时的项数n. 由等差数列的性质,有a1+a7=2a4,a2+a8=2a5,代入已知条件,得a4=33,a5=31,则公差d=a5-a4=-2,a1=33-3d=39,∴a n=39-2(n-1)=41-2n.由即解得20.5≥n>19.5,当n=20时,S n取得最大值,故k=20.答案:2015.【思路点拨】根据对数性质得a n=log2f(n+1)-log2f(n),裂项相消求和.【解析】由已知,得f(n)=,log2f(n)=log2,∴a n=log2=log2f(n+1)-log2f(n),∴S n=a1+a2+a3+…+a n=[log2f(2)-log2f(1)]+[log2f(3)-log2f(2)]+…+[log2f(n+1)-log2f(n)]=log2f(n+1)-log2f(1),则S2013=log2-log2=log2+1.答案:log2+116.【解析】(1)∵a 1=2,=2,∴{a n}是公比为2,首项为2的等比数列, ∴a n=2×2n-1=2n.(2)由(1)知f(a n)=log22n-2n+1=(n+1)-2n,则f(a1)+f(a2)+…+f(a n)=[2+3+…+(n+1)]-(2+22+…+2n)=-=-2n+1+2=n2+n+2-2n+1.17.【解析】(1)∵4a1,a5,-2a3成等差数列,∴2a5=4a1-2a3,∴2a1q4=4a1-2a1q2,∴q2=1,又q≠1,∴q=-1.(2)∵S n==2(1-(-1)n),∴A n=2(1-(-1)1)+2(1-(-1)2)+2(1-(-1)3)+…+2(1-(-1)n)=2(n-)=2n+1-(-1)n.18.【解析】(1)由a n+1=2a n-1,得a n+1-1=2(a n-1).即=2,∴数列{a n-1}是公比为2的等比数列.(2)由(1)知{a n-1}是公比为2,首项为2的等比数列,故a n-1=2n,∴a n=2n+1,∴b n====-∴S n=(-)+(-)+…+(-)=-<.【方法技巧】构造法求递推数列的通项公式对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化,构造出等差数列或等比数列.一般根据递推式子的特点采取以下方法:(1)递推式为a n+1=qa n(q为常数):作商构造.(2)递推式为a n+1=a n+f(n):累加构造.(3)递推式为a n+1=pa n+q(p,q为常数):待定系数构造.(4)递推式为a n+1=pa n+q n(p,q为常数):辅助数列构造.(5)递推式为a n+2=pa n+1+qa n:待定系数构造.思路:设a n+2=pa n+1+qa n可以变形为:a n+2-αa n+1=β(a n+1-αa n),就是a n+2=(α+β)a n+1-αβa n,则可从解得α,β,于是{a n+1-αa n}是公比为β的等比数列,就转化为前面的类型.(6)递推式为a n+1=f(n)a n(n∈N+):累乘构造.(7)递推式为a n-a n-1+pa n a n-1=0(p为常数):倒数构造.【变式备选】已知数列{a n}满足:++…+=(32n-1),n∈N+.(1)求数列{a n}的通项公式.(2)设b n=log3,求++…+.【解析】(1)=(32-1)=3,当n≥2时,∵=(++…+)-(++…+)=(32n-1)-(32n-2-1)=32n-1,当n=1时,=32n-1也成立,∴数列{a n}的通项公式为a n=(n∈N+).(2)b n=log3=-(2n-1),==(-),∴++…+=[(1-)+(-)+…+(-)]=(1-)=.19.【解析】(1)2010年初的剩余资金为1000·-x;2011年初的剩余资金为(1000·-x)·-x.(2)设从2009年底这家牛奶厂的资金组成数列为{a n},则这个数列满足a1=1000·-x,a n+1=a n-x.设a n+1+λ=(a n+λ),展开与a n+1=a n-x比较可得λ=-2x,即a n+1=a n-x可以变换为a n+1-2x=(a n-2x),即数列{a n-2x}是首项为1000·-3x,公比为的等比数列,所以a n-2x=(1000·-3x)·()n-1,即a n=2x+(1000·-3x)·()n-1.从2009年初到2013年底共计5年,所以到2013年底该牛奶厂剩余资金a5=2x+(1000·-3x)·()4,只要a5+x≥2000,即2x+(1000·-3x)·()4+x≥2000即可,解得x≤≈458.97(万元).故当消费基金不超过458万元时,才能实现转向经营的目标.20.【思路点拨】(1)根据等差数列通项的性质求出a4,结合a9求出公差,进而得通项公式.(2)得出关于m,n的不等式,可得{b m}的通项公式,然后求和.【解析】(1)根据等差数列的性质得a4=28,设等差数列的公差为d,则a9-a4=5d=73-28=45,所以d=9,所以等差数列的通项公式为a n=a4+(n-4)d=28+(n-4)×9=9n-8,即a n=9n-8.(2)根据已知得9m<9n-8<92m,解得<n<,所以其中第一个n值为9m-1+1,最后一个n值为92m-1,所以b m=92m-1-9m-1,所以S m=(91-90)+(93-91)+…+(92m-1-9m-1)=(91+93+…+92m-1)-(90+91+…+9m-1)=-=-=.21.【解析】(1)b==,而b n=,∴b n+1-b n=-=1,n∈N+,∴{b n}是首项为b1==1,公差为1的等差数列.(2)由(1)可知b n=n,b n=n,∴S n=(1+2+…+n)=,于是==6(-),故有++…+=6(1-+-+…+-)=6(1-)=.(3)由(1)可知()n·b n=n·()n,则T n=1·+2·()2+…+n·()n,∴T n=1·()2+2·()3+…+(n-1)()n+n·()n+1.则T n=+()2+()3+…+()n-n()n+1=[1-()n]-n·()n+1,∴T n=-()n-1-·()n<.关闭Word文档返回原板块。
2014版高中数学复习方略课时提升作业:4.2平面向量的坐标运算(北师大版)(北师大版·数学理·通用版)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(二十六)一、选择题1.(2013·宝鸡模拟)已知a=(1,1),b=(1,-1),c=(-1,2),则c等于( )(A)-a+b(B)a-b(C)-a-b (D)-a+b2.(2013·蚌埠模拟)已知向量a=(1-sinθ,1),b=(,1+sinθ),若a∥b,则锐角θ等于( )(A)30°(B)45°(C)60°(D)75°3.(2013·抚州模拟)原点O是正六边形ABCDEF的中心,=(-1,-),=(1,-),则等于( )(A)(2,0) (B)(-2,0)(C)(0,-2) (D)(0,)4.若α,β是一组基底,向量γ=xα+yβ(x,y∈R),则称(x,y)为向量γ在基底α,β下的坐标,现已知向量a在基底p=(1,-1),q=(2,1)下的坐标为(-2,2),则a在另一组基底m=(-1,1),n=(1,2)下的坐标为( )(A)(2,0) (B)(0,-2)(C)(-2,0) (D)(0,2)5.如图所示,已知=2,=a,=b,=c,则下列等式中成立的是( )(A)c=b-a(B)c=2b-a(C)c=2a-b(D)c=a-b6.(2013·西安模拟)已知向量=(1,-3),=(2,-1),=(m+1,m-2),若点A,B,C能构成三角形,则实数m应满足的条件是( )(A)m≠-2 (B)m≠(C)m≠1 (D)m≠-17.已知非零向量e1,e2,a,b满足a=2e1-e2,b=k e1+e2.给出以下结论:①若e1与e2不共线,a与b共线,则k=-2;②若e1与e2不共线,a与b共线,则k=2;③存在实数k,使得a与b不共线,e1与e2共线;④不存在实数k,使得a与b不共线,e1与e2共线.其中正确结论的个数是( )(A)1个 (B)2个(C)3个 (D)4个8.(能力挑战题)平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足=α+β,其中α,β∈R且α+β=1,则点C的轨迹方程为( )(A)(x-1)2+(y-2)2=5(B)3x+2y-11=0(C)2x-y=0(D)x+2y-5=09.(2013·黄石模拟)如图,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,动点P在△BCD内运动(含边界),设=α+β,则α+β的最大值是( )(A) (B)(C)(D)10.已知a=(sinα-cosα,2014),b=(sinα+cosα,1),且a∥b,则tan2α-的值为( )(A)-2014 (B)-(C)2014 (D)二、填空题11.已知向量a=(-2,3),b∥a,向量b的起点为A(1,2),终点B在坐标轴上,则点B 的坐标为.12.如图,在□ABCD中,=a,=b,=3,M是BC的中点,则= (用a,b表示).13.在平面直角坐标系xOy中,已知向量a=(1,2),a-b=(3,1),c=(x,3),若(2a+b)∥c,则x= .14.(2013·合肥模拟)给出以下四个命题:①四边形ABCD是菱形的充要条件是=,且||=||;②点G是△ABC的重心,则++=0;③若=3e1,=-5e1,且||=||,则四边形ABCD是等腰梯形;④若||=8,||=5,则3≤||≤13.其中所有正确命题的序号为.三、解答题15.平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1),回答下列问题:(1)求3a+b-2c.(2)求满足a=m b+n c的实数m,n.(3)若(a+k c)∥(2b-a),求实数k.答案解析1.【解析】选B.设c=λa+μb,∴(-1,2)=λ(1,1)+μ(1,-1),∴∴∴c=a-b.2.【解析】选B.∵a∥b,∴(1-sinθ)(1+sinθ)-1〓=0,∴sinθ=〒,又θ为锐角,∴θ=45°.3.【解析】选A.∵在正六边形ABCDEF中,OABC为平行四边形,∴=+, ∴=-=(2,0).4.【解析】选D.由已知a=-2p+2q=(-2,2)+(4,2)=(2,4),设a=λm+μn=λ(-1,1)+μ(1,2)=(-λ+μ,λ+2μ),则由解得∴a =0m +2n ,∴a 在基底m ,n 下的坐标为(0,2). 5.【解析】选A.由=2得+=2(+),所以2=-+3,即c =b -a .6.【思路点拨】运用反证法,从三点可以共线考虑,然后取所得范围的补集. 【解析】选C.若点A,B,C 不能构成三角形,则只能共线. ∵=-=(2,-1)-(1,-3)=(1,2), =-=(m+1,m-2)-(1,-3)=(m,m+1).假设A,B,C 三点共线, 则1〓(m+1)-2m=0,即m=1.∴若A,B,C 三点能构成三角形,则m ≠1.7.【解析】选B.(1)若a 与b 共线,即a =λb ,即2e 1-e 2=λk e 1+λe 2,而e 1与e 2不共线, ∴解得k=-2.故①正确,②不正确.(2)若e 1与e 2共线,则e 2=λe 1,有11(2),(k ),=-λ⎧⎨=+λ⎩a e b e∵e 1,e 2,a ,b 为非零向量,∴λ≠2且λ≠-k, ∴a =b ,即a =b ,这时a 与b 共线,∴不存在实数k 满足题意.故③不正确,④正确. 综上,正确的结论为①④.8.【思路点拨】求轨迹方程的问题时可求哪个点的轨迹设哪个点的坐标,故设C(x,y),根据向量的运算法则及向量相等的关系,列出关于α,β,x,y 的关系式,消去α,β即可得解.【解析】选D.设C(x,y),则=(x,y),=(3,1),=(-1,3).由=α+β,得(x,y)=(3α,α)+(-β,3β)=(3α-β,α+3β).于是由③得β=1-α代入①②,消去β得再消去α得x+2y=5,即x+2y-5=0.【一题多解】由平面向量共线定理,得当=α+β,α+β=1时,A,B,C三点共线.因此,点C的轨迹为直线AB,由两点式求直线方程得=,即x+2y-5=0.9.【思路点拨】建立平面直角坐标系,设P(x,y),求出α+β与x,y的关系,运用线性规划求解.【解析】选 B.以A为原点,AB所在直线为x轴,建立平面直角坐标系,则D(0,1),B(3,0),C(1,1),设P(x,y).∴=(x,y),=(0,1),=(3,0).∵=α+β,即(x,y)=α(0,1)+β(3,0)=(3β,α),∴∴∴α+β=+y.由线性规划知识知在点C(1,1)处+y取得最大值.10.【思路点拨】根据向量的共线求出tanα,再利用三角变换公式求值.【解析】选C.由a∥b得=2014,即=2014,解得tanα=-.tan2α-=-=-=-=-.将tanα=-代入上式得,tan2α-=2014.【方法技巧】解决向量与三角函数综合题的技巧方法向量与三角函数的结合是近几年高考中出现较多的题目,解答此类题目的关键是根据条件将所给的向量问题转化为三角问题,然后借助三角恒等变换再根据三角求值、三角函数的性质、解三角形的问题来解决.11.【解析】由b∥a,可设b=λa=(-2λ,3λ).设B(x,y),则=(x-1,y-2)=b.由⇒又B点在坐标轴上,则1-2λ=0或3λ+2=0,所以B(0,)或(,0).答案:(0,)或(,0)12.【解析】由题意知=+=+=-=-(+)=--=-+=-a+b.答案:-a+b13.【解析】由a=(1,2),a-b=(3,1)得b=(-4,2),故2a+b=2(1,2)+(-4,2)=(-2,6).由(2a+b)∥c得6x=-6,解得x=-1.答案:-114.【解析】对于①,当=时,则四边形ABCD为平行四边形,又||=||,故该平行四边形为菱形,反之,当四边形ABCD为菱形时,则=,且||=||,故①正确;对于②,若G为△ABC的重心,则++=0,故不正确;对于③,由条件知=-,所以∥且||>||,又||=||,故四边形ABCD为等腰梯形,正确;对于④,当,共线同向时,||=3,当,共线反向时,||=8+5=13,当,不共线时3<||<13,故正确.综上正确命题为①③④.答案:①③④15.【解析】(1)3a+b-2c=3(3,2)+(-1,2)-2(4,1)=(9,6)+(-1,2)-(8,2)=(0,6).(2)∵a=m b+n c,∴(3,2)=m(-1,2)+n(4,1)=(-m+4n,2m+n).∴解得(3)∵(a+k c)∥(2b-a),又a+k c=(3+4k,2+k),2b-a=(-5,2).∴2〓(3+4k)-(-5)〓(2+k)=0,∴k=-.【变式备选】已知四点A(x,0),B(2x,1),C(2,x),D(6,2x).(1)求实数x,使两向量,共线.(2)当两向量与共线时,A,B,C,D四点是否在同一条直线上?【解析】(1)=(x,1),=(4,x).∵∥,∴x2-4=0,即x=〒2.∴当x=〒2时,∥.(2)当x=-2时,=(6,-3),=(-2,1),∴∥.此时A,B,C三点共线,从而,当x=-2时,A,B,C,D四点在同一条直线上.但x=2时,A,B,C,D四点不共线.关闭Word文档返回原板块。
2014版高中数学复习方略课时提升作业:阶段滚动检测(二)(北师大版)(北师大版·数学理·通用版)

2014版⾼中数学复习⽅略课时提升作业:阶段滚动检测(⼆)(北师⼤版)(北师⼤版·数学理·通⽤版)温馨提⽰:此套题为Word版,请按住Ctrl,滑动⿏标滚轴,调节合适的观看⽐例,答案解析附后。
关闭Word⽂档返回原板块。
阶段滚动检测(⼆)第⼀~四章(120分钟 150分)⼀、选择题(本⼤题共10⼩题,每⼩题5分,共50分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.(滚动单独考查)设全集U是实数集R,M={x|x2>4},N={13},则图中阴影部分表⽰的集合是( )(A){x|-2≤x<1}(B){x|-2≤x≤2}(C){x|1(D){x|x<2}2.(滚动交汇考查)以下说法错误的是( )(A)命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”(B)“x=1”是“x2-3x+2=0”的充分不必要条件(C)若p∧q为假命题,则p,q均为假命题(D)若命题p:存在x∈R,使得x2+x+1<0,则 p:任意x∈R,则x2+x+1≥03.(2013·黄⼭模拟)已知m∈R,复数z=(i为虚数单位)在复平⾯内对应的点在虚轴上,则m的值为( )(A)-2 (B)-(C)(D)24.(滚动单独考查)设函数f(x)=则满⾜f(x)≤2的x的取值范围是( )(A)[-1,2] (B)[0,2] (C)[1,+∞) (D)[0,+∞)5.(2013·赣州模拟)平⾯上三点A,B,C满⾜||=3,||=4,||=5,则·+·+·=( )(A)-25 (B)-16 (C)25 (D)166.函数y=sin(2x-)在区间[-,π]上的简图是( )7.(2013·九江模拟)△ABC中,A=,BC=3,则△ABC的周长为( )(A)4sin(B+)+3 (B)4sin(B+)+3(C)6sin(B+)+3 (D)6sin(B+)+38.已知向量m,n满⾜m=(2,0),n=(,).在△ABC中,=2m+2n,=2m-6n,D为BC的中点,则||等于( )(A)2 (B)4 (C)6 (D)89.(滚动单独考查)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为( )(A)1 (B)2 (C)-1 (D)-210.设f(x)=asin2x+bcos2x,其中a>0,b>0,若f(x)≤|f()|对⼀切x∈R恒成⽴,则①f()=0;②|f()|<|f()|;③f(x)既不是奇函数也不是偶函数;④f(x)的单调递增区间是[kπ+,kπ+](k∈Z);⑤存在经过点(a,b)的直线与函数f(x)的图像不相交.以上结论正确的是( )(A)①②④ (B)①③(C)①③④ (D)①②④⑤⼆、填空题(本⼤题共5⼩题,每⼩题5分,共25分.请把正确答案填在题中横线上)11.(2013·马鞍⼭模拟)已知向量a=(sinθ,-2),b=(1,cosθ),且a⊥b,则sin2θ+cos2θ的值为.12.(2013·南昌模拟)复数z=(2+i)i,则z的虚部为.13.设向量a=(cosα,sinα),b=(cosβ,sinβ),其中0<α<β<π,若|2a+b|=|a-2b|,则β-α= .14.(2013·⾩阳模拟)如图,△ABC中,AB=AC=2,BC=2,点D在BC边上,∠ADC=45°,则AD的长度等于.15.(滚动交汇考查)设f(x)是定义在R上的偶函数,对任意的x∈R,f(2-x)=f(x+2),且当x∈[-2,0]时,f(x)=()x-1.若关于x的⽅程f(x)-l og a(x+2)=0(a>1)在区间(-2,6]内恰有三个不同实根,则实数a的取值范围是.三、解答题(本⼤题共6⼩题,共75分.解答时应写出必要的⽂字说明、证明过程或演算步骤)16.(12分)(2013·宝鸡模拟)已知a=(1,2),b=(-3,2).(1)求a-3b以及|a-3b|的值.(2)当k为何值时,k a+b与a-3b平⾏?17.(12分)(2013·抚州模拟)已知函数f(x)=m·n,其中m=(sinωx+cosωx,cosωx),n=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不⼩于.(1)求ω的取值范围.(2)在△ABC中,a,b,c分别是⾓A,B,C的对边,a=,b+c=3,当ω最⼤时,f(A)=1,求△ABC的⾯积.18.(12分)已知a=(1,2),b=(2,1).(1)求向量a在向量b⽅向上的投影.(2)若(m a+n b)⊥(a-b)(m,n∈R),求m2+n2+2m的最⼩值.19.(12分)已知函数f(x)=sin2x-cos2x-(x∈R).(1)当x∈[-,]时,求函数f(x)的最⼩值和最⼤值.(2)设△ABC的内⾓A,B,C的对应边分别为a,b,c,且c=,f(C)=0,若向量m=(1,sinA)与向量n=(2,sinB)共线,求a,b的值.20.(13分)(2013·湛江模拟)已知圆C1的圆⼼在坐标原点O,且圆C1恰好与直线l1:x-y-2=0相切.(1)求圆的标准⽅程.(2)设点A(x0,y0)为圆上任意⼀点,AN⊥x轴于N,若动点Q满⾜=m+n(其中m+n=1,m,n≠0,m为常数),试求动点Q的轨迹⽅程.(3)在(2)的结论下,当m=时,得到曲线C,问是否存在与l1垂直的⼀条直线l与曲线C交于B,D两点,且∠BOD为钝⾓,请说明理由. 21.(14分)(滚动单独考查)(2013·烟台模拟)已知函数f(x)=xlnx,g(x)=-x2+ax-3.(1)求函数f(x)在[t,t+2](t>0)上的最⼩值.(2)对⼀切x∈(0,+∞),2f(x)≥g(x)恒成⽴,求实数a的取值范围.(3)求证:对⼀切x∈(0,+∞),都有x ln x>-.答案解析1.【解析】选C.依题意知M={x|x<-2或x>2},eM={x|-2≤x≤2},R(eM)∩N={x|1R2.【解析】选C.A正确;当x=1时,x2-3x+2=0,反之不成⽴,故B正确;C中,若p ∧q为假命题,则p,q⾄少有⼀个为假命题,故不正确;D正确.3.【解析】选A.z===.由题意得m+2=0,故m=-2.4.【解析】选D.若x≤1,则21-x≤2,解得0≤x≤1;若x>1,则1-log2x≤2,解得x>1,综上,x≥0.5.【解析】选A.〃+〃+〃=0+4〓5〓(-)+5〓3〓(-)=-16+(-9)=-25.6.【思路点拨】运⽤特殊值法代⼊特殊点的坐标验证即可.【解析】选A.特殊值验证即可,当x=0时,y=sin(-)<0,排除B,D;⼜当x=时,y=sin(2〓-)=0,排除C,A符合,故选A.7.【解析】选D.设△ABC中,⾓A,B,C的对边分别为a,b,c,由正弦定理得====,得b+c=2[sinB+sin(-B)]=6sin(B+).故三⾓形的周长为:3+b+c=6sin(B+)+3.8.【解析】选A.由题意知=(7,),=(-5,-3),所以+=(2,-2).由D为BC的中点得=(+)=(1,-),所以||=2.【变式备选】已知向量a=(2,-1),b=(x,-2),c=(3,y),若a∥b,(a+b)⊥(b-c),M(x,y),N(y,x),则向量的模为( )(A)4(B)8(C)2 (D)6【解析】选B.≧a∥b,?x=4,b=(4,-2),a+b=(6,-3),b-c=(1,-2-y).≧(a+b)⊥(b-c),(a+b)〃(b-c)=0,即6-3〓(-2-y)=0,y=-4,M(4,-4),N(-4,4).故向量=(-8,8),||=8.9.【解析】选B.设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a).y=ln(x+a),y'=,当x=x0时,y'==1,x0+a=1,y0=0,x0=-1,a=2.10.【思路点拨】先将f(x)=asin2x+bcos2x,a>0,b>0,变形为f(x)=sin(2x+φ),再由f(x)≤|f()|对⼀切x∈R恒成⽴得a,b之间的关系,然后顺次判断命题真假.【解析】选B.f(x)=asin2x+bcos2x=sin(2x+φ),由f(x)≤|f()|对⼀切x∈R恒成⽴知|f()|==|asin+bcos|=|+|,即=|a+|,两边平⽅整理得a= b.所以f(x)=bsin2x+bcos2x=2bsin(2x+).①f()=2bsin(+)=0,故①正确.②|f()|=|f()|=2bsin,故②错误.③f(-x)≠〒f(x),所以③正确.④因为b>0,所以由2kπ-≤2x+≤2kπ+(k∈Z),解得kπ-≤x≤kπ+(k∈Z).故④错误.⑤因为a=b>0,要经过点(a,b)的直线与函数f(x)图像不相交,则此直线与x轴平⾏,⼜f(x)的振幅为2b>b,所以直线必与f(x)的图像有交点.故⑤错误. 【变式备选】设函数f(x)=sin(2x+),则下列结论正确的是( )①f(x)的图像关于直线x=对称;②f(x)的图像关于点(,0)对称;③f(x)的图像向左平移个单位,得到⼀个偶函数的图像;④f(x)的最⼩正周期为π,且在[0,]上为增函数.(A)①③(B)②④(C)①③④(D)③【解析】选D.当x=时,f()=sin(2〓+)=0≠〒1,故x=不是函数图像的对称轴,①错误;当x=时,f()=sin(2〓+)≠0,故点(,0)不是对称中⼼,②错误;将函数的图像向左平移个单位后得到函数为g(x)=sin[2(x+)+]=sin(2x+) =cos2x,是偶函数,故③正确;当x∈[0,]时,2x+∈[,],函数f(x)不单调,故④错误.11.【解析】≧a⊥b,?sinθ-2cosθ=0.tanθ=2.sin2θ+cos2θ====1.答案:112.【解析】≧z=(2+i)i=-1+2i,z=-1-2i,z的虚部为-2.答案:-213.【解析】由|2a+b|=|a-2b|得(2a+b)2=(a-2b)2,可得a〃b=cosαcosβ+sinαsinβ=cos(β-α)=0,⼜0<α<β<π,所以0<β-α<π,所以β-α=.答案:14.【解析】在△ABC中,由余弦定理易得cosC===,C=30°,B=30°.在△ABD中,由正弦定理得:=,=,AD=.答案:15.【思路点拨】根据函数的性质,结合图像解题.【解析】由f(2-x)=f(x+2)可知函数周期为4,⽅程f(x)-l og a(x+2)=0(a>1)在区间(-2,6]内恰有三个不同实根等价于函数y=f(x)与函数y=l og a(x+2)(a>1)的图像在区间(-2,6]内恰有三个不同的交点,如图,需满⾜f(2)=f(-2)=3>l og a4且l og a8>f(6)=f(2)=f(-2)=3,解得答案:(,2)16.【解析】(1)a-3b=(1,2)-3(-3,2)=(10,-4),|a-3b|==2.(2)≧k a+b=(k-3,2k+2),当(k a+b)∥(a-3b)时,-4(k-3)=10(2k+2),得k=-.17.【解析】(1)f(x)=m〃n=cos2ωx-sin2ωx+2cosωx〃sinωx =cos2ωx+sin2ωx=2sin(2ωx+).≧ω>0,函数f(x)的周期T==,由题意可知,≥,即≥,解得0<ω≤1,即ω的取值范围是{ω|0<ω≤1}.(2)由(1)可知ω的最⼤值为1,f(x)=2sin(2x+).≧f(A)=1,?sin(2A+)=,⽽<2A+<π,2A+=π,A=.由余弦定理知cosA=,b2+c2-bc=3,⼜b+c=3.联⽴解得或S△ABC=bcsinA=.18.【解析】(1)设向量a与向量b的夹⾓为θ,由题意知向量a在向量b⽅向上的投影为|a|cosθ=|a|==.(2)≧(m a+n b)⊥(a-b),(m a+n b)〃(a-b)=0,即5m+4n-4m-5n=0,m=n.m2+n2+2m=2m2+2m=2(m+)2-≥-,当且仅当m=n=-时取等号,m2+n2+2m的最⼩值为-.19.【解析】(1)f(x)=sin(2x-)-1.≧-≤x≤,-≤2x-≤,-≤sin(2x-)≤1,-1-≤sin(2x-)-1≤0.则f(x)的最⼩值是-1-,最⼤值是0.(2)f(C)=sin(2C-)-1=0,则sin(2C-)=1.≧0-<2C-<,2C-=,C=.≧向量m=(1,sinA)与向量n=(2,sinB)共线,?=,由正弦定理得=①由余弦定理得c2=a2+b2-2abcos,即a2+b2-ab=3 ②由①②,解得a=1,b=2.【变式备选】设△ABC三个⾓A,B,C的对边分别为a,b,c,向量p=(a,2b),q=(sinA,1),且p∥q.(1)求⾓B的⼤⼩.(2)若△ABC是锐⾓三⾓形,m=(cosA,cosB),n=(1,sinA-cosAtanB),求m〃n的取值范围.【解析】(1)≧p=(a,2b), q =(sinA,1), p∥q,a-2bsinA =0,由正弦定理得sinA-2sinBsinA =0.≧0得B=或B=.(2)≧△ABC是锐⾓三⾓形,B=,m=(cosA,),n=(1,sinA-cosA),于是m〃n=cosA+(sinA-cosA)=cosA+sinA=sin(A+).由A+C=π-B=及0结合0即< m〃n= <1.20.【解析】(1)设圆的半径为r,圆⼼到直线l1的距离为d,则r=d==2.所以圆C1的⽅程为x2+y2=4.(2)设动点Q(x,y),AN⊥x轴于N,则N(x0,0),由题意,(x,y)=m(x0,y0)+n(x0,0),所以即将A(x,y)代⼊x2+y2=4,得+=1.即动点Q的轨迹⽅程为+=1.(3)m=时,曲线C的⽅程为+=1,假设存在满⾜条件的直线l,设直线l的⽅程为y=-x+b,设直线l与椭圆+=1的交点B(x1,y1),D(x2,y2),联⽴得:整理得7x2-8bx+4b2-12=0,因为Δ=48(7-b2)>0,解得b2<7,且x1+x2=,x1x2=.〃=x1x2+y1y2=x1x2+(b-x1)(b-x2)=2x1x2-b(x1+x2)+b2=-+b2=,因为∠BOD为钝⾓,所以<0,解得b2<满⾜b2<7,-所以存在直线l满⾜题意.【⽅法技巧】解决向量与解析⼏何综合问题的⽅法技巧(1)平⾯向量在解析⼏何中的应⽤,是以解析⼏何中的坐标为背景的⼀种向量描述.它主要强调两⽅⾯的作⽤,⼀是以向量的形式给出题⽬的条件,解题时要善于将向量问题转化为坐标间的关系;⼆是应⽤向量来解题,即运⽤数量积等知识解决垂直、长度等问题.(2)利⽤向量法解题时,⾸先要将线段看作向量,进⼀步求得向量的坐标后转化为向量的运算.21.【解析】(1)f'(x)=ln x+1,当x∈(0,)时,f'(x)<0,f(x)单调递减,当x∈(,+≦)时,f'(x)>0,f(x)单调递增.①0②0③≤t所以f(x)min=(2)2x ln x≥-x2+ax-3,则a≤2ln x+x+.设h(x)=2ln x+x+(x>0),则h'(x)=,x∈(0,1),h'(x)<0,h(x)单调递减, x∈(1,+≦),h'(x)>0,h(x)单调递增,所以h(x)min=h(1)=4,因为对⼀切x∈(0,+≦),2f(x)≥g(x)恒成⽴,所以a≤h(x)min=4.(3)由(1)可知f(x)=x ln x(x∈(0,+≦))的最⼩值是-,当且仅当x=时取到.设m(x)=-(x∈(0,+≦)),则m'(x)=,易得m(x)max=m(1)=-,当且仅当x=1时取到,从⽽对⼀切x∈(0,+≦),都有x ln x>-.关闭Word⽂档返回原板块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word 文档返回原板块。
课时提升作业(四十一)一、选择题1.在用数学归纳法证明凸n 边形内角和定理时,第一步应验证( ) (A)n =1 时成立 (B)n =2 时成立 (C)n =3 时成立 (D)n =4 时成立2.已知n 是正偶数,用数学归纳法证明时,若已假设n=k(k ≥2且为偶数)时命题为真,则还需证明( ) (A)n =k +1 时命题成立 (B)n =k +2 时命题成立 (C)n =2k +2 时命题成立 (D)n =2(k +2)时命题成立3.某个命题与正整数n 有关,若n =k(k ∈N +)时命题成立,那么可推得当n =k +1时该命题也成立,现已知n =5时,该命题不成立,那么可以推得( ) (A)n =6时该命题不成立 (B)n =6时该命题成立 (C)n =4时该命题不成立 (D)n =4时该命题成立4.用数学归纳法证明不等式n 1111127124264-⋯>++++(n ∈N +)成立,其初始值至少应取( )(A)7 (B)8 (C)9 (D)10 5.(2013·宝鸡模拟)用数学归纳法证明:112n 112123n n 1++⋯+=++++⋯++时,由k到k+1左边需增添的项是( ) (A)()2k k 1+ (B)()1k k 1+ (C)()()1k 1k 2++ (D)()()2k 1k 2++6.用数学归纳法证明n 112n 2nnnC C C n +++⋯+<(n ≥n 0,n 0∈N *),则n 的最小值等于( )(A)1 (B)2 (C)3 (D)47.(2013·南昌模拟)<n+1(n ∈N +),某同学的证明过程如下:(1)当n=1,不等式成立.(2)假设当n=k(k ≥1,k ∈N +)<k+1,则当n=k+1时,()k 11,=<=++所以当n=k+1时,不等式也成立. 对于上述证法( ) (A)过程全部正确 (B)n=1时验证不正确 (C)归纳假设不正确(D)从n=k 到n=k+1的推理不正确8.(能力挑战题)已知f(n)=(2n+7)·3n +9,存在自然数m ,使得对任意n ∈N +,f(n)都能被m 整除,则m 的最大值为( ) (A)18 (B)36 (C)48 (D)54 二、填空题9.(2013·洛阳模拟)用数学归纳法证明n 11112321+++⋯+-<n(n ∈N +,n >1)时,第一步应验证的不等式是___________.10.(2013·上海模拟)用数学归纳法证明(n+1)(n+2)…(n+n)=2n ·1·3·…·(2n-1),从k 到k+1,左边需要增乘的代数式为______. 11.若数列{a n }的通项公式a n =()21n 1+,记c n =2(1-a 1)(1-a 2)…(1-a n ),试通过计算c 1,c 2,c 3的值,推测c n =_______.12.已知f(n)=111123n+++⋯+(n ∈N +),用数学归纳法证明f(2n )>n 2时,f(2k+1)-f(2k )等于________. 三、解答题13.(2013·佛山模拟) 用数学归纳法证明:()()()()222n n 112n (n N ).13352n 12n 122n 1++++⋯+=∈⨯⨯-++ 14.(2013·合肥模拟)设f(x)=2xx 2+,x 1=1,x n =f(x n-1)(n ≥2,n ∈N +). (1)求x 2,x 3,x 4的值.(2)归纳{x n }的通项公式,并用数学归纳法证明.15.(能力挑战题)设f(n)=1+12+ (1).是否存在关于正整数n 的函数g(n),使等式f(1)+f(2)+…+f(n-1)=g(n)[f(n)-1]对于n ≥2的一切正整数都成立?证明你的结论.答案解析1.【解析】选C.凸多边形至少有三边,所以应验证n =3 时成立.2.【解析】选B.因n 是正偶数,故只需证命题对所有正偶数都成立,因k 的下一个偶数是k+2,故选B.3.【解析】选C.由n =k(k ∈N +)成立,可推得当n =k +1时该命题也成立.因而若n =4成立,必有n =5成立.现知n =5不成立,所以n =4一定不成立.4.【思路点拨】用等比数列的前n 项和求出不等式的左边,解不等式即可得到初始值.【解析】选B.nn 1111111272112426412--⋯>-++++=,整理得2n >128,解得n>7,所以初始值至少应取8.5.【解析】选D.左边需添加的式子为()()()()()112.k 1k 2123k 1k 1k 22==+++++⋯++++6.【解析】选C.当n=1时,左边=11C =1,右边=11=1,不等式不成立;当n=2时,左边=1222C C + =3,右边=322=n=3时,左边=7,右边=9,不等式成立,当n=4时,左边=15,右边=524>16,不等式成立,所以n 的最小值等于3.7.【解析】选D.从n=k 到n=k+1的推理时没有运用归纳假设,因此证明不正确. 8.【思路点拨】先求出当n=1,2,3时f(n)的值,由此猜想m 的最大值,再用数学归纳法证明结论成立.【解析】选B.由于f(1)=36,f(2)=108,f(3)=360都能被36整除,猜想f(n)能被36整除,即m 的最大值为36.当n=1时,可知猜想成立.假设当n=k(k ≥1,k∈N +)时,猜想成立,即f(k)=(2k+7)〃3k +9能被36整除;当n=k+1时,f(k+1)=(2k+9)〃3k+1+9=(2k+7)〃3k +9+36(k+5)〃3k-2,因此f(k+1)也能被36整除,故所求m 的最大值为36.9.【解析】由条件知n 的第一个值为2,所以第一步应验证的不等式是11123++<2.答案:11123++<210.【解析】当n=k 时,左边为(k+1)(k+2)…(k+k),而当n=k+1时,左边为(k+2)(k+3)…(k+k)(k+1+k)(k+1+k+1)=(k+2)(k+3)…(k+k)(2k+1)(2k+2),≨左边增乘的式子为()()2k 12k 2k 1+++=2(2k+1). 答案:2(2k+1)11.【解析】c 1=2(1-a 1)=2×(1-14)=32,c 2=2(1-a 1)(1-a 2)=2×(1-14)×(1-19)=43,c 3=2(1-a 1)(1-a 2)(1-a 3)=2×(1-14)×(1-19)×(1-116)=54,故由归纳推理得c n =n 2n 1++.答案:n 2n 1++12.【解析】f(2k+1)-f(2k )=k 1k 1111111(1)232232++++⋯+-+++⋯+=k kk 1111.21222+++⋯+++ 答案:k kk 111121222+++⋯+++ 13.【证明】①当n =1时,左边=211133=⨯,右边=()1111,2(211)3⨯+=⨯⨯+左边=右边,等式成立;②假设n =k(k ≥1,k ∈N +)时,等式成立,即()()()()222k k 112k ,13352k 12k 122k 1+++⋯+=⨯⨯-++ 当n =k +1时,左边()()()()()()()()()()()()()()()()()()()()()()2222222k 112k 13352k 12k 12k 12k 3k k 1k 122k 12k 12k 3k k 12k 32k 122k 12k 3k 12k 5k 222k 12k 3k 1k 2,22k 3+++⋯++⨯⨯-+++++++++++++++++++++++=====所以当n =k +1时,等式成立. 由①②可得对任意n ∈N +,等式成立.14.【解析】(1)x 2=f(x 1)=23,x 3=2212322423⨯==+,x 4=f(x 3)=12221522⨯=+.(2)归纳x n =2n 1+.证明:①当n=1时,x 1=211+与已知相符,②假设当n=k(k ≥1,k ∈N +)时,x k =2k 1+,当n=k+1时,x k+1=()2242k 122k 4k 112k 1+==+++++. 由①②可知当n ∈N +时成立, ≨x n =2n 1+.15.【解析】当n=2时,得g(2)=2,当n=3时,得g(3)=3,猜想g(n)=n(n ≥2,n ∈N +).用数学归纳法证明猜想成立.(1)当n=2时,左边=f(1)=1,右边=2[f(2)-1]=1,左边=右边,所以等式成立. (2)假设当n=k(k ≥2,k ∈N +)时等式成立, 即f(1)+f(2)+…+f(k-1)=g(k)[f(k)-1], 那么当n=k+1时, f(1)+f(2)+…+f(k-1)+f(k) =k[f(k)-1]+f(k)=(k+1)f(k)-k =(k+1)[f(k+1)-1k 1+]-k =(k+1)[f(k+1)-1],也就是说当n=k+1时等式也成立.由(1)(2)可知,等式对n ≥2的一切正整数都成立.故存在关于正整数n 的函数g(n)=n ,使等式对n ≥2的一切正整数都成立. 【变式备选】已知函数f(x)=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1).试比较123n11111a 1a 1a 1a ⋯++++++++与1的大小,并说明理由. 【解析】123n11111a 1a 1a 1a ⋯++++++++<1. 理由如下:≧f ′(x)=x 2-1,a n +1≥f ′(a n +1), ≨a n +1≥(a n +1)2-1.令g(x)=(x+1)2-1,则函数g(x)=x 2+2x 在区间[1,+≦)上是增加的,于是由a 1≥1,得a 2≥(a 1+1)2-1≥22-1,进而得a 3≥(a 2+1)2-1≥24-1>23-1,由此猜想:a n ≥2n -1.下面用数学归纳法证明这个猜想: ①当n =1时,a 1≥21-1=1,结论成立;②假设n =k(k ≥1且k ∈N +)时结论成立,即a k ≥2k -1,则当n =k +1时,由g(x)=(x +1)2-1在区间[1,+≦)上是增加的知,a k +1≥(a k +1)2-1≥22k -1≥2k +1-1,即n =k +1时,结论也成立. 由①②知,对任意n ∈N +,都有a n ≥2n -1, 即1+a n ≥2n ,≨n n 111a 2≤+, ≨123n11111a 1a 1a 1a ⋯++++++++≤23n 11112222⋯++++=n 11[1()]22112--=1-(12)n <1. 【方法技巧】“归纳—猜想—证明”类问题的一般解题思路通过观察有限个特例,猜想出一般性的结论,然后用数学归纳法证明.这种方法在解决探索性问题、存在性问题或与正整数有关的命题中有着广泛的应用,其关键是归纳、猜想出公式.核心是数学归纳法证明,体现了探索数学未知问题的一般方法,是必须要具备的一种思维方式.关闭Word 文档返回原板块。