电力电子实验
电力电子技术实验报告全

电力电子技术实验报告全一、实验目的本次电力电子技术实验旨在加深学生对电力电子器件工作原理的理解,掌握其基本应用和设计方法,提高学生的动手能力和解决实际问题的能力。
二、实验原理电力电子技术是利用电子器件对电能进行高效转换和控制的技术。
通过电力电子器件,可以实现电能的变换、分配和控制,广泛应用于工业、交通、能源等领域。
常见的电力电子器件包括二极管、晶闸管、IGBT等。
三、实验设备和材料1. 电力电子实验台2. 晶闸管、IGBT等电力电子器件3. 电阻、电容、电感等基本电子元件4. 示波器、万用表等测量仪器5. 连接线、焊锡等辅助材料四、实验内容1. 晶闸管触发电路的搭建与测试2. 单相桥式整流电路的设计和测试3. 三相桥式整流电路的设计与测试4. PWM控制技术在电能转换中的应用5. IGBT驱动电路的设计与测试五、实验步骤1. 根据实验要求,设计电路图,并选择合适的电力电子器件和电子元件。
2. 在实验台上搭建电路,注意器件的连接方式和电路的布局。
3. 使用示波器和万用表等测量仪器,对电路进行测试,记录实验数据。
4. 分析实验数据,验证电路设计的正确性和性能指标。
5. 根据实验结果,调整电路参数,优化电路性能。
六、实验结果与分析通过本次实验,我们成功搭建了晶闸管触发电路、单相桥式整流电路、三相桥式整流电路,并对PWM控制技术在电能转换中的应用进行了测试。
实验结果表明,所设计的电路能够满足预期的性能要求,验证了电力电子器件在电能转换和控制方面的重要作用。
七、实验总结通过本次电力电子技术实验,我们不仅加深了对电力电子器件工作原理的理解,而且提高了实践操作能力和问题解决能力。
实验过程中,我们学会了如何设计电路、选择合适的器件和元件,以及如何使用测量仪器进行测试和数据分析。
这些技能对于我们未来的学习和工作都具有重要意义。
八、实验心得在本次实验中,我们体会到了理论与实践相结合的重要性。
通过亲自动手搭建电路,我们更加深刻地理解了电力电子技术的原理和应用。
电力电子实验内容

实验一 单相桥式全控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、阻—感性负载及反电势负载时的工作。
3.熟悉NMCL —05锯齿波触发电路的工作。
二.实验线路及原理1、参见图4-7。
2、晶闸管导通条件:承受正向电压、控制极有触发脉冲;3、电阻负载时,输出电压平均值为:21cos 0.9()2d U U θ+=,且0θπ≤≤; 阻感负载时,输出电压平均值为:20.9cos d U U θ=,且02πθ≤≤;4、阻感负载情况下,阻抗角==控制角的时候,负载电流临界连续;因此,调整负载R 的大小、控制角的大小,均可以改变负载电流的连续情况。
三.实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
3.单相桥式全控整流电路供电给反电势负载。
四.实验设备及仪器1.NMCL 系列教学实验台主控制屏。
2.NMCL —18组件(适合NMCL —Ⅱ)或NMCL —31组件(适合NMCL —Ⅲ)。
3.NMCL —33组件或NMCL —53组件(适合NMCL —Ⅱ、Ⅲ、Ⅴ) 4.NMCL —05组件或NMCL —05A 组件5.NMEL —03三相可调电阻器或自配滑线变阻器。
6.NMCL-35三相变压器。
7.双踪示波器 (自备) 8.万用表 (自备)五.注意事项1.实验开始前,先将NMCL-33组件上脉冲开关关闭(按下去),以免引起误触发;2.调节电阻RP到最大值,以免电流过大烧坏晶闸管;3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。
4.NMCL-05面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。
同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。
5.逆变变压器采用NMCL-35三相变压器,原边线电压为220V,低压绕组为110V。
电力电子实验报告

电力电子实验报告电力电子实验报告引言:电力电子是现代电气工程领域中重要的研究方向之一,它涉及到电力的转换、控制和调节等方面。
本次实验旨在通过实际操作,加深对电力电子原理的理解,并掌握电力电子器件的使用和调试技巧。
一、实验目的本次实验的主要目的是通过搭建电力电子系统,实现对交流电的变换、控制和调节,掌握电力电子器件的使用和调试技巧,加深对电力电子原理的理解。
二、实验装置与方法实验装置包括交流电源、电力电子器件(如整流器、逆变器等)、控制电路以及负载等。
实验方法主要是通过搭建电路,调试参数和观察输出结果,来验证电力电子原理。
三、实验内容1. 整流器实验通过搭建单相半波整流电路,将交流电转换为直流电。
调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。
2. 逆变器实验通过搭建单相半桥逆变电路,将直流电转换为交流电。
调节输入电压和负载电阻,观察输出的交流电压波形和电压波动情况,并记录实验数据。
3. DC-DC变换器实验通过搭建DC-DC变换电路,将直流电转换为不同电压的直流电。
调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。
4. AC-DC变换器实验通过搭建AC-DC变换电路,将交流电转换为直流电。
调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。
四、实验结果与分析在整流器实验中,通过调节输入电压和负载电阻,可以得到稳定的直流输出电压。
而在逆变器实验中,通过调节输入电压和负载电阻,可以得到稳定的交流输出电压。
在DC-DC变换器和AC-DC变换器实验中,通过调节输入电压和负载电阻,可以得到不同电压的直流输出。
实验结果表明,电力电子器件能够有效地实现对电能的变换、控制和调节。
通过调整电路参数,可以实现不同电压、频率和波形的输出。
这为电力系统的稳定运行和能源的高效利用提供了技术支持。
五、实验总结通过本次实验,我深入了解了电力电子的基本原理和应用。
电力电子实验心得

电力电子实验心得在进行电力电子实验的过程中,我收获了很多知识和经验。
通过实验的实际操作和观察,我更深入地理解了电力电子的原理和应用。
本文将结合我在实验中的所见所闻和所思所感,进行总结和分享。
一、背景介绍电力电子是电气工程的一个重要分支,研究交流电和直流电之间的转换和控制。
在现代化社会中,电力电子技术广泛应用于能源转换、工业自动化、电机驱动等领域。
通过电力电子实验,我们可以深入了解电力电子器件的工作原理、特性以及相关控制策略。
二、实验设备和实验内容针对电力电子实验,我们使用了多种实验设备和仪器,其中包括功率变换器、模拟与数字控制系统以及各种传感器等。
实验内容主要涉及以下几个方面:1. 电压源的调节和变换实验通过调节电压源的输出电压,观察电压源的特性曲线,学习电压调节和变换的原理和方法。
2. 直流稳压电源的设计与实现了解直流稳压电源的工作原理和设计要点,通过搭建电路和调整元件参数,实现一个稳定的直流输出。
3. 单相半波可控整流实验学习半波可控整流的原理和控制方法,通过实验验证理论分析,观察电流和电压的波形。
4. 单相全波可控整流实验同样学习全波可控整流的原理和控制方法,通过实验观察输出电压的稳定性和纹波。
5. 三相半波可控整流实验通过实验掌握三相半波可控整流的原理和控制方法,观察不同控制角时输出电压的变化。
6. 单相半桥变流器实验学习单相半桥变流器的工作原理,观察不同负载时输出电压和电流的变化。
7. 单相全桥逆变器实验通过实验学习单相全桥逆变器的原理和应用,观察输入电压和输出电压之间的关系。
三、实验心得1. 实验准备充分在进行电力电子实验前,我会先阅读实验手册并做好实验预习,了解实验的目的、原理和操作步骤。
同时,我会检查实验设备和仪器的工作状态,确保实验前的准备工作充分。
2. 注意实验安全电力电子实验中会涉及到高压和高电流等危险因素,因此,我会穿戴好防护设备,并严格按照实验规定的操作流程进行实验。
同时,我会注意观察实验过程中的异常情况,如发现电路短路或温度过高等问题,会及时停止实验并报告实验室负责人。
电力电子实验报告

实验一:单相半波可控整流电路的仿真一、实验名称:单相半波可控整流电路的仿真二、实验原理:在大功率的电力电子电路中广泛采用可控整流电路对输出电压进行控制和调整,以满足各种功率较大的用电器对电源的要求。
可控整流电路最常用的控制器件是晶闸管,因为晶闸管性能可靠、价格低廉、控制电路简单。
整流电路按负载的不同可以分为带电阻负载和带阻感负载两种情况。
在生产实践中,更常见的是后者,即既有电感又有电阻,若负载中感抗ωL>>电阻R时,负载主要呈现为电感,成为电感负载。
三、仿真电路图各项参数为:图中V3 为220V, 50Hz 的正弦交流电源,X1 为晶闸管,V2 为晶闸管的触发脉冲信号源。
触发脉冲的幅度为-10V(对门、阴极间而言是+10V),脉冲宽度为0.lms,上升、下降时间均为1us,周期等于输入电源V3 的周期(20ms)。
电组R=2Ω,电感L取6.5mH。
四、波形图分析:电压波形图:现象:电压有跳变!上面是电阻电压,下面是电感电压。
相加大概为110V 左右,实验时占空比是50%,正好是110V。
电压突变是晶闸管由断态转向触发时所致。
电感两端的电压电流波形图:现象:上面是电感电流,下面是电感电压。
电压跳变是电流过0点时,晶闸管由断态触发开通时,由于电感L作用使电流不能突变。
电感很大的时候会没有跳变或跳变很小。
电阻电压电流波形图:结论:有跳变,电流从正向负跳变时候跳变要剧烈一点。
五、心得体会:通过本次实验基本上学会了此软件的基本用法。
同时仿真了单相半波可控整流电路,验证了晶闸管的作用及观察到其对电路的影响。
实验二:三相半波可控整流电路的仿真刘峻玮222007322042015 工程技术学院自动化1班一、实验名称:三相半波可控整流电路的仿真二、实验原理:当整流负载容量很大时,或要求直流电压脉动较小时,应采用三相整流电流,其交流侧由三相电源供电。
三相可控整流电路中,最基本的是三相电路可控整流电路,应用最为广泛的是三相桥式全控整流电路以及双反星形可控整流电路等等,均可在三相半波的基础上分析。
电力电子技术实验报告

电力电子技术实验报告电力电子技术实验报告引言电力电子技术是现代电力系统中不可或缺的一部分。
通过电力电子技术,我们可以实现电能的高效转换、传输和控制,提高能源利用效率,减少能源浪费。
本实验报告旨在介绍电力电子技术的基本原理和实验结果,以及对现代电力系统的应用。
一、整流电路实验整流电路是电力电子技术中最基本的电路之一。
通过整流电路,我们可以将交流电转换为直流电,以满足不同电器设备的电源要求。
在实验中,我们使用了半波和全波整流电路进行测试。
半波整流电路通过单个二极管将交流电信号的负半周去除,只保留正半周。
实验中,我们使用了一个变压器将220V的交流电降压为12V,然后通过一个二极管进行半波整流。
实验结果显示,输出电压为正半周的峰值。
全波整流电路通过两个二极管将交流电信号的负半周转换为正半周,实现了更高的电压转换效率。
实验中,我们使用了一个中心引线变压器将220V的交流电降压为12V,然后通过两个二极管进行全波整流。
实验结果显示,输出电压为正半周的峰值,且相较于半波整流电路,输出电压更加稳定。
二、逆变电路实验逆变电路是电力电子技术中另一个重要的电路。
通过逆变电路,我们可以将直流电转换为交流电,以满足不同电器设备的电源要求。
在实验中,我们使用了单相逆变电路和三相逆变电路进行测试。
单相逆变电路通过一个开关管和一个滤波电感将直流电转换为交流电。
实验中,我们使用了一个12V的直流电源,通过一个开关管和一个滤波电感进行逆变。
实验结果显示,输出电压为交流电信号,频率与输入直流电源的频率相同。
三相逆变电路是现代电力系统中常用的逆变电路。
它通过三个开关管和三个滤波电感将直流电转换为三相交流电。
实验中,我们使用了一个12V的直流电源,通过三个开关管和三个滤波电感进行逆变。
实验结果显示,输出电压为三相交流电信号,频率与输入直流电源的频率相同。
三、PWM调制实验PWM调制是电力电子技术中常用的一种调制方式。
通过改变脉冲宽度的方式,可以实现对输出电压的精确控制。
电力电子实验报告
有续流二极管时,当电源电压过零变负时, 二极管因正向电压而导通,负载上电感维持的电 流经二极管继续续流,二极管导通后,晶闸管被 加上反向电压而截至,此时负载上就不会出现负 电压而是为零(忽略二极管压降)。
• 5.分析续流二极管的作用。 • 答: 线圈断电时,线圈里有磁场将产生反向电动势,很容易击穿其他电路元件。这时由于续
•
• 四.实验设备及仪器 • • 1.教学实验台主控制屏 • 2.NMCL—33组件 • 3.NMCL—05E组件 • 4.NMCL—03组件 • 5.双踪示波器(自备) • 6.万用表(自备)
• 五.注意事项 •
• 1.双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的 地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一 电路的不同两点上,否则将使这两点通过示波器发生电气短路。为此, 在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根 地线。当需要同时观察两个信号时,必须在电路上找到这两个被测信号 的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器 上同时观察到两个信号,而不致发生意外。
• 1.单结晶体管触发电路调试及各点波形的观察 • 将NMCL—05E面板左上角的同步电压输入接SMCL-02的U、V输出端,
“触发电路选择”拨至“单结晶”。按照实验接线图正确接线,但由单结晶 体管触发电路连至晶闸管VT1的脉冲UGK不接(将NMCL—05E面板中G、 K接线端悬空),而将触发电路“2”端与脉冲输出“K”端相连,以便观察 脉冲的移相范围。
梯形波通过电阻及等效可变电阻三极管向5点处的电
容充电,当充电电压达到单结晶体管的峰值电压Up时,单 结晶体管导通,电容通过脉冲变压器原边放电,脉冲变压 器副边输出脉冲。同时由于放电时间常数很小,电容两端 的电压很快下降到单结晶体管的谷点电压Uv,使单结晶体 管关断,电容再次充电,周而复始,在电容两端呈现锯齿 波形,在脉冲变压器副边输出尖脉冲。在一个梯形波周期 内,单结晶体管可能导通、关断多次,但只有输出的第一 个触发脉冲对晶闸管的触发时刻起作用。充电时间常数由 电容和等效电阻等决定,调节RP改变电容的充电的时间, 控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。
电力电子实验报告
第三章实验十二单相交流调压电路实验
一、原理概述
通过改变反并联晶闸管或双向晶闸管的控制角α,从而改变交流输出电压的大小。因为触发脉冲为窄脉冲时,会造成晶闸管工作不对称,所以交流调压电路通常采用宽脉冲或脉冲列触发。
二、实验报告
(2)α=30°时
α=60°时α=90°时
阻感性负载和阻性负载波形相同在此略
(3)在负载侧并联一个续流二极管,使负载电流通过续流二极管续流,而不再经过T1、D1或T3、D2这样可使晶闸管恢复阻断能力。
三、思考题
(1)电路在正常运行情况下,突然把触发脉冲切断或者α角增大到180°,就会产生“失控”。
三、思考题
实现有源逆变的条件有两个
(1)外部条件:外部有一个直流电势,方向与晶闸管导通方向一致,值稍大于变流器侧输出的平均电压。
(2)内部条件:逆变电路的主电路为全控结构,α>90°,处于逆变区。
本电路直流电势由整流输出电压提供,使用心式变压器进行升压,使直流电势值稍大于变流器侧输出的平均电压。
第三章实验八三相半波可控整流电路实验
二、实验报告
(1)当α=90°时,Ud、UVT波形如图所示。
(2)
(3)由波形可以看出当晶闸管导通时输入电压全部加在输出电压Ud两端,当晶闸管截止时,输入电压全部加在晶闸管两端;带感性负载时,由于电流不能突变,输出电压出现负压,此时电压由变压器提供。
三、思考题
(1)由 知C1越大, 越小,反之,C1越小, 越大。
电力电子5个实验
锯齿波同步移相触发电路及单相半波可控整流电路实验一.实验目的1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。
观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。
3.调节脉冲移相范围将MCL—18的“G”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压Ub(即调RP),使 =180O。
调节MCL —18的给定电位器RP1,增加Uct ,观察脉冲的移动情况,要求Uct=0时,α=180O ,Uct=Umax 时,α=30O ,以满足移相范围α=30O ~180O 的要求。
4.调节Uct ,使α=60O ,观察并记录U 1~U 5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。
用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP3,使U G1K1和U G3K3间隔1800。
5.单相半波可控整流电路带电阻性负载断开触发电路“2”端与脉冲输出“K ”端的连接,“G ”、“K ”分别接至MCL —33(或MCL —53)的VT1晶闸管的控制极和阴极,注意不可接错。
负载R d 接可调电阻(可把MEL —03的900Ω电阻盘并联,即最大电阻为450Ω,电流达0.8A ),并调至阻值最大。
合上主电源,调节主控制屏输出电压至U uv =220V ,调节脉冲移相电位器RP ,分别用示波器观察α=30°、60°、90°、120°时负载电压U d ,晶闸管VT1的阳极、阴极电压波形U Vt 。
并测定U d 及电源电压U 2,验证2cos 1245.0α+=U U d6.单相半波可控整流电路带电阻—电感性负载,无续流二极管串入平波电抗器,在不同阻抗角(改变Rd 数值)情况下,观察并记录α=30O 、60O 、90O 、120O 时的U d 、i d 及Uvt 的波形。
电力电子技术实验报告
电力电子技术实验报告电力电子技术实验报告引言:电力电子技术是现代电力系统中不可或缺的一部分。
它涉及到电力的转换、控制和传输等方面,对于提高电力系统的效率、稳定性和可靠性具有重要意义。
本实验报告将介绍我所参与的电力电子技术实验,并对实验结果进行分析和总结。
实验一:直流电源的设计与实现在这个实验中,我们设计并搭建了一个直流电源电路。
通过选择合适的电路元件,我们成功地将交流电转换为稳定的直流电。
在实验过程中,我们注意到电路中的电容和电感元件对于滤波和稳压起到了关键作用。
通过实验,我们进一步理解了直流电源的工作原理和设计方法。
实验二:交流电压调节器的性能测试在这个实验中,我们测试了不同类型的交流电压调节器的性能。
通过改变输入电压和负载电流,我们测量了调节器的输出电压和效率。
实验结果表明,稳压调节器能够在不同负载条件下保持稳定的输出电压,而开关调压器则具有更高的效率和更好的调节性能。
这些结果对于电力系统的稳定运行和节能优化具有重要意义。
实验三:功率因数校正电路的设计和优化在这个实验中,我们设计了一个功率因数校正电路,并对其进行了优化。
通过使用功率因数校正电路,我们能够降低电力系统中的谐波失真和电能浪费。
实验结果显示,优化后的功率因数校正电路能够有效地提高功率因数,并减少电网对谐波的敏感性。
这对于提高电力系统的能效和稳定性具有重要意义。
实验四:逆变器的设计与应用在这个实验中,我们设计并搭建了一个逆变器电路,并将其应用于太阳能发电系统中。
通过将直流电能转换为交流电能,逆变器可以实现电力的输送和利用。
实验结果表明,逆变器能够稳定地将太阳能发电系统的输出电能转换为适用于家庭和工业用电的交流电。
这对于推广和应用太阳能发电技术具有重要意义。
结论:通过参与电力电子技术实验,我们深入了解了电力电子技术的原理和应用。
实验结果表明,电力电子技术在提高电力系统的效率、稳定性和可靠性方面具有重要作用。
我们还通过实验掌握了电力电子电路的设计和优化方法,为今后从事相关工作奠定了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力电子技术实验内容实验一认知实验1.实验目的(1)熟悉并了解MCL-॥电机电力电子及电气传动教学实验台的构成;各功能区及主要挂箱的工作原理(2)熟悉并掌握实验用测试仪表如:数字万用表,数字记忆示波器的基本使用方法。
一.MCL-॥电机电力电子及电气传动教学实验台特点(1)采用组件式结构,可根据不同内容进行组合,故结构紧凑,能在一套装置上完成《电力电子学》,《电力电子器件》,《开关电源》等课程的主要实验。
(2)实验配合教学内容,满足教学大纲要求。
控制电路全部采用模拟和数字集成芯片,可靠性高,维修,检测方便。
触发电路采用数字集成电路双窄脉冲。
(3)装置具有较完善的过流、过压、RC吸收、熔断器等保护功能,提高了设备的运行可靠性和抗干扰能力。
(4)面板上有多只发光二极管指示每一个脉冲的有无和熔断器的通断。
触发脉冲可外加,也可采用内部的脉冲触发可控硅,并可模拟整流缺相和逆变颠覆等故障现象。
二.实验挂箱(1)MCL-01触发电路,电流互感器,电压互感器,过流保护,给定,电流反馈(2)MCL-02Ⅰ组晶闸管,Ⅱ组晶闸管,平波电抗器,RC阻容吸收,二极管三相整流桥,晶闸管状态指示(3)MCL-03速度变换器,转速调节器,电流调节器(4)MCL-04反号器,转矩极性鉴别器,零电流检测器,逻辑控制器.(5)MCL-05单结晶体管,正弦波,锯齿波触发电路(6)MCL-06单相并联逆变器,斩波器(7)MCL-07 IGBT、VDMOS、GTR电力电子器件实验箱(8)MCL-08直流斩波电路(Buck-Boost)和电流控制型脉宽调制开关稳压电源实验箱(9)MCL-09微机控制的SPWM变频调速及空间矢量控制变频调速实验箱(10)MCL-10全桥DC/DC变换、直流脉宽调速系统实验箱(11)MCL-11单相交流调压实验、单相正弦波(SPWM)逆变电路实验(12)MCL-12电子模拟系统(13)MCL-13采用DSP控制的变频调速实验箱(14)MCL-14采用DSP控制的直流方波无刷电机调速实验箱(15)MCL-15整流电路的有源功率因数校正实验箱(16)MCL-16直流斩波电路(升压斩波、降压斩波)、单相交直交变频电路的性能研究、半桥型开关稳压电源的性能研究(17)MCL-18速度变换器,转速调节器,电流调节器,电流互感器,电压互感器,过流保护,给定,电流反馈(18)MCL-20给定,触发电路,Ⅰ组晶闸管,平波电抗器,RC阻容吸收,二极管三相整流桥(19)MCL-33触发电路,Ⅰ组晶闸管,Ⅱ组晶闸管,平波电抗器,RC阻容吸收,二极管三相整流桥(20)MEL-11电容箱(21)MEL-02 三相芯式变压器(22)MCL-34挂箱:反号器(AR),转矩极性鉴别器(DPT),零电流检测器(DPZ),逻辑控制器(DLC)三.触发电路实验挂箱MCL05MCL-05挂箱为触发电路专用挂箱,其中有单结晶体管,正弦波,锯齿波同步移相触发电路。
面板左上方装有同步变压器原边组的接线柱,下有“触发选择开关”,可根据需要选择“单结管”,“锯齿波”等触发电路。
当外加同步电压220V为时,通过触发电路选择直键开关可选择输出至单结管触发电路,锯齿波触发电路的同步电压分别为60V、7V1.单结晶体管触发电路由单结晶体管V3,整流稳压环节,及由V1,V2等组成的等效可变电阻等组成,其原理图如图1-1所示。
由同步变压器副边输出60V的交流同步电压,经全波整流,再由稳压管VST1,VST2进行削波,而得到梯形波电压,其过零点与晶闸管阳极电压的过零点一致,梯形波通过R7,V2向电容C2充电,当充电电压达到单结晶体管的峰点电压时,单结晶体管V3导通,从而通过脉冲变压器输出脉冲。
同时C2经V3放电,由于时间常数很小,U c2很快下降至单结晶体管的谷点电压,V3重新关断,C2再次充电。
每个梯形波周期,V3可能导通,关断多次,但只有第一个输出脉冲起作用。
电容C2的充电时间常数由等效电阻等决定,调节RP1的滑动触点可改变V1的基极电压,使V1,V2都工作在放大区,即等效电阻可由RP1来调节,也就是说一个梯形波周期内的第一个脉冲出现时候(控制角)可由RP1来调节。
元件RP1装在面板上,同步信号已在内部接好。
2.集成电路触发电路KJ004可控硅移相电路KJ004可控硅移相触发电路适用于单相、三相全控桥式供电装置中,作可控硅的双路脉冲移相触发。
器件输出两路相差180度的移相脉冲,可以方便地构成全控桥式触发器线路。
电路具有输出负载能力大、移相性能好、正负半周脉冲相位均衡性好、移相范围宽、对同步电压要求低,有脉冲列调制输出端等功能与特点。
一、电路工作原理:电路由同步检测电路、锯齿波形成电路、偏形电压、移相电压及锯齿波电压综合比较放大电路和功率放大电路四部分组成。
电原理见下图:锯齿波的斜率决定于外接电阻R6、RW1,流出的充电电流和积分电容C1的数值。
对不同的移相控制电压VY,只有改变权电阻R1、R2的比例,调节相应的偏移电压VP。
同时调整锯齿波斜率电位器RW1,可以使不同的移相控制电压获得整个移相范围。
触发电路为正极性型,即移相电压增加,导通角增大。
R7和C2形成微分电路,改变R7和C2的值,可获得不同的脉宽输出。
的同步电压为任意值。
二、封装形式电路采用双列直插C—16白瓷和黑瓷两种外壳封装,外形尺寸按电子工业部部颁标准。
《半导体集成电路外形尺寸》SJll00—76三、典型接线图及各点波形同步串联电阻R4的选择按右式计算:R4=同步电压/2~3×103(Ω)各点波形式如右图所示四、电参数:1.电源电压:直流+15V、-15V,允许波动土5%(±10%时功能正常)。
2.KJ004电源电流:正电流≤15mA,负电流≤10mA。
3.同步电压:任意值。
4.同步输入端允许最大同步电流:6mA(有效值)5.移相范围≥1700(同步电压30V,同步输入电阻15kΩ)6.锯齿波幅度:≥10V(幅度以锯齿波平顶为准)。
7.输出脉冲:(1)宽度:400μS—2mS(通过改变脉宽阻容元件达到)。
(2)幅度:≥13V。
(3)最大输出能力100mA(流出脉冲电流)。
(4)输出管反压:BVCEO≥18V(测试条件Ie≤100μA)。
8.正负半周脉冲相位不均衡≤±30。
9.使用环境温度为四级:C:0—70℃R:-55—85℃E:-40—85℃M:-55—125℃3.锯齿波同步移相触发电路锯齿波同步移相触发电路由同步检测,锯齿波形成,移相控制,脉冲形成,脉冲放大等环节组成,其原理图如图1-3所示。
由VD1,VD2,C1,R1等元件组成同步检测环节,其作用是利用同步电压来控制锯齿波产生的时刻和宽度。
由VST1,V1,R3等元件组成的恒流源电路及V2,V3,C2等组成锯齿波形成环节。
控制电压U ct,偏移电压U b及锯齿波电压在V4基极综合叠加,从而构成移相控制环节。
V5,V6构成脉冲形成放大环节,脉冲变压器输出触发脉冲。
元件RP装在面板上,同步变压器副边已在内部接好。
四.桥式主电路挂箱MCL-33MCL—33由脉冲控制及移相,双脉冲观察孔,一组可控硅,二组可控硅及二极管,RC吸收回路,平波电抗器L组成。
本实验台提供相位差为60O,经过调制的“双窄”脉冲(调制频率大约为3 10KHz),触发脉冲分别由两路功放进行放大,分别由U blr和U blf进行控制。
当U blf接地时,第一组脉冲放大电路进行放大。
当U blr接地时,第二组脉冲放大电路进行工作。
脉冲移相由Uct端的输入电压进行控制,当Uct端输入正信号时,脉冲前移,Uct端输入负信号时,脉冲后移,移相范围为100~1600。
偏移电压调节电位器RP调节脉冲的初始相位,不同的实验初始相位要求不一样。
双脉冲观察孔输出相位差为60o的双脉冲,同步电压观察孔,输出相电压为30V左右的同步电压,用双踪示波器分别观察同步电压和双脉冲,可比较双脉冲的相位。
使用注意事项:单双脉冲及同步电压观察孔在面板上俱为小孔,仅能接示波器,不能输入任何信号。
1. 脉冲控制。
面板上部的六档直键开关控制接到可控硅的脉冲,1、2、3、4、5、6分别控制可控硅VT1、VT2、VT3、VT4、VT5、VT6的触发脉冲,当直键开关按下时,脉冲断开,弹出时脉冲接通。
2. 一桥可控硅由六只5A800V组成。
3. 二桥可控硅由六只5A800V构成,另有六只5A800V二极管。
4. RC吸收回路可消除整流引起的振荡。
当做调速实验时需接在整流桥输出端。
平波电抗器可作为电感性负载电感使用,电感分别为50mH、100mH、200mH、700mH, 在1A范围内基本保持线性。
使用注意事项:外加触发脉冲时,必须切断内部触发脉冲。
实验二集成电路同步移相触发电路实验一.实验目的1.熟悉集成电路同步触发电路的工作原理及各元件的作用。
2.掌握集成电路同步触发电路的调试步骤和方法。
二.实验内容1.集成电路同步触发电路的调试。
2.集成电路同步触发电路各点波形的观察。
三.实验线路及原理电路分脉冲形成,同步移相,脉冲放大等环节,具体工作原理可参见“电力电子技术”有关教材。
四.实验设备及仪器1.教学实验台主控制屏2.MCL—18组件3. MCL—05A组件4. MEL—03组件5.二踪示波器6.万用表五.实验方法1.将MCL—05A面板上左上角的同步电压输入端接MCL—18的U、V端,将“触发电路选择”拨至“集成电路”位置。
2.分别将MCL—05A挂箱上模拟集成触发电路单元的U ct端、接地端与MCL—18挂箱上的给定单元中的Ug端、接地端相连。
3.三相调压器逆时针调到底,合上主电路电源开关,调节主控制屏输出电压U uv=220v,并打开MCL—05面板右下角的电源开关。
用示波器观察各观察孔的电压波形,测量触发电路输出脉冲的幅度和宽度,示波器的地线接于“10”端。
4.确定脉冲的初始相位。
当U ct=0时,调节U b(调RP)要求α接近于180°。
5.保持U b不变,调节MCL-31A的给定电位器RP1,逐渐增大U ct,用示波器观察U1及输出脉冲U GK的波形,注意U ct增加时脉冲的移动情况,并估计移相范围。
6.调节U ct使α=90O、60°、30°,观察并记录面板上观察孔“5”-“7”的波形、输出脉冲电压波形及对应于α=90O、60°、30时U ct的值六.实验报告1.画出α=90O、60°、30°时,观察孔“5”-“7”及输出脉冲电压波形。
2.指出Uct增加时,α应如何变化?移相范围大约等于多少度?指出同步电压的那一段为脉冲移相范围。
七.注意事项双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。