常用大肠杆菌 (K-12株来源) 的基因型
2023届陕西省高三第一次模拟考试理科综生物试卷(含解析)

2023届陕西省高三第一次模拟考试理科综生物试卷学校:___________姓名:___________班级:___________一、单选题1.茶叶生产在中国已有3000多年的历史,其中信阳毛尖以“细、圆、光、直、多白毫、香高、味浓、汤色绿”的独特风格,盛名传播国内外。
下列关于茶叶的说法,错误的是()A.采摘的新鲜茶叶的细胞中含量最高的化合物是H2OB.茶叶和人体所含元素种类大致相同,但含量有差异C.制好的成品茶相比新鲜茶叶结合水/自由水的比值低D.新鲜茶叶的细胞内含量最多的有机物化合物是蛋白质2.甜菜素是一种水溶性含氮色素,因最早发现于甜菜根中而得名,酪氨酸酶是甜菜素合成的关键酶,下列图示为有关酪氨酸酶活性的实验研究结果,相关分析正确的是()A.pH在4.5时,酪氨酸活性很低,后随着pH升高酶的活性先上升后下降B.B组实验时应在最适温度和最适pH条件下进行C.由B组实验可知,Cu2+提高酪氨酸酶活性的最适浓度为0.01mmol/LD.甜菜素可在细胞液中积累,其在细胞液中的积累不利于植物细胞的吸水3.金鱼能在严重缺氧的环境中生存若干天,其肌细胞和其他组织细胞中无氧呼吸的产物不同。
如图表示金鱼在缺氧状态下,细胞中的部分代谢途径。
下列相关叙述错误的是()A.过程①不需要O2的参与,产生的物质X是丙酮酸,其由3种元素组成B.过程①有能量释放,释放的能量大部分用于合成ATPC.过程②④无氧呼吸产物不同,但在细胞内反应的场所相同D.在肌细胞中将乳酸经③②途径转化成酒精并排出体外,有利于防止酸中毒4.控制小鼠毛色的灰色基因既可以突变成黄色基因,也可以突变成黑色基因,而且基因突变的方向和环境没有明确的因果关系。
这说明了基因突变具有()A.不定向性B.普遍性C.低频性D.随机性5.2021 年末,新发现的新冠病毒变异毒株奥密克戎比原始毒株的传染力更高,可通过咽拭子检测新冠病毒的感染者,下列叙述正确的是()A.只有细胞内的核酸才是携带遗传信息的遗传物质B.与原始毒株相比,变异毒株的 RNA 由一条链变为两条链C.咽拭子检测新冠病毒利用了核酸分子具有特异性的原理D.在唾液中能检测到新冠病毒,说明该病毒能在细胞外繁殖6.下列有关生物学实验的描述正确的是()A.斐林试剂和双缩脲试剂都为NaOH和CuSO4,但浓度和使用方法均无相同之处B.在“土壤中小动物类群丰富度的研究”中,采集的小动物可放入70%的酒精中,也可以放入试管中C.在“性状分离比的模拟”实验中,将抓取的彩球记录并放回原桶后即可进行下一次抓取,如此重复50~100次D.在“探索生长素类似物促进插条生根的最适浓度”实验中,可利用沾蘸法把插条基部在浓度较低的药液中蘸一下(约5s)后扦插,最好在遮阴、湿度高的环境中处理二、综合题7.粮食问题始终是全人类所面临的基本问题。
大肠杆菌基因工程菌常用类型

1、大肠杆菌DH5a菌株DH5a是世界上最常用的基因工程菌株之一。
由于DH5α是DNA酶缺陷型菌株,有利于基因克隆,保存质粒,但该菌株的蛋白酶没有缺陷,表达的蛋白容易被降解,因此通常不作为表达菌株。
E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。
可用于蓝白斑筛选鉴别重组菌株。
基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA12、大肠杆菌BL21(DE3) 菌株该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。
T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。
该菌适合表达非毒性蛋白。
基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3)3、大肠杆菌BL21(DE3) pLysS菌株该菌株含有质粒pLysS,因此具有氯霉素抗性。
PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。
该菌适合表达毒性蛋白和非毒性蛋白。
基因型:F-,ompT hsdS(rBB-mB-),gal,dcm(DE3,pLysS ,Camr4、大肠杆菌JM109菌株该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株。
基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15]5、大肠杆菌TOP10菌株该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。
大肠杆菌基因组

大肠杆菌基因组
大肠杆菌(Escherichia coli)是一种常见的革兰氏阴性菌,广泛存在于自然界中,是人和动物肠道的正常菌群之一。
以下是大肠杆菌的基因组特点:
1. 基因组大小:大肠杆菌的基因组长度约为4.6-5.5百万个碱基对,包含了约4,000-5,500个基因。
2. 基因组结构:大肠杆菌的基因组呈圆形双链DNA分子,有一个单独的起始点和终止点。
3. GC含量:大肠杆菌的基因组GC含量约为50%,属于高GC菌株。
4. 基因功能:大肠杆菌的基因组包含了许多与代谢、运输、感应、合成等生命活动相关的基因,其中约1/3的基因没有已知的生物学功能。
5. 基因编码:大肠杆菌的基因组可以编码出各种蛋白质、RNA 和其他重要分子,如rRNA、tRNA、mRNA等。
6. 基因组变异:大肠杆菌基因组在不同的菌株之间存在着一定程度的变异,包括插入序列、转座子、基因重排等。
大肠杆菌的基因组研究对于了解其代谢、生长和适应环境能力等方面具有重要意义。
目前已经对大肠杆菌进行了多次基因组测序,并建立了完整的大肠杆菌K-12 MG1655基因组数据库,为大肠杆菌的进一步研究提供了强有力的工具。
细菌菌株基因型及基因符号说明

大肠杆菌基因型及遗传符号说明前言:实验室的一般大肠杆菌拥有4288条基因,每条基因的长度约为950bp,基因间的平均间隔为118bp(基因Ⅷ)。
E.coli基因组中还包含有许多插入序列,如λ-噬菌体片段和一些其他特殊组份的片段,这些插入的片段都是由基因的水平转移和基因重组而形成的,由此表明了基因组具有它的可塑造性。
利用大肠杆菌基因组的这种特性对其进行改造,使其中的某些基因发生突变或缺失,从而给大肠杆菌带来可以观察到的变化,这种能观察到的特征叫做大肠杆菌的表现型(Phenotype),把引起这种变化的基因构成叫做大肠杆菌的基因型(Genotype)。
具有不同基因型的菌株表现出不同的特性。
分子克隆中常用的大肠杆菌及其遗传标记按Demerec等1966年提出的命名原则,采用的菌株所有的基因都假定处于野生型状态,除非在基因型上另外注明。
大肠杆菌基因型的表示方法(Demerec, et, al. 1966):一、一般规则:1、根据基因产物或其作用产物的英文名称的第一个字母缩写成3个小写斜体字母来表示。
例如:DNA Adenine Methylase→dam。
2、不同的基因座,其中任何一个突变所产生的表型变化可能相同,其表示方法是在3个小写斜体字母后加上一个斜体大写字母来表示区别。
例如:Recombination→recA、recB、recC。
3、突变位点应通过在突变基因符号后加不同数字表示。
如supE44(sup基因座E的44位突变)。
如果不知道几个等位基因中哪一/几个发生了功能性突变,则用连字符“-”代替大写字母,如trp-31。
4、细菌的基因型中应该包含关于其携带的质粒或附加体的的信息。
这些符号包括菌株携带的质粒或附加体、质粒或附加体上的突变基因座和突变位点。
其基因符号应与基因座的表示符号明显区别,符号的第一个字母大写、不斜体并位于括号内;质粒或附加体上的突变基因座和突变位点的基因符号的表示方法与染色体上突变基因座、突变位点的符号相同。
大肠杆菌的基因型-概述说明以及解释

大肠杆菌的基因型-概述说明以及解释1.引言1.1 概述大肠杆菌是一种常见的革兰氏阴性杆菌,属于肠道菌群中的重要成员。
它在自然界和人体内广泛存在,并且具有广泛的基因型多样性。
这使得大肠杆菌成为了微生物遗传学和进化生物学领域的研究模型。
在大肠杆菌中,基因型是指该菌株拥有的基因组合和基因的分布情况。
大肠杆菌的基因型可以通过不同的方法进行分类和鉴定。
目前主要的分类方法包括单核苷酸多态性分析、基因片段分析和全基因组测序等。
通过这些方法,我们可以更全面地了解大肠杆菌的基因型组成和种群结构。
大肠杆菌的基因型在其功能和特点方面具有重要意义。
大肠杆菌是一种典型的益生菌,它在人体内具有多种有益作用,包括帮助消化吸收、维持肠道稳定性和参与免疫调节等。
不同基因型的大肠杆菌可能具有不同的功能特点,比如某些基因型可能携带耐药基因或致病因子,导致感染和疾病的发生。
因此,对大肠杆菌基因型的研究有助于我们深入了解其功能机制和生态适应能力。
总之,大肠杆菌作为一种常见的菌株,其基因型具有多样性和重要性。
通过研究大肠杆菌的基因型,我们可以深入探索其功能特点和生态适应能力,进一步促进微生物遗传学和进化生物学的研究。
未来,我们可以通过结合多样的研究方法和技术,进一步挖掘和解析大肠杆菌基因型的奥秘,并探索其在人体健康和疾病中的作用。
文章结构是指文章部分之间的逻辑关系和组织,它有助于读者理解文章的内容和思路。
本文的结构如下:1. 引言1.1 概述1.2 文章结构1.3 目的2. 正文2.1 大肠杆菌的基因型分类2.2 大肠杆菌基因型的功能和特点3. 结论3.1 大肠杆菌基因型的重要性3.2 未来研究的方向文章结构部分是为了描述本文的组织结构,它有助于读者了解文章的内容安排和逻辑关系。
在本文中,我们首先介绍引言部分,包括概述、文章结构和目的。
在概述中,我们简要介绍了大肠杆菌的基因型。
在文章结构中,我们明确了本文的结构和章节安排,帮助读者理解文章的整体框架。
细菌基因型及其基因符号1102

大肠杆菌基因型及遗传符号说明前言:实验室的一般大肠杆菌拥有4288条基因,每条基因的长度约为950bp,基因间的平均间隔为118bp(基因Ⅷ)。
E.coli基因组中还包含有许多插入序列,如λ-噬菌体片段和一些其他特殊组份的片段,这些插入的片段都是由基因的水平转移和基因重组而形成的,由此表明了基因组具有它的可塑造性。
利用大肠杆菌基因组的这种特性对其进行改造,使其中的某些基因发生突变或缺失,从而给大肠杆菌带来可以观察到的变化,这种能观察到的特征叫做大肠杆菌的表现型(Phenotype),把引起这种变化的基因构成叫做大肠杆菌的基因型(Genotype)。
具有不同基因型的菌株表现出不同的特性。
分子克隆中常用的大肠杆菌及其遗传标记按Demerec等1966年提出的命名原则,采用的菌株所有的基因都假定处于野生型状态,除非在基因型上另外注明。
大肠杆菌基因型的表示方法(Demerec, et, al. 1966):一、一般规则:1、根据基因产物或其作用产物的英文名称的第一个字母缩写成3个小写斜体字母来表示。
例如:DNA Adenine Methylase→dam。
2、不同的基因座,其中任何一个突变所产生的表型变化可能相同,其表示方法是在3个小写斜体字母后加上一个斜体大写字母来表示区别。
例如:Recombination→recA、recB、recC。
3、突变位点应通过在突变基因符号后加不同数字表示。
如supE44(sup基因座E的44位突变)。
如果不知道几个等位基因中哪一/几个发生了功能性突变,则用连字符“-”代替大写字母,如trp-31。
4、细菌的基因型中应该包含关于其携带的质粒或附加体的的信息。
这些符号包括菌株携带的质粒或附加体、质粒或附加体上的突变基因座和突变位点。
其基因符号应与基因座的表示符号明显区别,符号的第一个字母大写、不斜体并位于括号内;质粒或附加体上的突变基因座和突变位点的基因符号的表示方法与染色体上突变基因座、突变位点的符号相同。
大肠杆菌基因型说明

大肠杆菌基因型及遗传符号说明前言:实验室的一般大肠杆菌拥有4288条基因,每条基因的长度约为950bp,基因间的平均间隔为118bp(基因Ⅷ)。
E.coli基因组中还包含有许多插入序列,如λ-噬菌体片段和一些其他特殊组份的片段,这些插入的片段都是由基因的水平转移和基因重组而形成的,由此表明了基因组具有它的可塑造性。
利用大肠杆菌基因组的这种特性对其进行改造,使其中的某些基因发生突变或缺失,从而给大肠杆菌带来可以观察到的变化,这种能观察到的特征叫做大肠杆菌的表现型(Phenotype),把引起这种变化的基因构成叫做大肠杆菌的基因型(Genotype)。
具有不同基因型的菌株表现出不同的特性。
分子克隆中常用的大肠杆菌及其遗传标记按Demerec等1966年提出的命名原则,采用的菌株所有的基因都假定处于野生型状态,除非在基因型上另外注明。
大肠杆菌基因型的表示方法(Demerec, et, al. 1966):一、一般规则:1、根据基因产物或其作用产物的英文名称的第一个字母缩写成3个小写斜体字母来表示。
例如:DNA Adenine Methylase→dam。
2、不同的基因座,其中任何一个突变所产生的表型变化可能相同,其表示方法是在3个小写斜体字母后加上一个斜体大写字母来表示区别。
例如:Recombination→recA、recB、recC。
3、突变位点应通过在突变基因符号后加不同数字表示。
如supE44(sup基因座E的44位突变)。
如果不知道几个等位基因中哪一/几个发生了功能性突变,则用连字符“-”代替大写字母,如trp-31。
4、细菌的基因型中应该包含关于其携带的质粒或附加体的的信息。
这些符号包括菌株携带的质粒或附加体、质粒或附加体上的突变基因座和突变位点。
其基因符号应与基因座的表示符号明显区别,符号的第一个字母大写、不斜体并位于括号内;质粒或附加体上的突变基因座和突变位点的基因符号的表示方法与染色体上突变基因座、突变位点的符号相同。
常用大肠杆菌感受态的区别

常用大肠杆菌感受态JM109,DH5a,BL21等的区别1:DH5a菌株DH5a是一种常用于质粒克隆的菌株。
E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。
可用于蓝白斑筛选鉴别重组菌株。
基因型:F-,φ80dla cZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA12:BL21(DE3) 菌株该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。
T7噬菌体R NA聚合酶位于λ噬菌体DE3区,该区整合于B L21的染色体上。
该菌适合表达非毒性蛋白。
基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3)3:BL21(DE3) pLysS菌株该菌株含有质粒pLys S,因此具有氯霉素抗性。
PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。
该菌适合表达毒性蛋白和非毒性蛋白。
基因型:F-,ompT hsdS(rBB-mB-),gal,dcm(DE3,pLysS,Camr4:JM109菌株该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DN A产生的L acZa多肽和JM09编码的L acZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15]5:TOP10菌株该菌株适用于高效的DN A克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
supE44,hsdR17,recA1,endA1,gyrA96,thi-1,relA1
DH5α
supE44, ΔlacU169 (φ80lacZΔM15), hsdR17,recA1,endA1,gyrA96,thi-1,relA1
DP50supF
supE44,supF58,hsdS3 (rB-mB-) ,dapD8,lacY1,glnV44, Δ (gal-uvrB) 47,tyrT58,gyrA29,tonA53, Δ (thyA57)
常用大肠杆菌(K-12株来源)的基因型
Strain
Genotype
BB4
supF58,supE44,hsdR514,galK2,galT22 ,trpR55,metB1,tonA, ΔlacU169/F' [proAB+,lac Iq,lacZΔM15 Tn10(tetr) ]
BL21(DE3)
F-,ompT,hsdSB(rB-mB-) , gal (λc I857,ind1,Sam7,nin5,lacUV5-T7gene1) ,dcm(DE3)(B株来源)
K803
F-,lacY1 or Δ (lac Iq-Y) 6 (lac-3) ,supE44,galK2,galT22,mcrA, rfbD,metB1,mcrB1,hsdR3
LE392
supE44,supF58,hsdR514,galK2,galT22,metB1,trpR55,lacY1
MC1061
hsdR, mcrB,araD139, Δ (araABCห้องสมุดไป่ตู้leu) 7679, ΔlacX74,galU, galK, rpsL, thi
MV1184
ara, Δ (lac-proAB) ,rpsL, thi(φ80lacZΔM15) , Δ (srl-recA) 306∷Tn10(tetr) /F' [traD36,proAB+,lac Iq,lacZΔM15]
RR1
supE44,hsdS20,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1
TAP90
supE44,supF58,hsdR, pro, leuB, thi-1,rpsL, lacY1,tonA1,recD1903∷mini-tet
TG1
supE, hsdΔ5,thi,Δ (lac-proAB) /F' [traD36,proAB+,lac Iq,lacDΔM15]
C-la
Awild type strain (C strain)(C株来源)
C600
supE44,hsdR,thi-1,thr-1,leuB6,lacY1,tonA21
CJ236
dut1,ung1,thi-1,relA1/pCJ105 (F'camr)
DH1
supE44,hsdR17,recA1,endA1,gyrA96,thi-1,relA1
MV1193
Δ (lac-proAB) ,rpsL, thi, endA1,sbcB15,hsdR4, Δ (srl-recA) 306∷Tn10(tetr) /F' [traD36,proAB+,lac Iq,lacZΔM15]
NovaBlue
endA1,hsdR17, (rK-mK+) ,supE44,thi-1,gyrA96,relA1,lac, recA1/F', [proAB+,lac IqZΔM15, Tn10(tetr) ]
BM25.5
F-, λimm434kanr, (P1) ,cmr, rk-mk+,tetr
BMH71-18mutS
Δ (lac-proAB) ,supE, thi, mutS215∷Tn10 (tetr) /F' (traD36,proAB+,lac Iq,lacZΔM15)
BW313
HfrKL16PO/45 [lys(61-62) /dut1,ung1,thi-1,relA1]
JM110
dam,dcm,supE44,hsdR17,thi, leu, rpsL1,lacY, galK, galT,ara, tonA, thr, tsx,Δ(lac-proAB) /F' [traD36,proAB+,lac Iq,lacZΔM15]
K802
F-,lacY1 or Δ (lac Iq-Y) 6 (lac-3) ,supE44,galK2,galT22,mcrA, rfbD,metB1,mcrB1,hsdR2
Y-1088
F-, ΔlacU169,supE, supF, hsdR, metB, trpR, fhuA21,proC∷Tn5/pMC9*
Y-1089
F-, ΔlacU169,lon-100,araD139,rpsL, hflA150 [chr∷Tn10/pMC9*]
Y-1090
F-, ΔlacU169,lon-100,araD139,rpsL, supF, mcrA, trpC22∷Tn10/pMC9*
XL1-Blue
hsdR17,supE44,recA1,endA1,gyrA46,thi, relA1, lac/F' [proAB+,lac Iq,lacZΔM15∷Tn10(tetr)]
x1776
F-,thuA53,dapD8,minA1,minB2,rfb-2,glnV44 (supE44) , Δ (gal-uvrB) 47,tyrA142,gyrA29,oms-2,metC65,osm-1 (tte-1) , Δ (bioH-asd) 29,cycA1,cycB2,hsdR2
JM101
supE, thi,Δ(lac-proAB) /F' [traD36,proAB+,lac Iq,lacZΔM15]
JM105
endA1,supE, sbcB15,thi, rpsL,Δ(lac-proAB) /F' [traD36,proAB+,lac Iq,lacZΔM15]
JM106
TG2
supE, hsdΔ5,thi, Δ (lac-proAB) Δ (srl-recA) 306∷Tn10(tetr) /F' [traD36,proAB+,lac Iq,lacZΔM15]
TH2
supE44,hsdS20 (rB-mB-) ,recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,thi-1,trpR624
F-,recA1,endA1,gyrA96,thi, hsdR17,supE44,relA1, Δ(lac-proAB)
JM109
recA1,endA1,gyrA96,thi, hsdR17,supE44,relA1, Δ(lac-proAB) /F' [traD36,proAB+,lac Iq,lacZΔM15]
F-,endA1,gyrA96,thi, hsdR17,supE44,relA1, Δ(lac-proAB)
JM107
endA1,gyrA96,thi, hsdR17,supE44,relA1, Δ(lac-proAB) /F' [traD36,proAB+,lac Iq,lacZΔM15]
JM108
ED8654
supE, supF, hsdR, metB, lacY, gal, trpR
ED8767
supE44,supF58,hsdS3(rB-mB-) ,recA56,galK2,galT22,metB1
ER1647
F-,trp-31,his-1,rpsL104 (strr),fhuA2, Δ (lacX)r1,supE44,xyl-7,mtl-2,metB1,recD1014,mcrA1272∷Tn10, Δ (mcrB, hsdRMS, mrr) 102∷Tn10(tetr)
HB101
supE44,hsdS20 (rB-mB-) ,recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1
HMS174
recA1,hsdR,ritr
JM83
F-,ara,Δ (lac-proAB) ,rpsL(φ80lacZΔM15)