2020年安徽省合肥五十中西校九年级数学试卷
2020年安徽省中考数学试卷(含解析)

2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.(4分)(2020•安徽)下列各数中,比﹣2小的数是( )A .﹣3B .﹣1C .0D .22.(4分)(2020•安徽)计算(﹣a )6÷a 3的结果是( )A .﹣a 3B .﹣a 2C .a 3D .a 23.(4分)(2020•安徽)下面四个几何体中,主视图为三角形的是( )A .B .C .D .4.(4分)(2020•安徽)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为( )A .5.47×108B .0.547×108C .547×105D .5.47×1075.(4分)(2020•安徽)下列方程中,有两个相等实数根的是( )A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =06.(4分)(2020•安徽)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是139.(4分)(2020•安徽)已知点A ,B ,C 在⊙O 上,则下列命题为真命题的是( )A .若半径OB 平分弦AC ,则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形,则∠ABC =120°C .若∠ABC =120°,则弦AC 平分半径OBD .若弦AC 平分半径OB ,则半径OB 平分弦AC10.(4分)(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2020•安徽)计算:√9−1=.12.(5分)(2020•安徽)分解因式:ab2﹣a=.13.(5分)(2020•安徽)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=kx的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.(5分)(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究:(1)∠P AQ 的大小为 °;(2)当四边形APCD 是平行四边形时,AB QR 的值为 .四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2020•安徽)观察以下等式:第1个等式:13×(1+21)=2−11, 第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15.…按照以上规律,解决下列问题:(1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.18.(8分)(2020•安徽)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.(10分)(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.(12分)(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y 轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)(2020•安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE =AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.2020年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)(2020•安徽)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.(4分)(2020•安徽)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【解答】解:原式=a6÷a3=a3.故选:C.3.(4分)(2020•安徽)下面四个几何体中,主视图为三角形的是()A.B.C.D.【解答】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.4.(4分)(2020•安徽)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【解答】解:54700000用科学记数法表示为:5.47×107.故选:D .5.(4分)(2020•安徽)下列方程中,有两个相等实数根的是( )A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =0【解答】解:A 、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B 、△=0﹣4=﹣4<0,没有实数根;C 、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D 、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A .6.(4分)(2020•安徽)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A 选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意; x =(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B 不符合题意;S 2=17[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=187,因此方差为187,于是选项C 不符合题意;故选:D .9.(4分)(2020•安徽)已知点A ,B ,C 在⊙O 上,则下列命题为真命题的是( )A .若半径OB 平分弦AC ,则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形,则∠ABC =120°C .若∠ABC =120°,则弦AC 平分半径OBD .若弦AC 平分半径OB ,则半径OB 平分弦AC【解答】解:A 、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.10.(4分)(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=√32EJ=√32x,∴y=12EJ•GH=√34x2.当x=2时,y=√3,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y =12FJ •GH =√34(4﹣x )2,函数图象为抛物线的一部分,且抛物线开口向上. 故选:A .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)(2020•安徽)计算:√9−1= 2 . 【解答】解:原式=3﹣1=2. 故答案为:2.12.(5分)(2020•安徽)分解因式:ab 2﹣a = a (b +1)(b ﹣1) . 【解答】解:原式=a (b 2﹣1)=a (b +1)(b ﹣1), 故答案为:a (b +1)(b ﹣1)13.(5分)(2020•安徽)如图,一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数y =kx 的图象在第一象限内交于点C ,CD ⊥x 轴,CE ⊥y 轴.垂足分别为点D ,E .当矩形ODCE 与△OAB 的面积相等时,k 的值为 2 .【解答】解:一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B ,令x =0,则y =k ,令y =0,则x =﹣k ,故点A 、B 的坐标分别为(﹣k ,0)、(0,k ),则△OAB 的面积=12OA •OB =12k 2,而矩形ODCE 的面积为k , 则12k 2=k ,解得:k =0(舍去)或2,故答案为2.14.(5分)(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究: (1)∠P AQ 的大小为 30 °; (2)当四边形APCD 是平行四边形时,AB QR的值为 √3 .【解答】解:(1)由折叠的性质可得:∠B =∠AQP ,∠DAQ =∠QAP =∠P AB ,∠DQA =∠AQR ,∠CQP =∠PQR ,∠D =∠ARQ ,∠C =∠QRP , ∵∠QRA +∠QRP =180°, ∴∠D +∠C =180°, ∴AD ∥BC ,∴∠B +∠DAB =180°, ∵∠DQR +∠CQR =180°, ∴∠DQA +∠CQP =90°, ∴∠AQP =90°, ∴∠B =∠AQP =90°, ∴∠DAB =90°,∴∠DAQ =∠QAP =∠P AB =30°, 故答案为:30;(2)由折叠的性质可得:AD =AR ,CP =PR , ∵四边形APCD 是平行四边形, ∴AD =PC , ∴AR =PR , 又∵∠AQP =90°,∴QR =12AP ,∵∠P AB =30°,∠B =90°, ∴AP =2PB ,AB =√3PB , ∴PB =QR , ∴AB QR=√3,故答案为:√3.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)(2020•安徽)观察以下等式: 第1个等式:13×(1+21)=2−11,第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15. …按照以上规律,解决下列问题: (1)写出第6个等式:118×(1+26)=2−16 ;(2)写出你猜想的第n 个等式: 2n−1n+2×(1+2n )=2−1n (用含n 的等式表示),并证明.【解答】解:(1)第6个等式:118×(1+26)=2−16;(2)猜想的第n 个等式:2n−1n+2×(1+2n)=2−1n.证明:∵左边=2n−1n+2×n+2n =2n−1n =2−1n=右边, ∴等式成立. 故答案为:118×(1+26)=2−16;2n−1n+2×(1+2n )=2−1n .18.(8分)(2020•安徽)如图,山顶上有一个信号塔AC ,已知信号塔高AC =15米,在山脚下点B 处测得塔底C 的仰角∠CBD =36.9°,塔顶A 的仰角∠ABD =42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【解答】解:由题意,在Rt△ABD中,tan∠ABD=AD BD,∴tan42.0°=ADBD≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=CD BD,∴tan36.9°=CDBD≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a ﹣x ).(2)依题意,得:1.1a =1.43x +1.04(a ﹣x ), 解得:x =213a , ∴1.43x 1.1a=1.43⋅213a 1.1a=0.22a 1.1a=0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.20.(10分)(2020•安徽)如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD =BC ,AC 与BD 相交于点F .BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E .(1)求证:△CBA ≌△DAB ;(2)若BE =BF ,求证:AC 平分∠DAB .【解答】(1)证明:∵AB 是半圆O 的直径, ∴∠ACB =∠ADB =90°,在Rt △CBA 与Rt △DAB 中,{BC =AD BA =AB ,∴Rt △CBA ≌Rt △DAB (HL );(2)解:∵BE =BF ,由(1)知BC ⊥EF , ∴∠E =∠BFE ,∵BE 是半圆O 所在圆的切线, ∴∠ABE =90°, ∴∠E +∠BAE =90°, 由(1)知∠D =90°, ∴∠DAF +∠AFD =90°, ∵∠AFD =∠BFE , ∴∠AFD =∠E ,∴∠DAF =90°﹣∠AFD ,∠BAF =90°﹣∠E , ∴∠DAF =∠BAF ,∴AC平分∠DAB.六、(本题满分12分)21.(12分)(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×72240=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×84240=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为612=12.七、(本题满分12分)22.(12分)(2020•安徽)在平面直角坐标系中,已知点A (1,2),B (2,3),C (2,1),直线y =x +m 经过点A ,抛物线y =ax 2+bx +1恰好经过A ,B ,C 三点中的两点. (1)判断点B 是否在直线y =x +m 上,并说明理由; (2)求a ,b 的值;(3)平移抛物线y =ax 2+bx +1,使其顶点仍在直线y =x +m 上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【解答】解:(1)点B 是在直线y =x +m 上,理由如下: ∵直线y =x +m 经过点A (1,2), ∴2=1+m ,解得m =1, ∴直线为y =x +1,把x =2代入y =x +1得y =3, ∴点B (2,3)在直线y =x +m 上;(2)∵直线y =x +1与抛物线y =ax 2+bx +1都经过点(0,1),且B 、C 两点的横坐标相同,∴抛物线只能经过A 、C 两点,把A (1,2),C (2,1)代入y =ax 2+bx +1得{a +b +1=24a +2b +1=1,解得a =﹣1,b =2;(3)由(2)知,抛物线为y =﹣x 2+2x +1,设平移后的抛物线为y =﹣x 2+px +q ,其顶点坐标为(p2,p 24+q ),∵顶点仍在直线y =x +1上, ∴p 24+q =p2+1, ∴q =−p 24+p2+1,∵抛物线y =﹣x 2+px +q 与y 轴的交点的纵坐标为q , ∴q =−p 24+p 2+1=−14(p ﹣1)2+54,∴当p =1时,平移后所得抛物线与y 轴交点纵坐标的最大值为54.八、(本题满分14分)23.(14分)(2020•安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE =AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴AEDC =AF DF,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得a=1+√52或1−√52(舍去),∴AE=1+√5 2.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠P AG=∠P AD+∠DAG=∠P AD+∠EAP=∠DAE=90°,∴△P AG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=√2AG.。
安徽省合肥5中2019-2020学年九年级(上)期中数学试卷(含答案)

九年级(上)期中数学试卷一.选择题(每题4分,满分40分)1.抛物线y=x2+2x+3的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=﹣2D.直线x=22.若,则的值为()A.B.C.D.3.若反比例函数y=﹣的图象上有两个不同的点关于y轴的对称点都在一次函数y=﹣x+m 的图象上,则m的取值范围是()A.m>2B.m<﹣2C.m>2或m<﹣2D.﹣2<m<24.抛物线y=x2+6x+7可由抛物线y=x2如何平移得到的()A.先向左平移3个单位,再向下平移2个单位B.先向左平移6个单位,再向上平移7个单位C.先向上平移2个单位,再向左平移3个单位D.先向右平移3个单位,再向上平移2个单位5.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小6.已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB7.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b8.如图,在平面直角坐标系xOy中,直线y=k1x+2与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接BO,若S=1,tan∠BOC=,则k2的值是()△OBCA.﹣3B.1C.2D.39.抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是()A.m≤2或m≥3B.m≤3或m≥4C.2<m<3D.3<m<410.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.二.填空题(满分20分,每小题5分)11.已知,那么m :n = .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m .水面下降2.5m ,水面宽度增加 m .13.如图,点A 在双曲线y =(x >0)上,点B 在双曲线y =(x >0)上,且AB ∥x 轴,BC ∥y 轴,点C 在x 轴上,则△ABC 的面积为 .14.已知抛物线y =ax 2+4ax +4a +1(a ≠0)过点A (m ,3),B (n ,3)两点,若线段AB 的长不大于4,则代数式a 2+a +1的最小值是 . 三.解答题15.(8分)已知抛物线y =a (x ﹣3)2+2经过点(1,﹣2). (1)求a 的值.(2)若点A (m ,y 1),(n ,y 2)(m <n <3)都在该抛物线上,试比较y 1与y 2的大小. 16.(8分)如图,二次函数y =(x ﹣3)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点,已知一次函数y =kx +b 的图象经过该二次函数图象上的点A (1,0)及点B .(1)求二次函数与一次函数的解析式;(2)抛物线上是否存在一点P ,使S △ABP =S △ABC ?若存在,请求出点P 的坐标,若不存在,请说明理由.四.解答题17.(8分)如图,已知梯形ABCD中,EF∥AD∥BC,点E、F分别在腰AB、DC上,AE =3,EB=5.(1)求的值;(2)当AD=4,BC=12时,求EF的长.18.(8分)如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5.求BC、BE的长.五.解答题19.(10分)请你利用直角坐标平面上任意两点(x1,y1)、(x2,y2)间的距离公式解答下列问题:已知:反比例函数与正比例函数y=x的图象交于A、B两点(A在第一象限),点F1(﹣2,﹣2)、F2(2,2)在直线y=x上.设点P(x0,y0)是反比例函数图象上的任意一点,记点P与F1、F2两点的距离之差d=|PF1﹣PF2|.试比较线段AB的长度与d的大小,并由此归纳出双曲线的一个重要定义(用简练的语言表述).20.(10分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象x>x2的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.六.解答题21.(12分)某商场将每台进价为3000元的彩电以3900元的销售价售出,每天可销售出6台,这种彩电每台降价100x(x为整数且0<x<9)元,每天可以多销售出3x台.(1)降价后每台彩电的利润是元,每天销售彩电台,设商场每天销售这种彩电获得的利润为y元,试写出y与x之间的函数关系式.(2)为了使顾客得到实惠,每台彩电的销售价定为多少时,销售该品牌彩电每天获得的利润最大,最大利润是多少?七.解答题22.(12分)小芳从家骑自行车去学校,所需时间y(min)与骑车速度x(m/min)之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少?(2)写出y与x的函数表达式;(3)若小芳7点20分从家出发,预计到校时间不超过7点28分,请你用函数的性质说明小芳的骑车速度至少为多少?八.解答题23.(14分)如图,抛物线y=x2+bx+c与直线y=x﹣3交于,B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线对应的函数解析式;(2)以O,A,P,D为顶点的平行四边形是否存在若存在,求点P的坐标;若不存在,说明理由.参考答案一.选择题1.解:∵y=x2+2x+3=(x+1)2+2,∴抛物线的对称轴为直线x=﹣1.故选:B.2.解:因为,所以b=,把b=代入则=,故选:B.3.解:∵反比例函数y=﹣的图象上有两个不同的点关于y轴的对称点在反比例函数y=的图象上,∴解方程组得x2﹣mx+2=0,∵y=的图象与一次函数y=﹣x+m有两个不同的交点,∴方程x2﹣mx+2=0有两个不同的实数根,∴△=m2﹣8>0,∴m>2或m<﹣2,故选:C.4.解:因为y=x2+6x+7=(x+3)2﹣2.所以将抛物线y=x2先向左平移3个单位,再向下平移2个单位即可得到抛物线y=x2+6x+7.故选:A.5.解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B正确;C、若x<﹣2,则y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;故选:D.6.解:∵P为线段AB的黄金分割点,且AP>PB,∴AP2=AB•BP.故选:C.7.解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.8.解:∵直线y=k1x+2与x轴交于点A,与y轴交于点C,∴点C的坐标为(0,2),∴OC=2,过B作BD⊥y轴于D,∵S=1,△OBC∴BD=1,∵tan∠BOC=,∴=,∴OD=3,∴点B的坐标为(1,3),∵反比例函数y=在第一象限内的图象交于点B,∴k2=1×3=3.故选:D.9.解:把A(4,4)代入抛物线y=ax2+bx+3得:16a+4b+3=4,∴16a+4b=1,∴4a+b=,∵对称轴x=﹣,B(2,m),且点B到抛物线对称轴的距离记为d,满足0<d≤1,∴∴,∴||≤1,∴或a,把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m2(2a+b)+3=m2(2a+﹣4a)+3=m﹣4a=m,a=,∴或,∴m≤3或m≥4.故选:B.10.解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选:C.二.填空题(共4小题,满分20分,每小题5分)11.解:设n=3k,2m﹣n=k,则m=2k,∴m :n =2k :3k =2:3.12.解:建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为(0,2),通过以上条件可设顶点式y =ax 2+2,其中a 可通过代入A 点坐标(﹣2,0), 到抛物线解析式得出:a =﹣0.5,所以抛物线解析式为y =﹣0.5x 2+2, 当水面下降2米,通过抛物线在图上的观察可转化为:当y =﹣2时,对应的抛物线上两点之间的距离,也就是直线y =﹣2与抛物线相交的两点之间的距离,可以通过把y =﹣2代入抛物线解析式得出: ﹣2.5=﹣0.5x 2+2,解得:x =±3,所以水面宽度增加到6米,比原先的宽度当然是增加了6﹣4=2米, 故答案为:2.13.解:作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图, ∵AB ∥x 轴,∴S 矩形AEOD =1,S 矩形BFOD =4, ∴S 矩形AEFB =4﹣1=3, ∴S △F AB =1.5, ∴S △ABC =S △F AB =1.5. 故答案为1.5.14.解:∵抛物线y=ax2+4ax+4a+1=a(x+2)2+1(a≠0),∴顶点为(﹣2,1),过点A(m,3),B(n,3)两点,∴a>0,∴对称轴为直线x=﹣2,线段AB的长不大于4,∴4a+1≥3∴a≥∴a2+a+1的最小值为:()2++1=;故答案为.三.解答题(共2小题,满分16分,每小题8分)15.解:(1)∵抛物线y=a(x﹣3)2+2经过点(1,﹣2),∴﹣2=a(1﹣3)2+2,∴a=﹣1;(2)∵y=﹣(x﹣3)2+2,∴此函数的图象开口向下,当x<3时,y随x的增大而增大,当x>3时,y随x的增大而减小,∵点A(m,y1),(n,y2)(m<n<3)都在该抛物线上,∴y1<y2.16.解:(1)将点A(1,0)代入y=(x﹣3)2+m得(1﹣3)2+m=0,解得m=﹣4.所以二次函数解析式为y=(x﹣3)2﹣4,即y=x2﹣6x+5;当x=0时,y=9﹣4=5,所以C点坐标为(0,5),由于C和B关于对称轴对称,而抛物线的对称轴为直线x=3,所以B点坐标为(6,5),将A(1,0)、B(6,5)代入y=kx+b得,,解得:.所以一次函数解析式为y=x﹣1;(2)假设存在点P,设点P(a,a2﹣6a+5),∵S△ABP =S△ABC,∵,如图1,当点P在直线AB的下方时,过点P作PE∥y轴交直线AB于点E,∴=15,∴E(a,a﹣1)∴PE=﹣a2+7a﹣6,∴,∴a2﹣7a+12=0解得:a1=4,a2=3,∴P1(3,﹣4),P2(4,﹣3),如图2,当点P在直线AB的上方时,过点P作PF∥y轴交直线AB于F,同理可得=15,∴,解得a=0(舍去),a=7,∴P3(7,12).综合以上可得P点坐标为(3,﹣4)或(4,﹣3或)(7,12).四.解答题(共2小题,满分16分,每小题8分)17.解:(1)∵EF∥AD∥BC,∴,∵AE=3,EB=5,∴=;(2)连接AC,∵EF∥AD∥BC,∴,∴=,∴EG=,同理可得:=,∵,∴=,∴=,∴GF=,∴EF=EG+GF=7.18.解:∵l1∥l2∥l3,∴==,即==,∴BC=6,BF=BE,∴BE+BE=7.5,∴BE=5.五.解答题(共2小题,满分20分,每小题10分)19.解:解由和y=x组成的方程组可得A、B两点的坐标分别为,(,)、(,),线段AB的长度=4(2分)∵点P(x0,y0)是反比例函数图象上一点,∴y0=∴PF1===||,PF2===||,(3分)∴d=|PF1﹣PF2|=|||﹣|||,当x0>0时,d=4;当x0<0时,d=4.(3分)因此,无论点P的位置如何,线段AB的长度与d一定相等.(2分)由此可知:到两个定点的距离之差(取正值)是定值的点的集合(轨迹)是双曲线.(2分)20.解:(1)由上述信息可知该函数图象的顶点坐标为:(3,﹣2)设二次函数表达式为:y=a(x﹣3)2﹣2.∵该图象过A(1,0)∴0=a(1﹣3)2﹣2,解得a=.∴表达式为y=(x﹣3)2﹣2(2)如图所示:由已知条件可知直线与图形“G”要有三个交点1当直线与x轴重合时,有2个交点,由二次函数的轴对称性可求x3+x4=6,∴x3+x4+x5>11.当直线过y=(x﹣3)2﹣2的图象顶点时,有2个交点,由翻折可以得到翻折后的函数图象为y=﹣(x﹣3)2+2∴令(x﹣3)2+2=﹣2时,解得x=3+2或x=3﹣2(舍去)∴x3+x4+x5<9+2.综上所述11<x3+x4+x5<9+2.六.解答题(共1小题,满分12分,每小题12分)21.解:(1)由题意得:每台彩电的利润是(3900﹣100x﹣3000)元,即(900﹣100x)元,每天销售(6+3x)台,则y=(900﹣100x)(6+3x)=﹣300x2+2100x+5400故答案为:(900﹣100x),(6+3x);y与x之间的函数关系式为:y=﹣300x2+2100x+5400.(2)y=﹣300x2+2100x+5400.=﹣300(x﹣3.5)2+9075当x=3或x=4时,y=9000.最大值当x=3时,彩电销售单价为3600元,每天销售15台,营业额为3600×15=54000元,当x=4时,彩电销售单价为3500元,每天销售18台,营业额为3500×18=63000元,∴为了使顾客得到实惠,每台彩电的销售价定为3500元时,销售该品牌彩电每天获得的利润最大,最大利润是9000元.七.解答题(共1小题,满分12分,每小题12分)22.解:(1)小芳家与学校之间的距离是:10×140=1400(m);(2)设y=,当x=140时,y=10,解得:k=1400,故y与x的函数表达式为:y=;(3)当y=8时,x=175,∵k>0,∴在第一象限内y随x的增大而减小,∴小芳的骑车速度至少为175m/min.八.解答题(共1小题,满分14分,每小题14分)23.解:(1)将点A、B的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=x2+x﹣3;(2)存在,理由:同理直线AB的表达式为:y=x﹣3,设点P(m,m2+m﹣3),点D(m,m﹣3)(m<0),则PD=|m2+4m|,∵PD∥AO,则当PD=OA=3时,存在以O,A,P,D为顶点的平行四边形,即PD=|m2+4m|=3,①当m2+4m=3时,解得:m=﹣2±(舍去正值),即m2+m﹣3=1﹣,故点P(﹣2﹣,﹣1﹣),②当m2+4m=﹣3时,解得:m=﹣1或﹣3,同理可得:点P(﹣1,﹣)或(﹣3,﹣);综上,点P(﹣2﹣,﹣1﹣)或(﹣1,﹣)或(﹣3,﹣).。
2020年安徽省中考数学试卷

绝密★启用前安徽省2020年初中毕业学业考试数 学一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.下面的数中,与3-的和为0的是( ) A .3B .3-C .13D .13- 2.下面的几何体中,主(正)视图为三角形的是( )A .B .C .D . 3.计算23(2)x -的结果是( ) A .52x -B .68x -C .62x -D .58x - 4.下面的多项式中,能因式分解的是( ) A .2m n +B .21m m -+C .2m n -D .221m m -+ 5.某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .()(01)15a a -+%%万元B .(1)(15)101a -+%%万元C .1015()a -+%%万元D .1011()5a -+%%万元 6.化简211x xx x+--的结果是( )A .1x +B .1x -C .x -D .x7.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域.设正八边形与其内部小正方形的边长都为a ,则阴影部分的面积为 ( ) A .22a B .23a C .24a D .25a 8.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打给甲的概率为( )A .16B .13C .12D .23 9.如图,A 点在半径为2的O 上,过线段OA 上的一点P 作直线l ,与O 过A 点的切线交于点B ,且60APB ∠=.设OP x =,则PAB △的面积y 关于x 的函数图象大致是( )A .B .C .D .10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( ) A .10B .45C .10或45D .10或217二、填空题(本大题共4小题,每小题5分,共20分)11.2011年安徽省棉花产量约378000吨,将378000用科学记数法表示应是 .12.甲、乙、丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为236S =甲,225.4S =乙,216S =丙.则数据波动最小的一组是 . 13.如图,点A 、B 、C 、D 在O 上,O 点在D ∠的内部,四边形OABC 为平行四边形,则OAD OCD ∠+∠=.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效-------------14.如图,P 是矩形ABCD PBC △、PCD △、PDA △,论:①1423S S S S +=+③若312S S =,则422S S =其中正确的结论的序号是 (三、解答题(本大题共2小题,每小题815.计算:(3)(1)(2)a a a a +-+-. 【解】16.解方程:2221x x x -=+. 【解】四、解答题(本大题共2小题,每小题817.在由1()m n m n ⨯⨯>正方形个数f . (1)当m 、n 互质(m 、n 除1m n +3 4 猜想:当m 、n 互质时,在形的个数f 与m 、n 明);(2)当m 、n 不互质时,【解】18.如图,在边长为1A 与1A 是对应点;AD 可以看作由AB 绕A 点经过怎样19题图),B ∠=,求AB 的长.年某小区家庭月均用水情况,随机调查了该小区部分家庭,.频率,该小区月均用水量超过20t 的家庭21.甲、乙两家商场进行促销活动.甲商场采用“慢200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;……,乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱? 【解】(2)若顾客在甲商场购买商品的总金额为x (400600x ≤<)元,优惠后得到商家的优惠率为p (p =优惠金额购买商品的总金额),写出p 与x 之间的函数关系式,并说明p 随x 的变化情况; 【解】 (3)品牌、质量、规格等都相同的某种商品,在甲、乙两商场的标价都是x (200400x ≤<)元,你认为选择哪家商场购买该商品花钱较少?请说明理由. 【解】七、(本题满分12分)22.如图1,在ABC △中,D 、E 、F 分别为三边的中点,G 点在边AB 上,BDG △与四边形ACDG 的周长相等.设BC a =,AC b =,AB c =. (1)求线段BG 的长;【解】(2求证:DG 平分EDF ∠; 【证】(3)连接CG ,如图2,若BDG △与DFG △相似,求证:BG CG ⊥. 【证】八、(本题满分14分)23.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度()m y 与运行的水平距离()m x 满足关系式26()y a x h =-+.已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m .(1)当 2.6h =时,求y 与x 的关系式(不要求写出自变量x 的取值范围);【解】(2)当 2.6h =时,球能否越过球网?球会不会出界?请说明理由; 【解】(3)若球一定能越过球网,又不出边界,求h 的取值范围. 【解】-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效-------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。
2020年安徽省中考数学试卷(附答案与解析)

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2020年安徽省初中学业水平考试数 学注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共8页,“答题卷”共6页.3.请务必在“答题卷...”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的. 1.下列各数中,比2-小的数是 ( )A .3-B .1-C .0D .2 2.计算()63a a -÷的结果是( )A .3a -B .2a -C .3a D .2a 3.下列四个几何体中,主视图为三角形的是( )ABCD4.安徽省计划到2022年建成54 700 000亩高标准农田,其中54 700 000用科学记数法表示为( )A .85.4710⨯B .80.54710⨯C .554710⨯D .75.4710⨯ 5.下列方程中,有两个相等实数根的是( )A .212x x +=B .210x +=C .223x x -=D .220x x -=6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误..的是( )A .众数是11B .平均数是12C .方差是187D .中位数是137.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()12-,B .()12-,C .()23,D .()34,8.如图,Rt ABC △中,°90C ∠=,点D 在AC 上,DBC A ∠=∠.若4AC =,4cos 5A =,则BD 的长度为( )A .94B .125C .154D .4 9.已知点A ,B ,C 在O 上,则下列命题为真命题的是( )A .若半径OB 平分弦AC ,则四边形OABC 是平行四边形 B .若四边形OABC 是平行四边形,则°120ABC ∠=C .若°120ABC ∠=,则弦AC 平分半径OBD .若弦AC 平分半径OB ,则半径OB 平分弦AC10.如图ABC △和DEF △都是边长为2的等边三角形,它们的边BC ,EF 在同一条直线l 上,点C ,E 重合.现将ABC △沿着直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点C 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图像大致为( )毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此-------------------卷-------------------上-------------------答-------------------题-------------------无-------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)ABCD二、填空题(本大题共4小题,每小题5分,满分20分)11.1=________. 12.分解因式:2ab a -=________.13.如图,一次函数()0y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B ,与反比例函数ky x=上的图象在第一象限内交于点C ,CD x ⊥轴,CE y ⊥轴,垂足分别为点D ,E ,当矩形ODCE 与OAB △的面积相等时,k 的值为________.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处,折痕为AP ;再将PCQ △,ADQ △分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究: (1)PAQ ∠的大小为________°; (2)当四边形APCD 是平行四边形时ABQR的值为________.三、(本大题共2小题,每小题8分,满分16分)15.解不等式:2112x ->. 16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段11A B (点1A ,1B 分别为A ,B 的对应点);(2)将线段11B A 绕点1B 顺时针旋转90°得到线段12B A ,画出线段12B A .四、(本大题共2小题,每小题8分,满分16分)17.观察以下等式:数学试卷 第5页(共20页) 数学试卷 第6页(共20页)第1个等式:12112311⎛⎫⨯+=- ⎪⎝⎭,第2个等式:32112422⎛⎫⨯+=- ⎪⎝⎭,第3个等式:52112533⎛⎫⨯+=- ⎪⎝⎭,第4个等式:72112644⎛⎫⨯+=- ⎪⎝⎭,第5个等式:92112755⎛⎫⨯+=- ⎪⎝⎭,……按照以上规律,解决下列问题: (1)写出第6个等式:________;(2)写出你猜想的第n 个等式:________(用含n 的等式表示),并证明.18.如图,山顶上有一个信号塔AC ,已知信号塔高15AC =米,在山脚下点B 处测得塔底C 的仰角°36.9CBD ∠=,塔顶A 的仰角°42ABD ∠=.求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:°tan36.90.75≈,°sin36.90.60≈,°tan 42.00.90≈.)五、(本大题共2小题,每小题10分,满分20分)19.某超市有线上和线下两种销售方式,与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.20.如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD BC =,AC 与BD 相交于点F ,BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E .(1)求证:CBA DAB ≅△;(2)若BE BF =,求AC 平分DAB ∠.六、(本题满分12分)21.某单位食堂为全体960名职工提供了A ,B ,C ,D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查,根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:-------------在-------------------此-------------------卷------------------上-------------------答-------------------题-------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)(1)在抽取的240人中最喜欢A 套餐的人数为________,扇形统计图中“C ”对应扇形的圆心角的大小为________°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B 套餐的人数; (3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.在平面直角坐标系中,已知点()12A ,,()23B ,,()21C ,,直线y x m =+经过点A ,抛物线21y ax bx =++恰好经过A ,B ,C 三点中的两点.(1)判断点B 是否在直线y x m =+上,并说明理由; (2)求a ,b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.八、(本题满分14分)23.如图1.已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE AD =,EC 与BD 相交于点G ,与AD 相交于点F ,AF AB =. (1)求证:BD EC ⊥; (2)若1AB =,求AE 的长;(3)如图2,连接AG,求证:EG DG -=.图1图2数学试卷 第9页(共20页) 数学试卷 第10页(共20页)2020年安徽省初中学业水平考试数学答案解析一、 1.【答案】A【解析】先根据正数都大于0,负数都小于0,可排除C 、D ,再根据两个负数,绝对值大的反而小,可得比2-小的数是3-.33-=∵,11-=,又0123<<<,32-∴<-,所以,所给出的四个数中比2-小的数是3-,故选:A . 【考点】有理数的大小比较 2.【答案】C【解析】先处理符号,化为同底数幂的除法,再计算即可. 解:()63633a a a a a -÷=÷=.故选C . 【考点】乘方符号的处理 3.【答案】B【解析】试题分析:主视图是从物体正面看,所得到的图形. A 、球的主视图是圆,不符合题意; B 、圆锥的主视图是三角形,符合题意; C 、圆柱的主视图是长方形,不符合题意; D 、正方体的主视图是正方形,不符合题意. 故选B .【考点】简单几何体的三视图 4.【答案】D【解析】根据科学记数法的表示方法对数值进行表示即可. 解:754700000 5.4710=⨯,故选:D . 【考点】科学记数法 5.【答案】A【解析】根据根的判别式逐一判断即可.A .212x x +=变形为2210x x -+=,此时440∆=-=,此方程有两个相等的实数根,故选项A 正确;B .210x +=中0440∆=-=-<,此时方程无实数根,故选项B 错误;C .223x x -=整理为2230x x --=,此时412160∆=+=>,此方程有两个不相等的实数根,故此选项错误;D .220x x -=中,40∆=>,此方程有两个不相等的实数根,故选项D 错误. 故选:A .【考点】根的判别式 6.【答案】D【解析】分别根据众数、平均数、方差、中位数的定义判断即可.将这组数据从小到大的顺序排列:10,11,11,11,13,13,15; A .这组数据的众数为11,此选项正确,不符合题意;B .这组数据的平均数为()10111111131315712++++++÷=,此选项正确,不符合题意;C .这组数据的方差为()()()()222211810121112313122151277⎡⎤-+-⨯+-⨯+-=⎣⎦,此选项正确,不符合题意;D .这组数据的中位数为11,此选项错误,符合题意. 故选:D .【考点】众数,平均数,方差,中位数 7.【答案】B【解析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.∵一次函数3y kx =+的函数值y 随x 的增大而减小,0k ∴<,A .当1x =-,2y =时,32k -+=,解得10k =>,此选项不符合题意;B .当1x =,2y =-时,32k +=-,解得50k =-<,此选项符合题意;C .当2x =,3y =时,233k +=,解得0k =,此选项不符合题意;D .当3x =,4y =时,334k +=,解得103k =>,此选项不符合题意. 故选:B .数学试卷 第11页(共20页)数学试卷 第12页(共20页)【考点】一次函数的性质,待定系数法 8.【答案】C【解析】先根据4AC =,4cos 5A =,求出5AB =,再根据勾股定理求出3BC =,然后根据DBC A ∠=∠,即可得4cos cos 5DBC A ∠==,即可求出BD .°90C ∠=∵,cos ACA AB=∴, 4AC =∵,4cos 5A =,5AB =∴,根据勾股定理可得3BC =,DBC A ∠=∠∵,4cos cos 5DBC A ∠==∴, 4cos 5BC DBC BD ∠==∴,即345BD =,154BD =∴,故选:C .【考点】直角三角形,勾股定理 9.【答案】B【解析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可.A .∵半径OB 平分弦AC ,OB AC ⊥∴,AB BC =不能判断四边形OABC 是平行四边形,假命题;B.∵四边形OABC 是平行四边形,且OA OC =,∴四边形OABC 是菱形,OA AB OB ==∴,OA BC ,OAB ∴△是等边三角形,°60OAB ∠=∴,120ABC ∠=∴°,真命题;C .°120ABC ∠=∵,°120AOC ∠=∴,不能判断出弦AC 平分半径OB ,假命题;D .只有当弦AC 垂直平分半径OB 时,半径OB 平分弦AC ,所以是假命题.故选:B .【考点】命题与证明,垂径定理及其推论,菱形的判定与性质,等边三角形的判定与性质10.【答案】A【解析】根据图象可得出重叠部分三角形的边长为x ,根据特殊角三角函数可得高为,由此得出面积y 是x 的二次函数,直到重合面积固定,再往右移动重叠部分的边长变为()4x -,同时可得.C 点移动到F 点,重叠部分三角形的边长为x ,由于是等边三角形,x ,面积为2313224y x x x ==,B 点移动到F 点,重叠部分三角形的边长为()4x -,高为)42x -,面积为()()()2313444224y x x x =--=-,.由二次函数图象的性质可判断答案为A ,故选A . 【考点】三角形运动面积,二次函数图像性质 二、 11.【答案】2【解析】根据算术平方根的性质即可求解1312=-=.故填:2. 【考点】实数的运算 12.【答案】()()11a b b +-【解析】解:原式()()()2111a b a b b =-=+-,故答案为()()11a b b +-. 13.【答案】2【解析】根据题意由反比例函数k 的几何意义得:ODCE S k =矩形,再求解A ,B 的坐标及212ABO S k =△,建立方程求解即可.解:∵矩形ODCE ,C 在ky x =上,ODCE S k =矩形∴,把0x =代入:y x k =+,y k =∴,数学试卷 第13页(共20页) 数学试卷 第14页(共20页)()0B k ∴,,把0y =代入:y x k =+,x k =-∴,()0A k -∴,,212ABO S k =△∴,由题意得:212k k =,解得:2k =,0k =(舍去)2k =∴.【解析】(1)根据折叠得到°180D C ∠+∠=,推出ADBC ,进而得到°90AQP ∠=,以及°°18090A B ∠=-∠=,再由折叠,得到°30DAQ BAP PAQ ∠=∠=∠=即可. 解:由题意可知,°180D C ∠+∠=,AD BC ∴,由折叠可知AQD AQR ∠=∠,CQP PQR ∠=∠,()°1902AQR PQR DQR CQR ∠+∠=∠+∠=∴,即°90AQP ∠=,°90B ∠=∴,则°°18090A B ∠=-∠=,由折叠可知,DAQ BAP PAQ ∠=∠=∠,°30DAQ BAP PAQ ∠=∠=∠=∴,故答案为:30. (2)根据题意得到DCAP ,从而证明APQ PQR ∠=∠,得到QR PR =和QR AR =,若四边形APCD 为平行四边形,则DCAP ,CQP APQ ∠=∠∴,由折叠可知:CQP PQR ∠=∠,APQ PQR ∠=∠∴, QR PR =∴,同理可得:QR AR =,即R 为AP 的中点,由(1)可知,°90AQP ∠=,°30PAQ ∠=,且AB AQ =, 设QR a =,则2AP a =,12QPAP a ==∴, AB AQ =∴,AB QR ==∴三、15.【答案】解:2112x ->,去分母,得212x ->,移项,得23x >,32x >. 【解析】根据解不等式的方法求解即可.具体解题过程参照答案. 【考点】不等式的求解16.【答案】(1)如图所示,11A B 即为所作;(2)如上图所示,12B A 即为所作.【解析】(1)先找出A ,B 两点关于MN 对称的点1A ,1B ,然后连接11A B 即可.具体解题过程参照答案.(2)根据旋转的定义作图可得线段12B A .具体解题过程参照答案.数学试卷 第15页(共20页) 数学试卷 第16页(共20页)【考点】作图,旋转,轴对称 四、17.【答案】(1)由前五个式子可推出第6个等式为:112112⎛⎫⨯+=- ⎪.证明:∵左边2122122111222n n n n n n n n n n--+-⎛⎫=⨯+=⨯==-= ⎪++⎝⎭右边,∴等式成立. 【解析】(1)根据前五个式子的规律写出第六个式子即可.具体解题过程参照答案. (2)观察各个式子之间的规律,然后作出总结,再根据等式两边相等作出证明即可.具体解题过程参照答案. 【考点】规律探究18.【答案】解:设山高CD x =米,则在Rt BCD △中,tan CD CBD BD ∠=,即°tan36.9xBD=, °4tan36.90.753x x BD x =≈=∴,在Rt ABD △中,tan AD ABD BD ∠=,即°tan 4243ADx =,°44tan 420.9 1.233AD x x x =≈=∴,15AD CD -=∵,1.215x x -=∴,解得:75x =.∴山高75CD =米.【解析】设山高CD x =米,先在Rt BCD △利用三角函数用含x 的代数式表示出BD ,再在Rt ABD △中,利用三角函数用含x 的代数式表示出AD ,然后可得关于x 的方程,解方程即得结果.具体解题过程参照答案. 【考点】直角三角形的应用 五、19.【答案】(1)解:2020年线下销售额为()1.04a x -元,故答案为:()1.04a x -. (2)由题意得:()1.43 1.04 1.1x a x a +-=,0.390.06x a =∴,213x a =∴, ∴2020年4月份线上销售额与当月销售总额的比值为:21.432113 1.3a⨯=⨯=. 【解析】(1)根据增长率的含义可得答案.具体解题过程参照答案.(2)由题意列方程()1.43 1.04 1.1x a x a +-=,求解x 即可得到比值.具体解题过程参照答案.【考点】列代数式及一元一次方程的应用20.【答案】(1)证明:AD BC =∵,AD BC =∴, ABD BAC ∠=∠∴,AB ∵为直径,°90ADB BCA ∠=∠=∴,AB BA =∵,CBA DAB ≅∴△△.(2)证明:BE BF =∵,°90ACB ∠=,FBC EBC ∠=∠∴,90ADC ACB ∠=∠=∵,DFA CFB ∠=∠,DAF FBC EBC ∠=∠=∠∴,BE ∵为半圆O 的切线,°90ABE ∠=∴,°90ABC EBC ∠+∠=, °90ACB ∠=∵, °90CAB ABC ∠+∠=∴,CAB EBC ∠=∠∴,DAF CAB ∠=∠∴, AC ∴平分DAB ∠.数学试卷 第17页(共20页) 数学试卷 第18页(共20页)【解析】(1)利用AD BC =,证明ABD BAC ∠=∠,利用AB 为直径,证明°90ADB BCA ∠=∠=,结合已知条件可得结论.具体解题过程参照答案.(2)利用等腰三角形的性质证明:EBC FBC ∠=∠,再证明CBF DAF ∠=∠,利用切线的性质与直径所对的圆周角是直角证明:EBC CAB ∠=∠,从而可得答案.具体解题过程参照答案.【考点】圆的基本性质,弧,弦,圆心角,圆周角之间的关系,直径所对的圆周角是直角,三角形的全等的判定,切线的性质定理,三角形的内角和定理 六、21.【答案】(1)最喜欢A 套餐的人数25%24060=⨯=(人), 最喜欢C 套餐的人数24060842472=---=(人), 扇形统计图中“C ”对应扇形的圆心角为:°°72360108240⨯=,(3)由题意可得,从甲、乙、丙、丁四名职工中任选两人,总共有6种不同的结果,每种结果发生的可能性相同,列举如下:甲乙,甲丙,甲丁,乙丙,乙丁,丙丁,其中甲被选到的情况有甲乙,甲丙,甲丁3种,故所求概率3162P ==. 【解析】(1)用最喜欢A 套餐的人数对应的百分比乘以总人数即可,先求出最喜欢C 套餐的人数,然后用最喜欢C 套餐的人数占总人数的比值乘以360°即可求出答案.具体解题过程参照答案.(2)先求出最喜欢B 套餐的人数对应的百分比,然后乘以960即可.具体解题过程参照答案.(3)用列举法列出所有等可能的情况,然后找出甲被选到的情况即可求出概率.具体解题过程参照答案.【考点】条形统计图,扇形统计图 七、22.【答案】(1)点B 在直线y x m =+上,理由如下: 将()12A ,代入y x m =+得21m =+, 解得1m =,∴直线解析式为1y x =+,将()23B ,代入1y x =+,式子成立,∴点B 在直线y x m =+上.(2)∵抛物线21y ax bx =++与直线AB 都经过()01,点,且B ,C 两点的横坐标相同, ∴抛物线只能经过A ,C 两点,将A ,C 两点坐标代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩,解得:1a =-,2b =.(3)设平移后所得抛物线的对应表达式为()2y x h k =--+,∵顶点在直线1y x =+上,1k h =+∴,令0x =,得到平移后抛物线与y 轴交点的纵坐标为21h h -++,2215124h h h ⎛⎫-++=--+ ⎪⎝⎭∵,∴当12h =时,此抛物线与y 轴交点的纵坐标取得最大值54.【解析】(1)先将A 代入y x m =+,求出直线解析式,然后将将B 代入看式子能否成立即可.具体解题过程参照答案.(2)先跟抛物线21y ax bx =++与直线AB 都经过()01,点,且B ,C 两点的横坐标相同,判断出抛物线只能经过A ,C 两点,然后将A ,C 两点坐标代入21y ax bx =++得出关于a ,b 的二元一次方程组.具体解题过程参照答案.(3)设平移后所得抛物线的对应表达式为()2y x h k =--+,根据顶点在直线1y x =+上,得出1k h =+,令0x =,得到平移后抛物线与y 轴交点的纵坐标为21h h -++,在将式子配方即可求出最大值.具体解题过程参照答案.【考点】一次函数解析式,二次函数解析式,二次函数的平移和求最值 八、数学试卷 第19页(共20页) 数学试卷 第20页(共20页)23.【答案】(1)∵四边形ABCD 是矩形,°90BAD EAD ∠=∠=∴,AO BC =,ADBC , 在EAF △和DAB △, AE AD EAF DAB AF AB =⎧⎪∠=∠⎨⎪=⎩, ()EAF DAB SAS ≅∴△△,E BDA ∠=∠∴,°90BDA ABD ∠+∠=∵, °90E ABD ∠+∠=∴, °90EGB ∠=∴,BG EC ⊥∴.(2)设AE x =,则1EB x =+,BC AD AE x ===,AF BC ∵,E E ∠=∠,EAF EBC ∴△∽△,EA AFEB BC =∴,又1AF AB ==, 11x x x=+∴即210x x --=,解得:x ,12x =(舍去)即AE =.(3)在EG 上截取EH DG =,连接AH , 在EAH △和DAG △, AE AD HEA GDA EH DG =⎧⎪∠=∠⎨⎪=⎩, ()EAH DAG SAS ≅∴△△,EAH DAG ∠=∠∴,AH AG =, °90EAH DAH ∠+∠=∵,°90DAG DAH ∠+∠=∴,°90EAG ∠=∴,GAH∴△是等腰直角三角形, 222AH AG GH +=∴即222AG GH =,GH ∴,GH EG EH EG DG =-=-∵,EG DG -=∴.【解析】(1)由矩形的性质及已知证得EAF DAB ≅△△,则有E ADB ∠=∠,进而证得°90EGB ∠=即可证得结论.具体解题过程参照答案.(2)设AE x =,利用矩形性质知AF BC ,则有EA AFEB BC=,进而得到x 的方程,解之即可.具体解题过程参照答案.(3)在EF 上截取EH DG =,进而证明EHA DGA ≅△△,得到EAH DAG ∠=∠,AH AG =,则证得HAG △为等腰直角三角形,即可得证结论.具体解题过程参照答案.【考点】矩形的性质,全等三角形的判定与性质,等腰三角形的判定与性质,直角定义,相似三角形的判定与性质,解一元二次方程。
2020年安徽省中考数学试卷及答案

2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.(4分)(2020•安徽)下列各数中,比﹣2小的数是( ) A .﹣3B .﹣1C .0D .22.(4分)(2020•安徽)计算(﹣a )6÷a 3的结果是( ) A .﹣a 3B .﹣a 2C .a 3D .a 23.(4分)(2020•安徽)下面四个几何体中,主视图为三角形的是( )A .B .C .D .4.(4分)(2020•安徽)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为( ) A .5.47×108B .0.547×108C .547×105D .5.47×1075.(4分)(2020•安徽)下列方程中,有两个相等实数根的是( ) A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =06.(4分)(2020•安徽)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( ) A .众数是11B .平均数是12C .方差是187D .中位数是137.(4分)(2020•安徽)已知一次函数y =kx +3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .(﹣1,2)B .(1,﹣2)C .(2,3)D .(3,4)8.(4分)(2020•安徽)如图,Rt △ABC 中,∠C =90°,点D 在AC 上,∠DBC =∠A .若AC=4,cos A=45,则BD的长度为()A.94B.125C.154D.49.(4分)(2020•安徽)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.(4分)(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)(2020•安徽)计算:√9−1= . 12.(5分)(2020•安徽)分解因式:ab 2﹣a = .13.(5分)(2020•安徽)如图,一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数y =kx的图象在第一象限内交于点C ,CD ⊥x 轴,CE ⊥y 轴.垂足分别为点D ,E .当矩形ODCE 与△OAB 的面积相等时,k 的值为 .14.(5分)(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究: (1)∠P AQ 的大小为 °; (2)当四边形APCD 是平行四边形时,AB QR的值为 .三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2020•安徽)解不等式:2x−12>1.16.(8分)(2020•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段A 1B 1(点A 1,B 1分别为A ,B 的对应点);(2)将线段B 1A 1绕点B 1顺时针旋转90°得到线段B 1A 2,画出线段B 1A 2.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)(2020•安徽)观察以下等式: 第1个等式:13×(1+21)=2−11,第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15. …按照以上规律,解决下列问题: (1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.18.(8分)(2020•安徽)如图,山顶上有一个信号塔AC ,已知信号塔高AC =15米,在山脚下点B 处测得塔底C 的仰角∠CBD =36.9°,塔顶A 的仰角∠ABD =42.0°,求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.(10分)(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.(12分)(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y 轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)(2020•安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE =AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.2020年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)(2020•安徽)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.(4分)(2020•安徽)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【解答】解:原式=a6÷a3=a3.故选:C.3.(4分)(2020•安徽)下面四个几何体中,主视图为三角形的是()A.B.C.D.【解答】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.4.(4分)(2020•安徽)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【解答】解:54700000用科学记数法表示为:5.47×107.故选:D .5.(4分)(2020•安徽)下列方程中,有两个相等实数根的是( ) A .x 2+1=2xB .x 2+1=0C .x 2﹣2x =3D .x 2﹣2x =0【解答】解:A 、△=(﹣2)2﹣4×1×1=0,有两个相等实数根; B 、△=0﹣4=﹣4<0,没有实数根;C 、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D 、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根. 故选:A .6.(4分)(2020•安徽)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( ) A .众数是11B .平均数是12C .方差是187D .中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A 选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意;x =(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B 不符合题意;S 2=17[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=187,因此方差为187,于是选项C 不符合题意; 故选:D .7.(4分)(2020•安徽)已知一次函数y =kx +3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .(﹣1,2)B .(1,﹣2)C .(2,3)D .(3,4)【解答】解:A 、当点A 的坐标为(﹣1,2)时,﹣k +3=2, 解得:k =1>0,∴y 随x 的增大而增大,选项A 不符合题意; B 、当点A 的坐标为(1,﹣2)时,k +3=﹣2, 解得:k =﹣5<0,∴y 随x 的增大而减小,选项B 符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=13>0,∴y随x的增大而增大,选项D不符合题意.故选:B.8.(4分)(2020•安徽)如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=45,则BD的长度为()A.94B.125C.154D.4【解答】解:∵∠C=90°,AC=4,cos A=4 5,∴AB=ACcosA=5,∴BC=√AB2−AC2=3,∵∠DBC=∠A.∴cos∠DBC=cos∠A=BCBD=45,∴BD=3×54=154,故选:C.9.(4分)(2020•安徽)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【解答】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.10.(4分)(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=√32EJ=√32x,∴y=12EJ•GH=√34x2.当x=2时,y=√3,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y =12FJ •GH =√34(4﹣x )2,函数图象为抛物线的一部分,且抛物线开口向上. 故选:A .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)(2020•安徽)计算:√9−1= 2 . 【解答】解:原式=3﹣1=2. 故答案为:2.12.(5分)(2020•安徽)分解因式:ab 2﹣a = a (b +1)(b ﹣1) . 【解答】解:原式=a (b 2﹣1)=a (b +1)(b ﹣1), 故答案为:a (b +1)(b ﹣1)13.(5分)(2020•安徽)如图,一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数y =kx 的图象在第一象限内交于点C ,CD ⊥x 轴,CE ⊥y 轴.垂足分别为点D ,E .当矩形ODCE 与△OAB 的面积相等时,k 的值为 2 .【解答】解:一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点A 和点B ,令x =0,则y =k ,令y =0,则x =﹣k ,故点A 、B 的坐标分别为(﹣k ,0)、(0,k ),则△OAB 的面积=12OA •OB =12k 2,而矩形ODCE 的面积为k , 则12k 2=k ,解得:k =0(舍去)或2,故答案为2.14.(5分)(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究: (1)∠P AQ 的大小为 30 °; (2)当四边形APCD 是平行四边形时,AB QR的值为 √3 .【解答】解:(1)由折叠的性质可得:∠B =∠AQP ,∠DAQ =∠QAP =∠P AB ,∠DQA =∠AQR ,∠CQP =∠PQR ,∠D =∠ARQ ,∠C =∠QRP , ∵∠QRA +∠QRP =180°, ∴∠D +∠C =180°, ∴AD ∥BC ,∴∠B +∠DAB =180°, ∵∠DQR +∠CQR =180°, ∴∠DQA +∠CQP =90°, ∴∠AQP =90°, ∴∠B =∠AQP =90°, ∴∠DAB =90°,∴∠DAQ =∠QAP =∠P AB =30°, 故答案为:30;(2)由折叠的性质可得:AD =AR ,CP =PR , ∵四边形APCD 是平行四边形, ∴AD =PC , ∴AR =PR , 又∵∠AQP =90°,∴QR =12AP ,∵∠P AB =30°,∠B =90°, ∴AP =2PB ,AB =√3PB , ∴PB =QR , ∴AB QR=√3,故答案为:√3.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)(2020•安徽)解不等式:2x−12>1.【解答】解:去分母,得:2x ﹣1>2, 移项,得:2x >2+1, 合并,得:2x >3, 系数化为1,得:x >32.16.(8分)(2020•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段A 1B 1(点A 1,B 1分别为A ,B 的对应点);(2)将线段B 1A 1绕点B 1顺时针旋转90°得到线段B 1A 2,画出线段B 1A 2.【解答】解:(1)如图线段A 1B 1即为所求. (2)如图,线段B 1A 2即为所求.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)(2020•安徽)观察以下等式: 第1个等式:13×(1+21)=2−11,第2个等式:34×(1+22)=2−12, 第3个等式:55×(1+23)=2−13, 第4个等式:76×(1+24)=2−14. 第5个等式:97×(1+25)=2−15. …按照以上规律,解决下列问题: (1)写出第6个等式:118×(1+26)=2−16 ;(2)写出你猜想的第n 个等式: 2n−1n+2×(1+2n )=2−1n(用含n 的等式表示),并证明.【解答】解:(1)第6个等式:118×(1+26)=2−16;(2)猜想的第n 个等式:2n−1n+2×(1+2n)=2−1n.证明:∵左边=2n−1n+2×n+2n =2n−1n =2−1n=右边, ∴等式成立.故答案为:118×(1+26)=2−16;2n−1n+2×(1+2n )=2−1n .18.(8分)(2020•安徽)如图,山顶上有一个信号塔AC ,已知信号塔高AC =15米,在山脚下点B 处测得塔底C 的仰角∠CBD =36.9°,塔顶A 的仰角∠ABD =42.0°,求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【解答】解:由题意,在Rt△ABD中,tan∠ABD=AD BD,∴tan42.0°=ADBD≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=CD BD,∴tan36.9°=CDBD≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x =213a , ∴1.43x 1.1a=1.43⋅213a 1.1a=0.22a 1.1a=0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.20.(10分)(2020•安徽)如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD =BC ,AC 与BD 相交于点F .BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E .(1)求证:△CBA ≌△DAB ;(2)若BE =BF ,求证:AC 平分∠DAB .【解答】(1)证明:∵AB 是半圆O 的直径, ∴∠ACB =∠ADB =90°,在Rt △CBA 与Rt △DAB 中,{BC =AD BA =AB ,∴Rt △CBA ≌Rt △DAB (HL );(2)解:∵BE =BF ,由(1)知BC ⊥EF , ∴∠E =∠BFE ,∵BE 是半圆O 所在圆的切线, ∴∠ABE =90°, ∴∠E +∠BAE =90°, 由(1)知∠D =90°, ∴∠DAF +∠AFD =90°, ∵∠AFD =∠BFE , ∴∠AFD =∠E ,∴∠DAF =90°﹣∠AFD ,∠BAF =90°﹣∠E , ∴∠DAF =∠BAF , ∴AC 平分∠DAB . 六、(本题满分12分)21.(12分)(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×72240=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×84240=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为612=12.七、(本题满分12分)22.(12分)(2020•安徽)在平面直角坐标系中,已知点A (1,2),B (2,3),C (2,1),直线y =x +m 经过点A ,抛物线y =ax 2+bx +1恰好经过A ,B ,C 三点中的两点. (1)判断点B 是否在直线y =x +m 上,并说明理由; (2)求a ,b 的值;(3)平移抛物线y =ax 2+bx +1,使其顶点仍在直线y =x +m 上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【解答】解:(1)点B 是在直线y =x +m 上,理由如下: ∵直线y =x +m 经过点A (1,2), ∴2=1+m ,解得m =1, ∴直线为y =x +1,把x =2代入y =x +1得y =3, ∴点B (2,3)在直线y =x +m 上;(2)∵直线y =x +1与抛物线y =ax 2+bx +1都经过点(0,1),且B 、C 两点的横坐标相同,∴抛物线只能经过A 、C 两点,把A (1,2),C (2,1)代入y =ax 2+bx +1得{a +b +1=24a +2b +1=1,解得a =﹣1,b =2;(3)由(2)知,抛物线为y =﹣x 2+2x +1,设平移后的抛物线为y =﹣x 2+px +q ,其顶点坐标为(p2,p 24+q ),∵顶点仍在直线y =x +1上, ∴p 24+q =p2+1, ∴q =−p 24+p2+1, ∵抛物线y =﹣x 2+px +q 与y 轴的交点的纵坐标为q ,∴q =−p 24+p 2+1=−14(p ﹣1)2+54,∴当p =1时,平移后所得抛物线与y 轴交点纵坐标的最大值为54.八、(本题满分14分)23.(14分)(2020•安徽)如图1,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴AEDC =AF DF,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得a=1+√52或1−√52(舍去),∴AE=1+√5 2.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠P AG=∠P AD+∠DAG=∠P AD+∠EAP=∠DAE=90°,∴△P AG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=√2AG.。
2020年合肥市五十五中新校区九年级数学学情检测试卷(沪科版)

五十五中新校区九年级数学学情检测试卷(2020.3.2)(命题人:张学友)满分150分,时间120分钟一、选择题(本大题共10小题,每小题4分,共40分)1.﹣的相反数是()A. B.﹣ C.D.﹣2.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.3.总投资约160亿元,线路全长约29.06km的合肥地铁一号线已于2016年12月31日正式运营,这标志着合肥从此进入了地铁时代,将160亿用科学记数法表示为()A.160×108 B.16×109 C.1.6×1010 D.1.6×10114.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35° B.40° C.45° D.55°5.下列运算中,正确的是()A.3x3•2x2=6x6 B.(﹣x2y)2=x4y C.(2x2)3=6x6 D.x5÷x=2x46.年龄/岁13 14 15 16频数 5 15 x 10﹣xA.平均数、中位数 B.众数、中位数 C.平均数、方差 D.中位数、方差7.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B. C. D.8.随着电子商务的发展,越来越多的人选择网上购物,导致各地商铺出租价格持续走低,某商业街的商铺今年1月份的出租价格为a元/平方米,2月份比1月份下降了5%,若3,4月份的出租价格按相同的百分率x继续下降,则4月份该商业街商铺的出租价格为:()A.(1﹣5%)a(1﹣2x)元B.(1﹣5%)a(1﹣x)2元C.(a﹣5%)(a﹣2)x元 D.a(1﹣5%﹣2x)元9.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有4个D.tan∠CAD=10.如图,在△ABC中,∠BAC=90°,AB=AC=3,点D在BC上且BD=2CD,E,F分别在AB,AC上运动且始终保持∠EDF=45°,设BE=x,CF=y,则y与x之间的函数关系用图象表示为:()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)11.分解因式:2ab3﹣8ab= .12.若函数y=与y=x﹣2图象的一个交点坐标(a,b),则﹣的值为.13.A,B两地相距120km.甲、乙两辆汽车同时从A地出发去B地,已知甲车的速度是乙车速度的1.2倍,结果甲车比乙车提前20分钟到达,则甲车的速度是km/h.14.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=32 cm,则∠BAC的度数为________.三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣2sin45°+||﹣()﹣2+()0.16.解一元二次方程:x2﹣6x+6=0.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,△ABC的三个顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出将△ABC先向右平移3个单位,再向上平移2个单位后得到的△A1B1C1;(2)在图中画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2;(3)在(2)的条件下,计算点A所经过的路径的长度.18.(8分)观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×+1= ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.五、解答题(本大题共2小题,每小题10分,共20分)19.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(≈1.73,结果精确到0.1米)20.在合肥市2018年中考的理化生实验操作考试中,绝大部分同学都取得了满分成绩,某校对九x进行了分组统计,结果如下表所示:组号分组频数一9.6≤x<9.7 1二9.7≤x<9.8 2三9.8≤x<9.9 a四9.9≤x<10 8五x=10 3(2)若用扇形统计图来描述,求第三小组对应的扇形的圆心角度数;(3)把在第二小组内的两个班分别记为:A1,A2,在第五小组内的三个班分别记为:B1,B2,B3,从第二小组和第五小组总共5个班级中随机抽取2个班级进行“你对中考实验操作考试的看法”的问卷调查,求第二小组至少有1个班级被选中的概率.六、解答题(满分12分)21.如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由.七、解答题(满分12分)22.如图,点C是以AB为直径的⊙O上一点,CD是⊙O切线,D在AB的延长线上,作AE⊥CD于E.(1)求证:AC平分∠BAE;(2)若AC=2CE=6,求⊙O的半径;(3)请探索:线段AD,BD,CD之间有何数量关系?请证明你的结论.、解答题(满分14分)23.如图l,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD 的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:△DOK≌△BOG;(2)求证:AB+AK=BG:(3)如图2,若KD=KG=2,点P是线段KD上的动点(不与点D、K重台),PM∥DG交KG于点M,PN ∥KG交DG于点N,设PD=x,S△PMN=y,求出y与x的函数关系式.。
2020年安徽省合肥五十中西校中考数学评测试卷(2)

2020年安徽省合肥五十中西校中考数学评测试卷(2)一、选择题(本大题共10小题,每小题3分,满分30分) 1.(3分)64-的立方根为( ) A .4B .4-C .8-D .不存在2.(3分)如图是一个几何体的主视图和俯视图,则这个几何体是( )A .三棱柱B .正方体C .三棱锥D .长方体3.(3分)2020年3月11日晚,安徽省统计局、国家统计局安徽调查总队联合发布,安徽省全年生产总值()37114GDP 亿元,居全国第11位;按可比价格计算,比上年增长7.5%,居全国第7位,其中数字37114亿用科学记数法表示为( ) A .43.711410⨯B .50.3711410⨯C .123.711410⨯D .113.711410⨯4.(3分)下列计算正确的是( ) A 527B .235()x x x --=- C .22(2)(2)4x y x y x y -+--=-D .222(2)4x y x y -=-5.(3分)2018年第一季度,合肥高新区某企业营收入比2017年同期增长12%,2019年第一季度营收入比2018年同期增长10%,设2018年和2019年第一季度营收入的平均增长率为x ,则可列方程( ) A .212%10%x =+B .2(1)112%10%x +=++C .12(112%)(110%)x +=++D .2(1)(112%)(110%)x +=++6.(3分)如图,在ABC ∆中,AB AC =,CD 平分ACB ∠交AB 于点D ,//AE DC 交BC 的延长线于点E ,已知32BAC ∠=︒,求E ∠的度数为( )A.48︒B.42︒C.37︒D.32︒7.(3分)三个正方形方格在扇形中的位置如图所示,点O为扇形的圆心,格点A,B,C 分别在扇形的两条半径和弧上,已知每个方格的边长为1,则扇形EOF的面积为()A.54πB.98πC.πD.32π8.(3分)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A∠=︒,4BD=,6CF=,则正方形ADOF的边长是()A.2B.2C.3D.49.(3分)若将直线410y x=-+向下平移m个单位长度与双曲线4yx=恰好只有一个公共点,则m的值为()A.2B.18C.2-或18D.2或18 10.(3分)如图,等边ABC∆的边长为4,点D是边AC上的一动点,连接BD,以BD为斜边向上作等腰Rt BDE∆,连接AE,则AE的最小值为()A .1B .2C .2D .221-二、填空题(本大题共4小题,每小题4分,满分16分) 11.(4分)不等式222x x ->-的解集为 . 12.(4分)如图,点A 在双曲线6y x =上,点B 在双曲线(0)ky k x=≠上,//AB x 轴,过点A 作AD x ⊥轴于D ,连接OB ,与AD 相交于点C ,若2AC CD =,则k 的值为 .13.(4分)如图,若点D 为等边ABC ∆的边BC 的中点,点E ,F 分别在AB ,AC 边上,且90EDF ∠=︒,当2BE =,1CF =时,EF 的长度为 .14.(4分)已知2a b -=,2220ab b c c +-+=,当0b …,21c -<…时,整数a 的值是 . 三、解答题(本大题共7小题,共54分)15.(5分)计算:1012sin 60()2020|132-︒+---16.(5分)解方程:22142xx x =---. 17.(6分)如图,已知矩形ABCD 中,点E ,F 分别是AD ,AB 上的点,EF EC ⊥,且AE CD =. (1)求证:AF DE =; (2)若25DE AD =,求tan AFE ∠.18.(7分)如图,某数学兴趣小组为测量一颗古树BH 和教学楼CG 的高,先在A 处用高1.5米的测角仪AF 测得古树顶端H 的仰角HFE ∠为45︒,此时教学楼顶端G 恰好在视线FH 上,再向前走10米到达B 处,又测得教学楼顶端G 的仰角GED ∠为60︒,点A 、B 、C 三点在同一水平线上.(1)求古树BH 的高;(2)求教学楼CG 的高.(参考数据:2 1.4=,3 1.7)=19.(7分)小昕的口袋中有5把相似的钥匙,其中2把钥匙(记为1A ,2)A 能打开教室前门锁,而剩余的3把钥匙(记为1B ,2B ,3)B 不能打开教室前门锁. (1)小昕从口袋中随便摸出一把钥匙就能打开教室前门锁的概率是 ;(2)请用树状图或列表等方法,求出小昕从口袋中第一次随机摸出的一把钥匙不能打开教室前门锁(摸出的钥匙不再放回),而第二次随机摸出的一把钥匙正好能打开教室前门锁的概率.20.(12分)如图1,抛物线2(2)4y x m x =+++的顶点C 在x 轴正半轴上,直线2y x =+与抛物线交于A ,B 两点(点A 在点B 的左侧). (1)求抛物线的函数表达式;(2)点P 是抛物线上一点,若2PAB ABC S S ∆∆=,求点P 的坐标;(3)如图2,若点M 是位于直线AB 下方抛物线上一动点,以MA 、MB 为邻边作平行四边形MANB ,当平行四边形MANB 的面积最大时,请直接写出平行四边形MANB 的面积S 及点M 的坐标.21.(12分)如图1,在ABC=,点D,E分别是边BC,AC上的点,且ADE B∆中,AB AC∠=∠.(1)求证:AB CE BD CDg g;=(2)若5BC=,求AE的最小值;AB=,6(3)如图2,若ABCAD=,∆为等边三角形,AD DE⊥,点C在线段DE上,3⊥,BE DEBE=,求DE的长.42020年安徽省合肥五十中西校中考数学评测试卷(2)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分) 1.(3分)64-的立方根为( ) A .4B .4-C .8-D .不存在【解答】解:64-的立方根是4-, 故选:B .2.(3分)如图是一个几何体的主视图和俯视图,则这个几何体是( )A .三棱柱B .正方体C .三棱锥D .长方体【解答】解:由主视图和俯视图可得几何体为三棱柱, 故选:A .3.(3分)2020年3月11日晚,安徽省统计局、国家统计局安徽调查总队联合发布,安徽省全年生产总值()37114GDP 亿元,居全国第11位;按可比价格计算,比上年增长7.5%,居全国第7位,其中数字37114亿用科学记数法表示为( ) A .43.711410⨯B .50.3711410⨯C .123.711410⨯D .113.711410⨯【解答】解:37114亿123711400000000 3.711410==⨯. 故选:C .4.(3分)下列计算正确的是( ) A 527B .235()x x x --=- C .22(2)(2)4x y x y x y -+--=-D .222(2)4x y x y -=-【解答】解:A 52,无法计算,故此选项错误;B 、23()x x --,无法计算,故此选项错误;C 、22(2)(2)4x y x y x y -+--=-,正确;D 、222(2)44x y x ax y -=-+,故此选项错误;故选:C .5.(3分)2018年第一季度,合肥高新区某企业营收入比2017年同期增长12%,2019年第一季度营收入比2018年同期增长10%,设2018年和2019年第一季度营收入的平均增长率为x ,则可列方程( ) A .212%10%x =+B .2(1)112%10%x +=++C .12(112%)(110%)x +=++D .2(1)(112%)(110%)x +=++【解答】解:设2018年和2019年第一季度营收入的平均增长率为x , 则可列方程2(1)(112%)(110%)x +=++, 故选:D .6.(3分)如图,在ABC ∆中,AB AC =,CD 平分ACB ∠交AB 于点D ,//AE DC 交BC 的延长线于点E ,已知32BAC ∠=︒,求E ∠的度数为( )A .48︒B .42︒C .37︒D .32︒【解答】解:AB AC =Q ,32BAC ∠=︒,74B ACB ∴∠=∠=︒, CD Q 平分ACB ∠,1372BCD ACB ∴∠=∠=︒,//AE DC Q , 37E BCD ∴∠=∠=︒.故选:C .7.(3分)三个正方形方格在扇形中的位置如图所示,点O 为扇形的圆心,格点A ,B ,C 分别在扇形的两条半径和弧上,已知每个方格的边长为1,则扇形EOF 的面积为( )A .54πB .98πC .πD .32π【解答】解:连接OC ,由勾股定理得:221310OC =+=, 由正方形的性质得:45EOB ∠=︒,所以扇形EOF 的面积为:245(10)54ππ⨯=,故选:A .8.(3分)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=︒,4BD =,6CF =,则正方形ADOF 的边长是( )A 2B .2C 3D .4【解答】解:设正方形ADOF 的边长为x , 由题意得:4BE BD ==,6CE CF ==,10BC BE CE BD CF ∴=+=+=,在Rt ABC ∆中,222AC AB BC +=, 即222(6)(4)10x x +++=, 整理得,210240x x +-=, 解得:2x =,或12x =-(舍去),2x ∴=,即正方形ADOF 的边长是2;故选:B.9.(3分)若将直线410y x=-+向下平移m个单位长度与双曲线4yx=恰好只有一个公共点,则m的值为()A.2B.18C.2-或18D.2或18【解答】解:将直线410y x=-+向下平移m个单位长度得直线解析式为410y x m=-+-,根据题意方程组4410yxy x m⎧=⎪⎨⎪=-+-⎩只有一组解,消去y得4410x mx=-+-,整理得24(10)40x m x--+=,△2(10)4440m=--⨯⨯=,解得2m=或18m=,故选:D.10.(3分)如图,等边ABC∆的边长为4,点D是边AC上的一动点,连接BD,以BD为斜边向上作等腰Rt BDE∆,连接AE,则AE的最小值为()A.1B.2C.2D.221-【解答】解:如图,过点B作BH AC⊥于H点,作射线HE,ABC∆Q是等边三角形,BH AC⊥,2AH CH∴==,90BED BHD∠=∠=︒Q,∴点B,点D,点H,点E四点共圆,45BHE BDE∴∠=∠=︒,∴点E在AHB∠的角平分线上运动,∴当AE EH⊥时,AE的长度有最小值,45AHE∠=︒Q,22AH AE∴==,AE∴的最小值为2,故选:B.二、填空题(本大题共4小题,每小题4分,满分16分)11.(4分)不等式222xx->-的解集为2x>.【解答】解:242x x->-,242x x+>+,36x>,2x>,故答案为:2x>.12.(4分)如图,点A在双曲线6yx=上,点B在双曲线(0)ky kx=≠上,//AB x轴,过点A作AD x⊥轴于D,连接OB,与AD相交于点C,若2AC CD=,则k的值为18.【解答】解:过点B作BE x⊥轴于E,延长线段BA,交y轴于F,//AB xQ轴,AF y∴⊥轴,∴四边形AFOD是矩形,四边形OEBF是矩形,AF OD∴=,BF OE=,AB DE∴=,Q点A在双曲线6yx=上,6AFOD S ∴=矩形,同理OEBF S k =矩形,//AB OD Q ,∴12OD CD AB AC ==, 2AB OD ∴=,2DE OD ∴=,318OEBF AFOD S S ∴==矩形矩形,18k ∴=,故答案是:18.13.(4分)如图,若点D 为等边ABC ∆的边BC 的中点,点E ,F 分别在AB ,AC 边上,且90EDF ∠=︒,当2BE =,1CF =时,EF 的长度为7 .【解答】解:作EM BC ⊥于点M ,作FN BC ⊥于点N , 则90EMB EMD ∠=∠=︒,90FNC FND ∠=∠=︒,ABC ∆Q 是等边三角形,2BE =,1CF =, 60B C ∴∠=∠=︒,1BM ∴=,3EM =12CN =,3FN =90EDF ∠=︒Q ,90EDM DEM ∠+∠=︒, 90EDM FDN ∴∠+∠=︒,DEM FDN ∴∠=∠, EDM DFN ∴∆∆∽,EM DMDN FN =, Q 点D 为BC 的中点,设BDa =,则1DM a =-,12DN a =-, ∴3132a =-, 解得,112a =-(舍去),22a =,1DM ∴=,32DN =,90EMD ∠=︒Q ,90FND ∠=︒,2222(3)12DE EM DM ∴=+=+=,222233()()322DF DN FN =+=+=,又90EDF ∠=︒Q ,22222(3)7EF DE DF ∴=+=+=,故答案为:7.14.(4分)已知2a b -=,2220ab b c c +-+=,当0b …,21c -<…时,整数a 的值是 2或3 .【解答】解:2a b -=Q ,2a b ∴=+,222ab b c c ∴+-+ 2(2)22b b b c c =++-+ 224(2)b b c c =+--22(2)(1)3b c =+---0=,0b Q …,21c -<…,24(2)12b ∴+剟, a Q 是整数,0b ∴=或1, 2a ∴=或3.故答案为:2或3.三、解答题(本大题共7小题,共54分)15.(5分)计算:1012sin 60()2020|13|2-︒+----【解答】解:原式3221(31)=⨯----, 32131=---+,2=-.16.(5分)解方程:22142xx x =---. 【解答】解:去分母得:22224x x x =+-+, 解得:1x =-,经检验1x =-是分式方程的解.17.(6分)如图,已知矩形ABCD 中,点E ,F 分别是AD ,AB 上的点,EF EC ⊥,且AE CD =. (1)求证:AF DE =; (2)若25DE AD =,求tan AFE ∠.【解答】(1)证明:Q 四边形ABCD 是矩形,90A D ∴∠=∠=︒, EF CE ⊥Q , 90FEC ∴∠=︒,90AFE AEF AEF DEC ∴∠+∠=∠+∠=︒, AFE DEC ∴∠=∠,在AEF ∆与DCE ∆中,A D AFE DEC AE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AEF DCE AAS ∴∆≅∆,AF DE ∴=;(2)解:25DE AD =Q ,32AE DE ∴=, AF DE =Q ,332tan 2DEAFE DE ∴∠==. 18.(7分)如图,某数学兴趣小组为测量一颗古树BH 和教学楼CG 的高,先在A 处用高1.5米的测角仪AF 测得古树顶端H 的仰角HFE ∠为45︒,此时教学楼顶端G 恰好在视线FH 上,再向前走10米到达B 处,又测得教学楼顶端G 的仰角GED ∠为60︒,点A 、B 、C 三点在同一水平线上.(1)求古树BH 的高;(2)求教学楼CG 的高.(参考数据:2 1.4=,3 1.7)=【解答】解:(1)在Rt EFH ∆中,90HEF ∠=︒,45HFE ∠=︒,10HE EF ∴==,1.51011.5BH BE HE ∴=+=+=,∴古树的高为11.5米;(2)在Rt EDG ∆中,60GED ∠=︒,tan 603DG DE DE ∴=︒=,设DE x =米,则3DG x =米,在Rt GFD ∆中,90GDF ∠=︒,45GFD ∠=︒,GD DF EF DE ∴==+,∴310x x =+,解得:535x =+,3 1.53(535) 1.516.55325CG DG DC x ∴=+=+=++=+≈,答:教学楼CG 的高约为25米.19.(7分)小昕的口袋中有5把相似的钥匙,其中2把钥匙(记为1A ,2)A 能打开教室前门锁,而剩余的3把钥匙(记为1B ,2B ,3)B 不能打开教室前门锁. (1)小昕从口袋中随便摸出一把钥匙就能打开教室前门锁的概率是25; (2)请用树状图或列表等方法,求出小昕从口袋中第一次随机摸出的一把钥匙不能打开教室前门锁(摸出的钥匙不再放回),而第二次随机摸出的一把钥匙正好能打开教室前门锁的概率.【解答】解:(1)Q 一个口袋中装有5把不同的钥匙,分别为1A ,2A ,1B ,2B ,3B ,P ∴(取出一个1A 或22)5A =;(2)画树状图得:Q 共有20种等可能的结果,第一次随机摸出的一把钥匙不能打开教室前门锁(摸出的钥匙不再放回),而第二次随机摸出的一把钥匙正好能打开教室前门锁的有6种可能, ∴第一次随机摸出的一把钥匙不能打开教室前门锁(摸出的钥匙不再放回),而第二次随机摸出的一把钥匙正好能打开教室前门锁的概率632010==. 20.(12分)如图1,抛物线2(2)4y x m x =+++的顶点C 在x 轴正半轴上,直线2y x =+与抛物线交于A ,B 两点(点A 在点B 的左侧). (1)求抛物线的函数表达式;(2)点P 是抛物线上一点,若2PAB ABC S S ∆∆=,求点P 的坐标;(3)如图2,若点M 是位于直线AB 下方抛物线上一动点,以MA 、MB 为邻边作平行四边形MANB ,当平行四边形MANB 的面积最大时,请直接写出平行四边形MANB 的面积S 及点M 的坐标.【解答】解:(1)Q 抛物线2(2)4y x m x =+++的顶点C 在x 轴正半轴上, ∴△2(2)40m =+-=,且202m +-> 解得6m =-.∴抛物线的函数表达式是244y x x =-+;(2)如图1,过点C 作//CE AB 交y 轴于点E ,设直线AB 交y 轴于点H .由直线:2AB y x =+,得点(0,2)H . 设直线:CE y x b =+. 2244(2)y x x x =-+=-Q ,(2,0)C ∴.20b ∴+=,则2b =-.4HE ∴=.由2PAB ABC S S ∆∆=,可在y 轴上且点H 上方取一点F ,使2FH HE =,则(0,10)F . 过点F 作//FP AB 交抛物线于点1P 、2P .此时满足2PAB ABC S S ∆∆=, 设直线1P 、2P 的函数解析式为:y x k =+. (0,10)F Q 在直线1P 、2P 上,10k ∴=.∴直线1P 、2P 的函数解析式为:10y x =+.联立21044y x y x x =+⎧⎨=-+⎩. 解得1119x y =-⎧⎨=⎩,22616x y =⎧⎨=⎩,综上,满足条件的点P 的坐标是1(1,9)P -,2(6,16)P ; (3)如图2,过点M 在作ME x ⊥轴,交AB 于点E ,Q 直线2y x =+与抛物线交于A ,B 两点,2244x x x ∴+=-+, 2520x x ∴-+=,517x ±∴=, ||17B A x x ∴-=设点2(,44)M n n n -+,则(,2)E n n +225172(44)()24EM n n n n ∴=+--+=--+,2151717[()]224MAB S n ∆∴=⨯⨯--+Q 平行四边形4MAB MANB S ∆=⨯,∴当MAB S ∆的值最大时,平行四边形MANB 的面积最大,∴当52n =时,平行四边形MANB 的最大面积1717=,此时,点5(2M ,1)4.21.(12分)如图1,在ABC ∆中,AB AC =,点D ,E 分别是边BC ,AC 上的点,且ADE B ∠=∠. (1)求证:AB CE BD CD =g g ;(2)若5AB =,6BC =,求AE 的最小值;(3)如图2,若ABC ∆为等边三角形,AD DE ⊥,BE DE ⊥,点C 在线段DE 上,3AD =,4BE =,求DE 的长.【解答】(1)证明:AB AC =Q ,B C ∴∠=∠,ADC ∠Q 为ABD ∆的外角, ADE EDC B DAB ∴∠+∠=∠+∠, ADE B ∠=∠Q ,BAD CDE ∴∠=∠,又B C ∠=∠, ABD DCE ∴∆∆∽,∴AB BD CD CE=,AB CE BD CD ∴=g g ;(2)解:设BD x =,AE y =, 由(1)得,5(5)(6)y x x ⨯-=⨯-,整理得,216555y x x =-+2116(3)55x =-+, AE ∴的最小值为165; (3)解:作AF BE ⊥于F , 则四边形ADEF 为矩形,3EF AD ∴==,AF DE =, 1BF BE EF ∴=-=,设CD x =,CE y =, 则AF DE x y ==+,由勾股定理得,222AD CD AC +=,222CE BE BC +=,222AF BF AB +=,ABC ∆Q 为等边三角形, AB AC BC ∴==,2223x AC ∴+=,2224y BC +=,222()1x y AC ++=, 227x y ∴-=,228y xy +=,解得,53x =,23y =, 73DE x y ∴=+=.。
安徽省合肥市蜀山区五十中西校2022-2023学年九年级上学期第一次月考数学试卷(含答案)

合肥五十中西校2022-2023学年九上第一次月考数学试卷(含答案)本卷沪科版21.1~21.5、共4页三大题、23小题,满分150分,时间120分钟(使用直接打印、精品解析请自重) 一、选择题(本大题共10小题,每小题4分,满分40分) 1.若y =(m-1)是二次函数,则m 的值是( )A .1B .-1C .1或-1D .2 2.如果双曲线xk y =经过点(2,-3),那么此双曲线也一定经过( )A .(-2,-3)B .(2,3)C .(-3,-2)D .(-3,2) 3.抛物线y=21x 2与抛物线y=-21x 2+2的相同点是( )A .顶点相同B .对称轴相同C .开口方向相同D .顶点都在x 轴上 4.将抛物线y =3x 2+1的图象向左平移2个单位,再向下平移3个单位,得到的抛物线是( )A .y =3(x+2)2-3B .y =3(x+2)2-2C .y =3(x-2)2-3D .y =3(x-2)2-2 5.下表是一组二次函数y =x 2+3x-5的自变量x 与函数值y 的对应值:那么方程x 2+3x-5=0的一个近似根是( )x 1 1.21.3 1.4y-10.04 0.59 1.16A .1B .1.1C .1.2D .1.36.已知点A (-2,a ),B (-1,b ),C (3,c )均在抛物线y =-(x-2)2+k 上,则a 、b 、c 的大小关系为( ) A .a <b <c B .c <a <b C .b <a <c D .a <c <b7.用48米木料制作成一个如图所示的“目”形长方形大窗框(横档EF ,GH 也用木料).其中AB ∥EF ∥GH ∥CD , 要使窗框ABCD 的面积最大,则AB 的长为( )A .6米B .8米C .12米D .43米第7题图 第8题图 第10题图8.已知二次函数y =x 2+bx+c (b ,c 是常数)的图象如图所示,则一次函数y =cx+b 与反比例函数xbc y =在同一坐标系内的大致图象是( )A .B .C .D .9.某景区旅店有30张床位,每床每天收费10元时,可全部租出,若每床每天收费提高10元,则有2张床位不 能租出;若每床每天收费再提高10元,则再有2张床位不能租出;若每次按提高10元的这种方法变化下去,则 该旅店每天营业收入最多为( )A .3125元B .3120元C .2950元D .1280元 10.如图,抛物线y =ax 2+bx+c (a ≠0)与x 轴交于A (-5,0)、B (1,0)两点,则下列结论中:①abc >0; ②(a+c )2=b 2;③b 2>4ac ;④9a+4c <0;⑤若m 为任意实数,则am 2+bm ≥4a-2b ,正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(本大题共4小题,每小题5分,满分20分) 11.二次函数y =2(x-1)2+1的顶点坐标是 .12.某种型号汽车在高速路上急刹车后滑行的距离S (米)与滑行的时间t (秒)的函数解析式是S =2t-0.25t 2, 则该种汽车刹车后滑行 秒才能停下来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学第二次模拟评测试卷一、选择题1.﹣64的立方根为()A.4B.﹣4C.﹣8D.不存在2.如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体3.2020年3月11日晚,安徽省统计局、国家统计局安徽调查总队联合发布,安徽省全年生产总值(GDP)37114亿元,居全国第11位;按可比价格计算,比上年增长7.5%,居全国第7位,其中数字37114亿用科学记数法表示为()A.3.7114×104B.0.37114×105C.3.7114×1012D.3.7114×10114.下列计算正确的是()A.B.(﹣x)2﹣x3=﹣x5C.(﹣2x+y)(﹣2x﹣y)=4x2﹣y2D.(x﹣2y)2=x2﹣4y25.2018年第一季度,合肥高新区某企业营收入比2017年同期增长12%,2019年第一季度营收入比2018年同期增长10%,设2018年和2019年第一季度营收入的平均增长率为x,则可列方程()A.2x=12%+10%B.(1+x)2=1+12%+10%C.1+2x=(1+12%)(1+10%)D.(1+x)2=(1+12%)(1+10%)6.如图,在△ABC中,AB=AC,CD平分∠ACB交AB于点D,AE∥DC交BC的延长线于点E,已知∠BAC=32°,求∠E的度数为()A.48°B.42°C.37°D.32°7.三个正方形方格在扇形中的位置如图所示,点O为扇形的圆心,格点A,B,C分别在扇形的两条半径和弧上,已知每个方格的边长为1,则扇形EOF的面积为()A.πB.πC.πD.π8.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是()A.B.2C.D.49.若将直线y=﹣4x+10向下平移m个单位长度与双曲线y=恰好只有一个公共点,则m的值为()A.2B.18C.﹣2或18D.2或1810.如图,等边△ABC的边长为4,点D是边AC上的一动点,连接BD,以BD为斜边向上作等腰Rt△BDE,连接AE,则AE的最小值为()A.1B.C.2D.2二、填空题(共4小题)11.不等式>2﹣x的解集为.12.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D,连接OB,与AD相交于点C,若AC=2CD,则k的值为.13.如图,若点D为等边△ABC的边BC的中点,点E,F分别在AB,AC边上,且∠EDF=90°,当BE=2,CF=1时,EF的长度为.14.已知a﹣b=2,ab+2b﹣c2+2c=0,当b≥0,﹣2≤c<1时,整数a的值是.三、解答题(共7小题)15.计算:2sin60°+(﹣)﹣1﹣20200﹣|1﹣|16.解方程:.17.如图,已知矩形ABCD中,点E,F分别是AD,AB上的点,EF⊥EC,且AE=CD.(1)求证:AF=DE;(2)若DE=AD,求tan∠AFE.18.如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H 的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH上,再向前走10米到达B处,又测得教学楼顶端G的仰角∠GED为60°,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.(参考数据:=1.4,=1.7)19.小昕的口袋中有5把相似的钥匙,其中2把钥匙(记为A1,A2)能打开教室前门锁,而剩余的3把钥匙(记为B1,B2,B3)不能打开教室前门锁.(1)小昕从口袋中随便摸出一把钥匙就能打开教室前门锁的概率是;(2)请用树状图或列表等方法,求出小昕从口袋中第一次随机摸出的一把钥匙不能打开教室前门锁(摸出的钥匙不再放回),而第二次随机摸出的一把钥匙正好能打开教室前门锁的概率.20.如图1,抛物线y=x2+(m+2)x+4的顶点C在x轴正半轴上,直线y=x+2与抛物线交于A,B两点(点A在点B 的左侧).(1)求抛物线的函数表达式;(2)点P是抛物线上一点,若S△PAB=2S△ABC,求点P的坐标;(3)如图2,若点M是位于直线AB下方抛物线上一动点,以MA、MB为邻边作平行四边形MANB,当平行四边形MANB的面积最大时,请直接写出平行四边形MANB的面积S及点M的坐标.21.如图1,在△ABC中,AB=AC,点D,E分别是边BC,AC上的点,且∠ADE=∠B.(1)求证:AB•CE=BD•CD;(2)若AB=5,BC=6,求AE的最小值;(3)如图2,若△ABC为等边三角形,AD⊥DE,BE⊥DE,点C在线段DE上,AD=3,BE=4,求DE的长.参考答案一、选择题(共10小题,每小题3分,满分30分)1.﹣64的立方根为()A.4B.﹣4C.﹣8D.不存在【分析】根据立方根定义得出即可.解:﹣64的立方根是﹣4,故选:B.2.如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体【分析】根据三视图得出几何体为三棱柱即可.解:由主视图和俯视图可得几何体为三棱柱,故选:A.3.2020年3月11日晚,安徽省统计局、国家统计局安徽调查总队联合发布,安徽省全年生产总值(GDP)37114亿元,居全国第11位;按可比价格计算,比上年增长7.5%,居全国第7位,其中数字37114亿用科学记数法表示为()A.3.7114×104B.0.37114×105C.3.7114×1012D.3.7114×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:37114亿=3711400000000=3.7114×1012.故选:C.4.下列计算正确的是()A.B.(﹣x)2﹣x3=﹣x5C.(﹣2x+y)(﹣2x﹣y)=4x2﹣y2D.(x﹣2y)2=x2﹣4y2【分析】直接利用二次根式的加减运算以及完全平方公式和平方差公式分别化简得出答案.解:A、+,无法计算,故此选项错误;B、(﹣x)2﹣x3,无法计算,故此选项错误;C、(﹣2x+y)(﹣2x﹣y)=4x2﹣y2,正确;D、(x﹣2y)2=x2﹣4ax+4y2,故此选项错误;故选:C.5.2018年第一季度,合肥高新区某企业营收入比2017年同期增长12%,2019年第一季度营收入比2018年同期增长10%,设2018年和2019年第一季度营收入的平均增长率为x,则可列方程()A.2x=12%+10%B.(1+x)2=1+12%+10%C.1+2x=(1+12%)(1+10%)D.(1+x)2=(1+12%)(1+10%)【分析】根据增长率的意义列方程即可得.解:设2018年和2019年第一季度营收入的平均增长率为x,则可列方程(1+x)2=(1+12%)(1+10%),故选:D.6.如图,在△ABC中,AB=AC,CD平分∠ACB交AB于点D,AE∥DC交BC的延长线于点E,已知∠BAC=32°,求∠E的度数为()A.48°B.42°C.37°D.32°【分析】首先根据等腰三角形的性质求得∠ACD的度数,然后求得其一半的度数,从而利用平行线的性质求得答案即可.解:∵AB=AC,∠BAC=32°,∴∠B=∠ACB=74°,∵CD平分∠ACB,∴∠BCD=∠ACB=37°,∵AE∥DC,∴∠E=∠BCD=37°.故选:C.7.三个正方形方格在扇形中的位置如图所示,点O为扇形的圆心,格点A,B,C分别在扇形的两条半径和弧上,已知每个方格的边长为1,则扇形EOF的面积为()A.πB.πC.πD.π【分析】连接OC,先求出OC长和∠EOB的度数,再根据扇形的面积公式求出即可.解:连接OC,由勾股定理得:OC==,由正方形的性质得:∠EOB=45°,所以扇形EOF的面积为:=π,故选:A.8.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是()A.B.2C.D.4【分析】设正方形ADOF的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,解方程即可.解:设正方形ADOF的边长为x,由题意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,解得:x=2,或x=﹣12(舍去),∴x=2,即正方形ADOF的边长是2;故选:B.9.若将直线y=﹣4x+10向下平移m个单位长度与双曲线y=恰好只有一个公共点,则m的值为()A.2B.18C.﹣2或18D.2或18【分析】由于将直线y=﹣4x+10向下平移m个单位长度得直线解析式为y=﹣4x+10﹣m,则直线y=﹣4x+10﹣m与反比例函数有且只有一个公共点,即方程组,只有一组解,然后消去y得到关于x的二次函数,再根据判别式的意义得到关于m的方程,最后解方程求出m的值.解:将直线y=﹣4x+10向下平移m个单位长度得直线解析式为y=﹣4x+10﹣m,根据题意方程组只有一组解,消去y得=﹣4x+10﹣m,整理得4x2﹣(m﹣10)x+4=0,△=(m﹣10)2﹣4×4×4=0,解得m=2或m=18,故选:D.10.如图,等边△ABC的边长为4,点D是边AC上的一动点,连接BD,以BD为斜边向上作等腰Rt△BDE,连接AE,则AE的最小值为()A.1B.C.2D.2【分析】过点B作BH⊥AC于H点,作射线HE,可证点B,点D,点H,点E四点共圆,可得∠BHE=∠BDE=45°,则点E在∠AHB的角平分线上运动,即当AE⊥EH时,AE的长度有最小值,由直角三角形的性质可求解.解:如图,过点B作BH⊥AC于H点,作射线HE,∵△ABC 是等边三角形,BH ⊥AC , ∴AH =2=CH ,∵∠BED =∠BHD =90°,∴点B ,点D ,点H ,点E 四点共圆, ∴∠BHE =∠BDE =45°,∴点E 在∠AHB 的角平分线上运动, ∴当AE ⊥EH 时,AE 的长度有最小值, ∵∠AHE =45°, ∴AH =AE =2,∴AE 的最小值为,故选:B .二、填空题(共4小题,每小题4分,满分16分) 11.不等式>2﹣x的解集为 x >2 .【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得. 解:x ﹣2>4﹣2x , x +2x >4+2, 3x >6, x >2,故答案为:x >2.12.如图,点A 在双曲线y =上,点B 在双曲线y =(k ≠0)上,AB ∥x 轴,过点A 作 AD ⊥x 轴于D ,连接OB ,与AD 相交于点C ,若AC =2CD ,则k 的值为 18 .【分析】过点B 作BE ⊥x 轴于E ,延长线段BA ,交y 轴于F ,得出四边形AFOD 是矩形,四边形OEBF 是矩形,得出S 矩形AFOD =6,S 矩形OEBF =k ,根据平行线分线段成比例定理证得AB =2OD ,即OE =3OD ,即可求得矩形OEBF 的面积,根据反比例函数系数k 的几何意义即可求得k 的值. 解:过点B 作BE ⊥x 轴于E ,延长线段BA ,交y 轴于F , ∵AB ∥x 轴, ∴AF ⊥y 轴,∴四边形AFOD 是矩形,四边形OEBF 是矩形, ∴AF =OD ,BF =OE , ∴AB =DE ,∵点A 在双曲线y =上, ∴S 矩形AFOD =6, 同理S 矩形OEBF =k , ∵AB ∥OD , ∴==,∴AB =2OD , ∴DE =2OD ,∴S 矩形OEBF =3S 矩形AFOD =18, ∴k =18, 故答案是:18.13.如图,若点D为等边△ABC的边BC的中点,点E,F分别在AB,AC边上,且∠EDF=90°,当BE=2,CF=1时,EF的长度为.【分析】作辅助线EM ⊥BC 于点M,作FN⊥BC于点N ,然后根据特殊角的三角函数值可以得到EM、BM 、FN、CN的值,再根据三角形相似可以求得DM和DN的值,由∠EDF=90°,根据勾股定理可以得到EF的长度.解:作EM⊥BC于点M,作FN⊥BC于点N,则∠EMB=∠EMD=90°,∠FNC=∠FND=90°,∵△ABC是等边三角形,BE=2,CF=1,∴∠B=∠C=60°,∴BM=1,EM=,CN=,FN=,∵∠EDF=90°,∠EDM+∠DEM=90°,∴∠EDM+∠FDN=90°,∴∠DEM=∠FDN,∴△EDM∽△DFN,,∵点D为BC的中点,设BD=a,则DM=a﹣1,DN=a﹣,∴,解得,a1=(舍去),a2=2,∴DM=1,DN=,∵∠EMD=90°,∠FND=90°,∴DE==2,DF==,又∵∠EDF=90°,∴EF===,故答案为:.14.已知a﹣b=2,ab+2b﹣c2+2c=0,当b≥0,﹣2≤c<1时,整数a的值是2或3.【分析】由a﹣b=2,得出a=b+2,进一步代入ab+2b﹣c2+2c=0,进一步利用完全平方公式得到(b+2)2﹣(c﹣1)2﹣3=0,再根据已知条件得到b的值,进一步求得整数a的值即可.解:∵a﹣b=2,∴a=b+2,∴ab+2b﹣c2+2c=b(b+2)+2b﹣c2+2c=b2+4b﹣(c2﹣2c)=(b+2)2﹣(c﹣1)2﹣3=0,∵b≥0,﹣2≤c<1,∴4≤(b+2)2≤12,∵a是整数,∴b=0或1,∴a=2或3.故答案为:2或3.三、解答题(共7小题,共54分)15.计算:2sin60°+(﹣)﹣1﹣20200﹣|1﹣|【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简五个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解:原式=2×﹣2﹣1﹣(﹣1),=﹣2﹣1﹣+1,=﹣2.16.解方程:.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:2=x2+2x﹣x2+4,解得:x=﹣1,经检验x=﹣1是分式方程的解.17.如图,已知矩形ABCD中,点E,F分别是AD,AB上的点,EF⊥EC,且AE=CD.(1)求证:AF=DE;(2)若DE=AD,求tan∠AFE.【分析】(1)根据矩形的性质得到∠A=∠D=90°,由垂直的定义得到∠FEC=90°,根据余角的性质得到∠AFE =∠DEC,根据全等三角形的判定和性质即可得到结论;(2)由已知条件得到AE=DE,由AF=DE,根据三角函数的定义即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∵EF⊥CE,∴∠FEC=90°,∴∠AFE+∠AEF=∠AEF+∠DEC=90°,∴∠AFE=∠DEC,在△AEF与△DCE中,,∴△AEF≌△DCE(AAS),∴AF=DE;(2)解:∵DE=AD,∴AE=DE,∵AF=DE,∴tan∠AFE==.18.如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H 的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH上,再向前走10米到达B处,又测得教学楼顶端G的仰角∠GED为60°,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.(参考数据:=1.4,=1.7)【分析】(1)由∠HFE=45°知HE=EF=10,据此得BH=BE+HE=1.5+10=11.5;(2)设DE=x米,则DG=x米,由∠GFD=45°知GD=DF=EF+DE,据此得x=10+x,解之求得x的值,代入CG=DG+DC=x+1.5计算可得.解:(1)在Rt△EFH中,∠HEF=90°,∠HFE=45°,∴HE=EF=10,∴BH=BE+HE=1.5+10=11.5,∴古树的高为11.5米;(2)在Rt△EDG中,∠GED=60°,∴DG=DE tan60°=DE,设DE=x米,则DG=x米,在Rt△GFD中,∠GDF=90°,∠GFD=45°,∴GD=DF=EF+DE,∴x=10+x,解得:x=5+5,∴CG=DG+DC=x+1.5=(5+5)+1.5=16.5+5≈25,答:教学楼CG的高约为25米.19.小昕的口袋中有5把相似的钥匙,其中2把钥匙(记为A1,A2)能打开教室前门锁,而剩余的3把钥匙(记为B1,B 2,B 3)不能打开教室前门锁.(1)小昕从口袋中随便摸出一把钥匙就能打开教室前门锁的概率是;(2)请用树状图或列表等方法,求出小昕从口袋中第一次随机摸出的一把钥匙不能打开教室前门锁(摸出的钥匙不再放回),而第二次随机摸出的一把钥匙正好能打开教室前门锁的概率. 【分析】(1)直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第一次随机摸出的一把钥匙不能打开教室前门锁(摸出的钥匙不再放回),而第二次随机摸出的一把钥匙正好能打开教室前门锁的情况,再利用概率公式即可求得答案.解:(1)∵一个口袋中装有5把不同的钥匙,分别为A 1,A 2,B 1,B 2,B 3, ∴P (取出一个A 1或A 2)=;(2)画树状图得:∵共有20种等可能的结果,第一次随机摸出的一把钥匙不能打开教室前门锁(摸出的钥匙不再放回),而第二次随机摸出的一把钥匙正好能打开教室前门锁的有6种可能,∴第一次随机摸出的一把钥匙不能打开教室前门锁(摸出的钥匙不再放回),而第二次随机摸出的一把钥匙正好能打开教室前门锁的概率==.20.如图1,抛物线y =x 2+(m +2)x +4的顶点C 在x 轴正半轴上,直线y =x +2与抛物线交于A ,B 两点(点A 在点B 的左侧).(1)求抛物线的函数表达式;(2)点P 是抛物线上一点,若S △PAB =2S △ABC ,求点P 的坐标;(3)如图2,若点M 是位于直线AB 下方抛物线上一动点,以MA 、MB 为邻边作平行四边形MANB ,当平行四边形MANB 的面积最大时,请直接写出平行四边形MANB 的面积S 及点M 的坐标.【分析】(1)根据题意知,抛物线与x 轴只有一个交点,且对称轴在y 轴的右侧,由此求得m 的值即可;(2)点P 在与直线AB 平行的直线l 上,且直线AB 与直线l 间的距离是2倍的点C 到直线AB 的距离,据此解答; (3)过点M 在作ME ⊥x 轴,交AB 于点E ,先求出S △MAB 的值,由平行四边形MANB =4×S △MAB ,可得当S △MAB 的值最大时,平行四边形MANB 的面积最大,即可求解. 解:(1)∵抛物线y =x 2+(m +2)x +4的顶点C 在x 轴正半轴上, ∴△=(m +2)2﹣4=0,且﹣>0解得m =﹣6.∴抛物线的函数表达式是y =x 2﹣4x +4;(2)如图1,过点C 作CE ∥AB 交y 轴于点E ,设直线AB 交y 轴于点H .由直线AB :y =x +2,得点H (0,2). 设直线CE :y =x +b . ∵y =x 2﹣4x +4=(x ﹣2)2, ∴C (2,0).∴2+b=0,则b=﹣2.∴HE=4.由S△PAB=2S△ABC,可在y轴上且点H上方取一点F,使FH=2HE,则F(0,10).过点F作FP∥AB交抛物线于点P1、P2.此时满足S△PAB=2S△ABC,设直线P1、P2的函数解析式为:y=x+k.∵F(0,10)在直线P1、P2上,∴k=10.∴直线P1、P2的函数解析式为:y=x+10.联立.解得,,综上,满足条件的点P的坐标是P1(﹣1,9),P2(6,16);(3)如图2,过点M在作ME⊥x轴,交AB于点E,∵直线y=x+2与抛物线交于A,B两点,∴x+2=x2﹣4x+4,∴x2﹣5x+2=0,∴x=,∴|x B﹣x A|=设点M(n,n2﹣4n+4),则E(n,n+2)∴EM=n+2﹣(n2﹣4n+4)=﹣(n﹣)2+,∴S△MAB=××[﹣(n﹣)2+]∵平行四边形MANB=4×S△MAB,∴当S△MAB的值最大时,平行四边形MANB的面积最大,∴当n=时,平行四边形MANB的最大面积=,此时,点M(,).21.如图1,在△ABC中,AB=AC,点D,E分别是边BC,AC上的点,且∠ADE=∠B.(1)求证:AB•CE=BD•CD;(2)若AB=5,BC=6,求AE的最小值;(3)如图2,若△ABC为等边三角形,AD⊥DE,BE⊥DE,点C在线段DE上,AD=3,BE=4,求DE的长.【分析】(1)证明△ABD∽△DCE,根据相似三角形的性质列出比例式,证明结论;(2)根据(1)的结论列出二次函数解析式,根据二次根式的性质解答;(3)作AF⊥BE于F,根据等边三角形的性质得到AB=AC=BC,根据勾股定理用x、y表示出AB、AC、BC,解方程组得到答案.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵∠ADC为△ABD的外角,∴∠ADE+∠EDC=∠B+∠DAB,∵∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△ABD∽△DCE,∴=,∴AB•CE=BD•CD;(2)解:设BD=x,AE=y,由(1)得,5×(5﹣y)=x×(6﹣x),整理得,y=x2﹣x+5=(x﹣3)2+,∴AE的最小值为;(3)解:作AF⊥BE于F,则四边形ADEF为矩形,∴EF=AD=3,AF=DE,∴BF=BE﹣EF=1,设CD=x,CE=y,则AF=DE=x+y,由勾股定理得,AD2+CD2=AC2,CE2+BE2=BC2,AF2+BF2=AB2,∵△ABC为等边三角形,∴AB=AC=BC,∴32+x2=AC2,y2+42=BC2,(x+y)2+12=AC2,∴x2﹣y2=7,y2+2xy=8,解得,x=,y=,∴DE=x+y=.11。