偏振光学实验-
光的偏振实验方法

光的偏振实验方法光的偏振是光学中的重要现象,它涉及到光的传播方向和振动方向的关系。
为了研究和观察光的偏振现象,科学家们开发了许多实验方法。
本文将介绍一些常用的光的偏振实验方法。
一、马吕斯交叉法马吕斯交叉法是一种简单而直观的光的偏振实验方法。
所需装置包括一个偏振镜和一对交叉的光栅。
实验步骤:1. 将光栅放置在光路中,使光通过光栅后形成一对交叉的图案。
2. 调整偏振镜的角度,观察图案的变化。
3. 当偏振镜与光栅之间的角度达到一定条件时,图案将呈现出清晰的波纹状。
通过观察图案的变化,我们可以判断光的偏振性质以及偏振方向。
二、尼古拉斯法尼古拉斯法是一种利用偏振片的实验方法,可以用来测量光的振动方向。
实验步骤:1. 准备一对偏振片,将它们的传递轴垂直放置。
2. 将待测光线通过第一个偏振片,使其只能通过一个方向的振动。
3. 调整第二个偏振片的角度,观察透过第二个偏振片的光的强度变化。
4. 当第二个偏振片的传递轴与第一个偏振片之间的夹角为90°时,光的强度将最小。
通过调整第二个偏振片的角度,我们可以确定光的振动方向。
三、双折射和波片法双折射和波片法是一种通过使用双折射晶体和波片来产生和分析偏振光的实验方法。
实验步骤:1. 使用双折射晶体(如方解石)产生偏振光。
2. 将产生的偏振光通过波片(如四分之一波片或半波片)进行调整。
3. 观察光的传播方向和振动方向的变化,使用适当的检测器记录实验结果。
通过对偏振光的产生、调整和分析,我们可以研究光的偏振现象和性质。
总结:光的偏振实验方法有很多种,其中马吕斯交叉法、尼古拉斯法和双折射和波片法是常用的实验手段。
通过这些实验方法,科学家们能够观察和研究光的偏振现象,从而深入理解光的性质和行为。
对于光学研究和实际应用而言,光的偏振实验方法具有重要的意义。
注:本文介绍的实验方法仅为举例,实际实验操作应根据具体情况和实验要求进行调整。
偏振光的研究实验报告

偏振光的研究实验报告偏振光的研究实验报告引言:偏振光是指光波中电场矢量在空间中的振动方向固定的光。
它在光学领域有着广泛的应用,包括材料的表征、光学器件的设计和光通信等。
本实验旨在通过研究偏振光的性质和特点,探索其在实际应用中的潜力。
实验一:偏振片的特性在实验中,我们首先使用了一块偏振片。
偏振片是一种能够选择性地通过特定方向偏振光的光学器件。
我们将偏振片放置在光源前方,并逐渐旋转它。
观察到当光通过偏振片时,光强度会随着旋转角度的变化而发生明显的变化。
这说明偏振片能够选择性地通过特定方向的偏振光。
实验二:马吕斯定律的验证马吕斯定律是描述光的偏振现象的基本定律之一。
它表明,当一束偏振光通过一个偏振片时,出射光的偏振方向与入射光的偏振方向之间的夹角保持不变。
我们使用了两块偏振片,并将它们叠加在一起。
通过旋转第二块偏振片,我们观察到光的强度随着旋转角度的变化而发生周期性的变化。
这一结果验证了马吕斯定律的正确性。
实验三:偏振光的干涉在实验中,我们使用了一束激光器发出的偏振光,并将其分成两束,分别通过两个不同的光程。
然后,我们将两束光重新合并在一起。
通过调节两束光的光程差,我们观察到干涉现象。
当光程差等于整数倍的波长时,干涉现象最为明显。
这一实验结果说明了偏振光的干涉现象是由于光的相位差引起的。
实验四:偏振光的旋光性质偏振光的旋光性质是指光在通过旋光物质时,偏振方向会发生旋转的现象。
我们使用了一块旋光片,并将它放置在光源前方。
通过观察光通过旋光片后的偏振方向,我们发现光的偏振方向确实发生了旋转。
这一实验结果验证了偏振光的旋光性质。
结论:通过以上实验,我们对偏振光的性质和特点有了更深入的了解。
偏振光的研究不仅有助于我们理解光的本质,还在许多实际应用中发挥着重要作用。
例如,在材料的表征中,偏振光可以用来分析材料的结构和性质。
在光学器件的设计中,偏振光可以用来控制光的传输和调制。
在光通信中,偏振光可以用来提高信号传输的可靠性和速率。
偏振光学实验实验报告

偏振光学实验实验报告这次实验呢,名字挺吓人的——“偏振光学实验”。
一听这个名字,不少同学可能就开始打哈欠了,觉得又是一个枯燥无味的光学理论。
但是,嘿,等一下!要是你以为这只是单纯的照光什么的,那就大错特错了。
偏振光,真的是个神奇又有趣的东西。
你想象一下,光明明是一种看不见摸不着的东西,但通过一些巧妙的小实验,我们居然能让它变得像有脉络的生物一样。
就像“透过现象看本质”一样,偏振光的实验,简直是让人眼前一亮。
先说说偏振光是什么吧,别急,先别皱眉头。
偏振光其实就是一种特定方向上的光,简单来说就是把光束中所有的“振动”方向都弄到了一起,变得特别有规律。
光是个横向波,这一点大家可能知道。
平时你看到的光就像是四处乱舞的舞者,摇摇摆摆随心所欲。
但通过一些手段(比如用偏振片),我们能把这些舞者全都拉到一个方向上,变得乖乖地整齐排列。
咋听着是不是有点高大上?但是实际上,你只需要拿个偏振片,调整一下角度,就能一手掌控光的“步伐”。
这个实验的核心其实就是利用偏振光的特性来观察不同材料如何影响光的传播。
我们用的实验工具其实并不复杂,最多就是些光源、偏振片、透明塑料板这些小玩意儿。
别看这些设备简单,但结果却能让你瞠目结舌。
举个例子,当你把一个偏振片对着光源转动时,你会发现光的强度忽然变弱了,甚至变成了几乎看不见的模样。
天哪!这是什么神奇操作?就是因为偏振片把那些无序的光线给筛选掉了,只留下了跟它方向一致的光。
所以啊,光看似消失了,实际上是被“过滤”掉了一部分。
哎呀,你看,这不就像我们生活中的“挑剔眼光”嘛,偏不喜欢那些不符合标准的东西!然后,我们再加上那块透明塑料板,做个简单的小实验,看看它对偏振光的影响。
这回,你会看到光的强度又发生了变化。
这个现象告诉我们,材料的不同确实能对光产生影响,就像穿衣服一样,不同的面料决定了你能走多远、能展示多少风采。
简单来说,塑料板就像是光的“滤镜”,它决定了光是保持原样还是发生偏折变化。
偏振光学实验报告

偏振光学实验报告偏振光学实验报告引言:偏振光学是光学中一门重要的分支,研究光的偏振现象及其与物质相互作用的规律。
本次实验旨在通过实验手段探究光的偏振现象,并对偏振光的性质进行研究。
一、实验目的本实验主要有以下几个目的:1. 了解光的偏振现象及其产生原理;2. 学习偏振光的性质,包括偏振光的传播、旋光现象等;3. 掌握偏振光的测量方法和实验技术。
二、实验装置和原理本实验使用的装置主要包括:偏振片、波片、偏振片旋转台等。
偏振片是一种能够选择性地通过特定偏振方向光线的光学元件,波片则是一种能够改变光的偏振状态的光学元件。
三、实验步骤1. 将偏振片插入光源光路,调整偏振片的方向,观察光强的变化;2. 在光路中加入波片,通过调节波片的角度,观察光的偏振状态的变化;3. 将偏振片旋转台与波片结合使用,观察光的偏振状态和光强的变化;4. 使用偏振片旋转台测量不同角度下光的透过率,记录数据;5. 使用波片测量旋光现象,记录数据。
四、实验结果和分析1. 观察偏振片对光的影响,我们发现当偏振片的偏振方向与光的偏振方向垂直时,光的透过率最低,而当两者平行时,光的透过率最高。
这说明偏振片能够选择性地通过特定偏振方向的光线。
2. 在加入波片后,通过调节波片的角度,我们观察到光的偏振状态的变化。
当波片的快轴与偏振片的偏振方向平行时,光的偏振状态不发生改变;当两者垂直时,光的偏振状态发生改变。
这说明波片能够改变光的偏振状态。
3. 结合偏振片旋转台和波片的使用,我们进一步观察到光的偏振状态和光强的变化。
通过旋转偏振片旋转台和调节波片的角度,我们可以实现对光的偏振状态和光强的调控。
4. 通过使用偏振片旋转台测量不同角度下光的透过率,我们可以得到透过率与角度的关系曲线。
根据实验数据,我们可以计算出偏振片的透过率和透过光的偏振方向之间的关系,进一步研究光的偏振现象。
5. 使用波片测量旋光现象,我们可以观察到光在通过旋光物质后产生的旋光现象。
偏振光的研究_实验报告

一、实验目的1. 观察光的偏振现象,加深对光的偏振性质的认识。
2. 学习并掌握偏振光的产生、传播、检测和调控方法。
3. 理解马吕斯定律及其在实际应用中的意义。
4. 掌握使用偏振片、波片等光学元件进行偏振光实验的基本技能。
二、实验原理1. 光的偏振性质:光是一种电磁波,具有横波性质。
在光的传播过程中,光矢量的振动方向相对于传播方向可以保持不变(线偏振光)、绕传播方向旋转(圆偏振光)或呈现椭圆轨迹(椭圆偏振光)。
2. 偏振光的产生:自然光通过偏振片后,可以产生线偏振光。
当自然光入射到某些光学各向异性介质(如偏振片、波片等)时,由于不同方向的光矢量分量在介质中的折射率不同,从而导致光矢量振动方向发生偏转,形成偏振光。
3. 马吕斯定律:当一束完全线偏振光通过一个偏振片时,透射光的光强与入射光的光强和偏振片透振方向与入射光光矢量振动方向的夹角θ之间的关系为:\( I = I_0 \cdot \cos^2\theta \),其中\( I \)为透射光的光强,\( I_0 \)为入射光的光强。
三、实验仪器与设备1. 自然光源(如激光器)2. 偏振片(两块)3. 波片(1/4波片、1/2波片)4. 光具座5. 光屏6. 光电探测器7. 数据采集与分析软件四、实验步骤1. 观察线偏振光:将自然光源发出的光通过偏振片,观察光屏上的光斑。
然后逐渐旋转偏振片,观察光斑的变化,验证马吕斯定律。
2. 观察圆偏振光:将1/4波片放置在偏振片和光屏之间,使1/4波片的光轴与偏振片的透振方向夹角为45°。
观察光屏上的光斑,验证圆偏振光的产生。
3. 观察椭圆偏振光:将1/4波片的光轴与偏振片的透振方向夹角调整为22.5°,观察光屏上的光斑,验证椭圆偏振光的产生。
4. 测量偏振片透振方向:利用光电探测器测量偏振片的透振方向,并与理论计算值进行比较。
5. 分析实验数据:使用数据采集与分析软件对实验数据进行处理,分析偏振光的特性,验证实验原理。
偏振光实验报告

一、实验目的1. 观察光的偏振现象,加深对其规律的认识。
2. 了解产生和检验偏振光的光学元件及光电探测器的工作原理。
3. 掌握光路准直的调节方法。
4. 掌握极坐标作图方法。
5. 掌握光的偏振态(自然光、线偏振光、部分偏振光、椭圆偏振光、圆偏振光)的鉴别方法以及相互的转化。
二、实验原理光波是一种电磁波,其振动方向与传播方向垂直。
自然光是由许多不同振动方向的电磁波组成的,而偏振光则是具有特定振动方向的光。
1. 自然光与偏振光:自然光中,光矢量在垂直于传播方向的平面内可以有不同的振动方向。
当光矢量保持在固定平面上振动时,这种振动状态称为平面振动态,此时的光称为线偏振光。
若光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称为圆偏振态。
如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态。
2. 偏振片的原理:偏振片是一种人造偏振元件,利用二向色性获得偏振光。
当自然光通过偏振片时,只允许特定振动方向的光通过,从而获得偏振光。
3. 马吕斯定律:当线偏振光通过偏振片时,其透射光的强度与入射光强度、偏振片透振方向的夹角之间存在一定的关系,即马吕斯定律。
4. 双折射现象:当一束光射入到光学各向异性的介质时,折射光往往有两束,这种现象称为双折射现象。
三、实验仪器1. 偏振光源2. 偏振片3. 检偏器4. 光电探测器5. 望远镜6. 毫米刻度尺7. 数据采集系统四、实验步骤1. 观察自然光:将偏振光源打开,通过望远镜观察自然光,观察其光斑。
2. 观察偏振光:将偏振片放置在光源与望远镜之间,通过望远镜观察光斑的变化,观察偏振光的特点。
3. 观察马吕斯定律:将检偏器放置在偏振片与望远镜之间,调节检偏器的角度,观察透射光的强度变化,验证马吕斯定律。
4. 观察双折射现象:将检偏器放置在双折射介质与望远镜之间,调节检偏器的角度,观察透射光的强度变化,验证双折射现象。
5. 观察光的偏振态:将椭圆偏振光和圆偏振光分别通过偏振片和检偏器,观察光斑的变化,鉴别光的偏振态。
偏振光学实验报告

(3)两个1/4波片中,一个波片0C 得快轴大致方向已用红点标出。
另一个波片的快轴方向未知,需要通过实验步骤(12)(13)定出。
(4)分光计的小平台用以放置待测光学元件。
(5)用硅光电池、数字表和电阻箱组成光强探测器,三者成并列关系。
实验步骤1.准备工作(1)提前开启激光源,使激光器的电流为4mA 或略大。
(2)调整起偏管(平行光管)和检偏管(望远镜筒),使其轴线基本在同一水平面内,且和分光计主轴垂直。
调小平台与主轴基本垂直,起偏管和检偏管的方位角调节方法,与分光计望远镜的调节方法相同。
(3)调激光管的位置,使光束通过起偏管中心附近,由检偏管中心射出。
2.观察布儒斯特角和偏振器的特性 (4)观察布儒斯特角。
(5)定偏振器透射轴方向。
(6)测消光比e 。
(7)测量透射光强m I 和两偏振器夹角θ间的关系。
(8)选作。
3.1/4波片的特性研究 (9)定波片0C 的快轴方向。
(10) 线偏振光经过1/4波片。
(11) 定待测波片x C 的快轴方向。
(12) 观测偏光器通过1/2波片或全波片的现象(令0C 的快轴和x C 的某一个轴平行)。
(13) 观测偏光器通过1/2波片或全波片的现象(令0C 的慢轴和x C 的某一个轴平行)。
4.观测反射光的偏振面旋转的现象(14) 观测反射光的偏振态改变的现象。
·5.椭偏法测波片的相对相位延迟量(相延) (15) 椭偏法测相延。
实验数据及处理分析1 观测布儒斯特角光束正入射棱镜表面时平台方位角0i α==0°0’;入射角为布儒斯特角时平台方位角B α=58°14’;布氏角的测量值为0B B i θαα==-=58°14’;折射率tan B n θ==1.609; 相对偏差(n-1.668)/1.668=4.68%32 定偏振器透射轴方向布氏角时起偏器P 的透射轴在水平方向,方位角为P ↔;检偏器A 和P 正交时A 的方位角记作a ,即p p↔=且A 和P 消光时的ap ↔=6(87.6°+87.7°+88.2°+87.6°+87.5°+87.8°)=87.7°21()61i s p p ↔↔=--∑=0.25° a =80.4°e= (R 2 / R 1)* (I 4 +I 6 -2I 0)/4 I 5=1.86*10-5 4. 按表测透射光强m I 与两偏振器夹角θ间的关系。
大物实验偏振光实验报告

大物实验偏振光实验报告大物实验偏振光实验报告引言:偏振光实验是现代光学研究中的重要实验之一,通过对光的偏振现象的研究,可以深入了解光的性质和行为。
本次实验旨在通过使用偏振光器和偏振片,观察光的偏振现象,并对其进行实验验证和分析。
实验装置:本次实验所使用的装置主要包括:光源、偏振光器、偏振片、准直器和检光器。
光源是实验中产生光的基础设备,偏振光器和偏振片则是实现光的偏振的关键元件,准直器和检光器则用于观察和测量光的偏振状态。
实验步骤:1. 将光源放置在适当位置,确保光线稳定且充足。
2. 将偏振光器插入光路中,调节偏振光器的角度,观察光的强度变化。
3. 在光路中插入偏振片,调节偏振片的方向,观察光的透过情况。
4. 使用准直器将光线聚焦,使其能够通过检光器进行观察和测量。
5. 使用检光器测量通过偏振片后的光的强度,记录数据。
实验结果:通过实验观察和测量,我们得到了以下结果:1. 当偏振光器的角度与光的振动方向相同时,光的强度最大。
2. 当偏振光器的角度与光的振动方向垂直时,光的强度最小。
3. 当偏振片的方向与光的振动方向平行时,光可以完全透过。
4. 当偏振片的方向与光的振动方向垂直时,光无法透过。
讨论与分析:通过对实验结果的观察和分析,我们可以得出以下结论:1. 光的偏振是指光波中电场矢量振动方向的特性。
2. 偏振光器可以通过调节其角度,使特定方向的光通过,而将其他方向的光阻挡。
3. 偏振片可以通过调节其方向,选择性地透过或阻挡特定方向的光。
4. 光的偏振状态可以通过测量透过偏振片后的光的强度来确定。
实验应用:偏振光实验在实际应用中有着广泛的用途,以下是一些典型的应用领域:1. 光学显微镜:利用偏振光可以提高显微镜的分辨率和对比度,使观察到的样品细节更加清晰。
2. 液晶显示器:液晶分子的排列方式和偏振光之间的相互作用,使得液晶显示器能够通过控制光的偏振状态来实现图像的显示。
3. 光学通信:通过调节光的偏振状态,可以实现光信号的编码和解码,提高光通信系统的传输速率和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏振光学实验报告力9 夏晶2009011636偏振光学实验实验目的1. 理解偏振光的基本概念,偏振光的起偏与检偏方法; 2. 学习偏振片与波片的工作原理与使用方法实验原理1.光波偏振态的描述一个单色偏振光可以分解为两个偏振方向互相垂直的线偏振光的叠加,即12cos cos()x E a tE a t ωωδ=⎧⎨=+⎩ ① 式中δ为x 方向偏振分量相对于y 方向偏振分量的位相延迟量,12a a 、分别是两偏振分量的振幅,ω为光波的圆频率。
对于单色光,参数12a a 、、ω就完全确定了光波的偏振状态。
以下讨论中取120a a δπ≤ 、,02。
当0,δπ=时,式(1)描述的是一个线偏振光,偏振方向与x 轴的夹角12arctan(cos )a a αδ=称为线偏振光的方位角(如图1所示)。
当/2,/2δππ=-且12a a =时,式(1)描述的是一个圆偏振光,其特点是电矢量以角速度ω旋转,电矢量的端点的轨迹为一圆。
δ的正负决定了电矢量的旋向,/2δπ=时为右旋偏振光,/2δπ=-时为左旋偏振光(迎着光的方向观察,如图2所示)。
除了上述特殊情况,式(1)表示的是椭圆偏振光。
(如图3)偏振的一个重要应用是研究光波通过某个光学系统后偏振状态的变化来了解此系统的一些性质。
2.偏振片偏振片主要有主透射率和消光比两个主要性能指标。
记沿透射轴方向振动的光波的光强透射率和沿消光轴方向振动的光波的光强透射率分别为1,2T T ,二者之比为消光比e 。
21/e T T = ②振动方向和透射轴方向成θ角的线偏振光经过偏振片后透射率为2122()cos T T T T θθ=-+ ③(即马吕斯定律)实验中利用两个主透射率相同的偏振片来测量消光比e 。
min 12222max 1222()/21I T TT ee I T T T e ⊥===≈++ 实验中所用偏振片的消光比e 在451010-- 量级。
因此光波通过偏振片后仍可近似看成是偏振光。
通常把产生线偏振光的偏振片叫起偏器,用以分析光的偏振器叫检偏器。
当检偏器和起偏器透射轴平行时,透射光强最大。
二者垂直时,会产生消光现象。
用这种方法就可以进行线偏振光的检测。
在本实验中用检偏器和光强探测器来分析。
用光强探测器示值可确定出椭圆长轴方位角ψ和光强的极值比22min max //b a I I =。
3. 延迟器和波片常用的延迟器是由双折射材料制成的光学元件。
他有两个互相垂直的特定方向,快轴和慢轴。
光线传播时,沿两个轴的偏振分量有不同的传播速度,既有不同的折射率。
这样,慢轴分量相对于快轴分量将会产生位相延迟r δ。
设位相延迟器厚度为d ,快,慢轴方向振动的线偏振光折射率分别为,f s n n ,则002()/()/r s f s f n n d n n d c δπλω=-=-式中0λ和0c 分别为真空中的光速和波长,ω为光波源频率。
线偏振光经过相延后偏振态发生变化。
12cos cos S f E a tE a t ωω=⎧⎪⇒⎨=⎪⎩12'cos ''cos(')S fr E a t E a t ωωδ=⎧⎪⎨=+⎪⎩ 波片是一种特殊的位相延迟器。
实验中需要注意的是,沿快轴或慢轴入射的线偏振光通过波片后其偏振状态不变。
椭圆偏振光经过延迟器后的偏振状态分析可分如下步骤:①先将入射光表示成分沿快满轴方向振动的两分量,其相差为i δ,振幅为2a 和1a ;②投射光的位相差为t i r δδδ=+③由t δ,2a ,1a 就可以定出投射光的偏振状态。
如果t δ为π的整数倍,入射的椭圆偏振光就变成了线偏振光。
圆偏振光经过1/4波片,或入射椭圆偏振光的长(短)轴平行于1/4波片的快(慢)轴,透射光线都是偏振光,这两种现象在偏振光学实验中很有用。
波片在使用时首先要定出波片快慢轴方向,将待测波片C 放在已正交消光的偏振器P 和A 之间,旋转波片C 使三者仍保持消光状态,这时波片的一个轴就平行于P 的透射轴的方向。
将待测1/4波片的轴和另一个1/4波片的已知快轴方向平行,这两个波片合成了一个半波片或全波片,判断出波片类型后,就可以判断出待测波片的快轴方向。
波片轴的确定波片的相延很难做到准确等于/2π或π,通常把波片的实际相延和理想值之差叫波片相延误差。
因此测量时一般让入射光的偏振方向与波片的轴成一稍小于/4π的角度。
4. 反射和折射时的起偏现象平面电磁波以入射角i θ由空气中投射到折射率为n 的无吸收介质表面,将发生反射和折射。
若将入射分解为电矢量分别平行或垂直于入射面的两个分量P 和S 。
把P,S 分量的振幅反射率,P S r r 平方就可以得到相应的光反射率,P S R R ,根据不同入射角i θ时,P S R R 曲线可以看到两分量反射率仅在0i θ=及趋近于90°时相等,所以光束斜入射是反射光,透射光的偏振态不同于入射光的偏振状态。
入射偏振光方向与入射面呈45°角时,反射光的线偏振方向将随入射角i θ不同而改变,实验中能观察到这一现象。
当/2i t θθπ+=即arctan i B n θθ==时,P R =0,反射光中电矢量没有和入射面平行的分量,这一特征角B θ叫布儒斯特角。
光束以B θ入射时反射光是电矢量垂直于入射面的完全线偏振光,即只有S 分量,该分量的反射率为[]222222sin ()sin (/2)(1)/(1)SB i t i i R n n θθθπθ=-=--=-+实验中可根据布儒斯特角的上述性质判断偏振器的透射轴方向。
实验中由于表面散射等原因, 的测定准确度较低。
有些实验中使光束以 射入多块平行玻璃板已获得只有P 分量的线偏振透射光。
经过N 块玻璃的2N 个表面后,S 分量的总透射率为422(1)1(1)/2NN SB R n n -⎡⎤-=+-⎣⎦N 值较大时其值几乎为0,这种起偏装置叫波片堆。
实验装置(1)光源用波长为633nm 的氦氖激光器,为减小输出光强的波动影响,实验前激光器要预先点燃,经过20min 左右光强才较稳定;实验中不要关激光电源。
暂不考虑激光束偏振特性对测量的影响。
注意:不准用眼睛迎面直视激光束以免损伤眼底。
(2)起偏器P 和检偏器A 被分别固定在分光计的平行光管和望远镜上。
P 和A 的方位角分别由游标盘读出,游标分度为0.1。
(3)两个1/4波片中,一个波片0C 得快轴大致方向已用红点标出。
另一个波片的快轴方向未知,需要通过实验步骤(12)(13)定出。
(4)分光计的小平台用以放置待测光学元件。
(5)用硅光电池、数字表和电阻箱组成光强探测器,三者成并列关系。
实验步骤1.准备工作(1)提前开启激光源,使激光器的电流为4mA 或略大。
(2)调整起偏管(平行光管)和检偏管(望远镜筒),使其轴线基本在同一水平面内,且和分光计主轴垂直。
调小平台与主轴基本垂直,起偏管和检偏管的方位角调节方法,与分光计望远镜的调节方法相同。
(3)调激光管的位置,使光束通过起偏管中心附近,由检偏管中心射出。
2.观察布儒斯特角和偏振器的特性 (4)观察布儒斯特角。
(5)定偏振器透射轴方向。
(6)测消光比e 。
(7)测量透射光强m I 和两偏振器夹角 间的关系。
(8)选作。
3.1/4波片的特性研究 (9)定波片0C 的快轴方向。
(10) 线偏振光经过1/4波片。
(11) 定待测波片x C 的快轴方向。
(12) 观测偏光器通过1/2波片或全波片的现象(令0C 的快轴和x C 的某一个轴平行)。
(13) 观测偏光器通过1/2波片或全波片的现象(令0C 的慢轴和x C 的某一个轴平行)。
4.观测反射光的偏振面旋转的现象(14) 观测反射光的偏振态改变的现象。
·5.椭偏法测波片的相对相位延迟量(相延) (15) 椭偏法测相延。
实验数据及处理分析 1 观测布儒斯特角2 定偏振器透射轴方向布氏角时起偏器P 的透射轴在水平方向,方位角为P ↔;检偏器A 和P 正交时A 的方位角记作a ,即p p ↔=且A 和P 消光时的a4. 按表测透射光强m I 与两偏振器夹角θ间的关系。
(1) 电阻箱示值100R =Ω,p p ↔==87.7°;a =80.4°两偏振器夹角θ为0 时,Im最大,两偏振器夹角为90 及相互垂直时Im最小,发生消光。
误差分析:在θ较大时相对偏差也较大,造成的原因主要是由于此时的光强较微弱,外界影响就显得十分明显。
(2)计算84、87、90度时的相对偏差| I c-I m|/| I m-I o |C的快轴方向5. 定波片6. 线偏振光经过1/4波片其中:r δ计算公式|sin |sin(2)(1Im /Im )r in ax δβ=+ϕ计算公式1arctan(tan 2cos )2ϕβδ=⨯(2) 当β=π/4或-π/4时,b 2/a 2≈1, 透射光近似为圆偏振光;当β=0或π/2时,透射光为线偏振光。
7. 定待测波片x C 的轴方向。
8. 线偏振光通过1/2波片(A 与P 旋向相反,所以为1/2波片。
此时Cx 快轴与Co 快轴平行)。
9. 线偏振光通过全波片。
(A 与P 的旋向相同,故为全波片,此时Cx 快轴与Co 快轴互相垂直,故可得到Cx 快轴方向)x C 某轴在垂直方向,度盘示值:47°;0C 快轴在垂直方向,度盘示值1.1°思考题实验心得。