10.21 植被覆盖度平均分级计算
行道树植被盖度计算

行道树植被盖度计算行道树是指种植在街道两侧或行人道旁的树木,它们具有美化环境、调节气温、净化空气等重要作用。
行道树的植被盖度计算是衡量行道树覆盖率的一种方法,它可以帮助我们评估行道树的生长情况、城市绿化状况,以及它们对环境的贡献。
下面将详细介绍行道树植被盖度的计算方法。
直接测量法是通过实地测量行道树投影圆面积与观测区域的面积来计算植被盖度。
具体步骤如下:1.选取观测区域:在街道两侧或行人道旁的特定区域,选择一个代表性的样方,通常为正方形或长方形。
2.记录样方尺寸:使用测量工具(如测量尺、计算器等),记录样方的长度和宽度。
3.测量行道树投影面积:在观测区域内测量行道树的投影面积,即行道树在地面上的影子占据的面积。
4.计算行道树植被盖度:将行道树投影面积除以观测区域的面积,并将结果乘以100,即可得到行道树的植被盖度。
间接测量法是通过图像处理软件或遥感影像数据来计算行道树植被盖度。
具体步骤如下:1.获取遥感影像数据:通过卫星影像或航空影像,获取包含行道树的影像数据。
2.图像预处理:对遥感影像进行预处理,包括几何校正、辐射校正等。
3.分类行道树像元:使用图像处理软件,对行道树像元进行识别和分类。
根据像元的特征(如形状、颜色、纹理等),将行道树像元从其他地物像元中分离出来。
4.计算行道树植被盖度:统计行道树像元的数量,并将其面积除以观测区域的面积,再乘以100,即可得到行道树的植被盖度。
无论是直接测量法还是间接测量法,都需要考虑到观测区域的大小和形状、行道树的树冠大小和形状等因素。
同时,为了增加测量的准确性,可以在不同季节和不同时间段进行多次观测,并计算平均值。
总结来说,行道树植被盖度计算是通过测量行道树投影面积或分析遥感影像数据来确定行道树覆盖的程度。
这一指标可以帮助我们评估城市绿化的状况,以及行道树对环境的贡献。
在进行计算时应注意观测区域的选择和行道树树冠特征的考虑,以提高测量的准确性。
植被指数计算公式

植被指数计算公式
1. 什么是植被指数?
植被指数(vegetation index)是用来描述植被覆盖程度的指数,通常是由植被反射和吸收辐射的比值,比如最常用的归一化植被指数NDVI(Normalized Difference Vegetation Index)。
2. 植被指数的作用和意义
植被指数是研究植被动态、生长状态和生产力的重要工具,广泛
应用于农业、林业、生态环境等领域。
它可以反映出植被覆盖程度、
叶面积指数、光合活动强度等信息。
3. 归一化植被指数NDVI的计算公式
归一化植被指数NDVI的计算公式如下:
NDVI=(NIR-RED)/(NIR+RED)
其中,NIR代表近红外波段反射率,RED代表红光波段反射率。
4. 归一化植被指数NDVI的解释
归一化植被指数NDVI的取值范围为-1到1之间,数值越接近1表明植被覆盖度越高,而数值越接近-1表明植被稀疏程度越高。
如果NDVI等于0,则表示没有植被覆盖。
5. 归一化植被指数NDVI的优势
归一化植被指数NDVI是反映植被变化最敏感、最广泛应用的指数之一。
它具有以下几个优势:
(1)NDVI可以从遥感图像中提取植被信息,避免了根据人工采样数据进行测量的不足。
(2)NDVI可以利用遥感数据中不可见的红外波段反射信息,使得植被覆盖率的测量更加准确。
(3)NDVI对于绿色和枯黄色的植被具有较强的差异性,可以很好的反映植被的生长状况。
总之,归一化植被指数NDVI是目前研究植被覆盖和生长状况的重要工具之一,可以应用于数个领域,例如生态环境监测、气象预测、农业生产等。
植被覆盖度估算方法

植被覆盖度估算方法植被覆盖度估算方法植被覆盖度估算是为了评估一个区域或地点的植被覆盖程度,常用于生态环境研究、林业资源管理、土地利用规划等领域。
本文将介绍几种常用的植被覆盖度估算方法。
1. 监测图像分类法•监测图像分类法是利用遥感图像进行植被覆盖度估算的常见方法。
•首先,从卫星或无人机获取高分辨率的遥感图像。
•然后,利用图像分类算法(如最大似然法、支持向量机等)将图像分成不同的类别,包括植被和非植被。
•最后,计算植被覆盖度的比例,可以通过像元数、面积比例等指标进行量化。
2. 样地调查法•样地调查法是一种在野外进行的实地调查方法,适用于小范围的植被覆盖度估算。
•首先,在研究区域内选择一定数量的样地,通常为正方形或长方形的固定面积。
•然后,对每个样地内的植被进行详细调查,记录不同植被类型的面积、高度、覆盖度等信息。
•最后,根据样地的统计数据计算整个研究区域的植被覆盖度,可以通过平均值或加权平均值等方式计算。
3. 植被指数法•植被指数法是利用遥感图像中的植被指数进行植被覆盖度估算的方法。
•植被指数是通过计算遥感图像中不同波段(如红、近红外)的比值或差值获得的。
•通过植被指数,可以较为准确地反映植被的生长状况和覆盖度。
•常用的植被指数包括归一化植被指数(NDVI)、差值植被指数(DVI)、综合植被指数(EVI)等。
4. 模型模拟法•模型模拟法是利用数学或计算机模型模拟植被覆盖度的方法。
•常用的模型包括植被生长模型、碳循环模型等。
•通过收集气象数据、土壤数据等相关资料,输入到模型中进行模拟,得到植被覆盖度的估算结果。
•模型模拟法可以考虑多个因素的影响,并提供一种数值化、可重复性的估算方法。
5. 光谱混合法•光谱混合法是利用遥感图像中的光谱信息进行植被覆盖度估算的方法。
•遥感图像中的每个像元通常包含多种地物的光谱信息,通过光谱混合分析,可以将不同地物的贡献进行分离。
•通过对植被和非植被的光谱特性进行分析,可以计算植被覆盖度的比例。
植被覆盖度计算

植被覆盖度计算Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】ENVI下植被覆盖度的遥感估算(植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。
容易与植被覆盖度混淆的概念是植被盖度,植被盖度是指植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例。
两个概念主要区别就是分母不一样。
植被覆盖度常用于植被变化、生态环境研究、水土保持、气候等方面。
植被覆盖度的测量可分为地面测量和遥感估算两种方法。
地面测量常用于田间尺度,遥感估算常用于区域尺度。
估算模型目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。
下面是李苗苗等在像元二分模型的基础上研究的模型:VFC=(NDVI-NDVIsoil)/(NDVIveg-NDVIsoil)(1)其中,NDVIsoil为完全是裸土或无植被覆盖区域的NDVI值,NDVIveg则代表完全被植被所覆盖的像元的NDVI值,即纯植被像元的NDVI值。
两个值的计算公式为:NDVIsoil=(VFCmax*NDVImin-VFCmin*NDVImax)/(VFCmax-VFCmin)(2)NDVIveg=((1-VFCmin)*NDVImax-(1-VFCmax)*NDVImin)/(VFCmax-VFCmin)(3)利用这个模型计算植被覆盖度的关键是计算NDVIsoil和NDVIveg。
这里有两种假设:1)当区域内可以近似取VFCmax=100%,VFCmin=0%。
公式(1)可变为:VFC=(NDVI-NDVImin)/(NDVImax-NDVImin)(4)NDVImax和NDVImin分别为区域内最大和最小的NDVI值。
由于不可避免存在噪声,NDVImax和NDVImin一般取一定置信度范围内的最大值与最小值,置信度的取值主要根据图像实际情况来定。
植被覆盖度计算

ENVI下植被覆盖度得遥感估算(植被覆盖度就是指植被(包括叶、茎、枝)在地面得垂直投影面积占统计区总面积得百分比。
容易与植被覆盖度混淆得概念就是植被盖度,植被盖度就是指植被冠层或叶面在地面得垂直投影面积占植被区总面积得比例。
两个概念主要区别就就是分母不一样。
植被覆盖度常用于植被变化、生态环境研究、水土保持、气候等方面。
植被覆盖度得测量可分为地面测量与遥感估算两种方法。
地面测量常用于田间尺度,遥感估算常用于区域尺度、估算模型目前已经发展了很多利用遥感测量植被覆盖度得方法,较为实用得方法就是利用植被指数近似估算植被覆盖度,常用得植被指数为NDVI、下面就是李苗苗等在像元二分模型得基础上研究得模型:VFC =(NDVI -NDVIsoil)/ (NDVIveg — NDVIsoil) (1)其中,NDVIsoil 为完全就是裸土或无植被覆盖区域得NDVI值,NDVIveg则代表完全被植被所覆盖得像元得NDVI值,即纯植被像元得NDVI值。
两个值得计算公式为:NDVIsoil=(VFCmax*NDVImin-VFCmin*NDVImax)/( VFCmax— VFCmin)(2)NDVIveg=((1-VFCmin)*NDVImax- (1-VFCmax)*NDVImin)/(VFCmax—VFCmin) (3)利用这个模型计算植被覆盖度得关键就是计算NDVIsoil与NDVIveg。
这里有两种假设:1)当区域内可以近似取VFCmax=100%,VFCmin=0%、公式(1)可变为:VFC= (NDVI — NDVImin)/( NDVImax — NDVImin) (4)NDVImax 与NDVImin分别为区域内最大与最小得NDVI值。
由于不可避免存在噪声,NDVImax 与NDVImin一般取一定置信度范围内得最大值与最小值,置信度得取值主要根据图像实际情况来定。
2)当区域内不能近似取VFCmax=100%,VFCmin=0%当有实测数据得情况下,取实测数据中得植被覆盖度得最大值与最小值作为VFCmax 与VFCmin,这两个实测数据对应图像得NDVI作为NDVImax 与NDVImin。
植被覆盖度计算

ENVI下植被覆盖度的遥感估算(植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。
容易与植被覆盖度混淆的概念是植被盖度,植被盖度是指植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例。
两个概念主要区别就是分母不一样。
植被覆盖度常用于植被变化、生态环境研究、水土保持、气候等方面。
植被覆盖度的测量可分为地面测量和遥感估算两种方法。
地面测量常用于田间尺度,遥感估算常用于区域尺度。
估算模型目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。
下面是李苗苗等在像元二分模型的基础上研究的模型:VFC = (NDVI - NDVIsoil)/ ( NDVIveg - NDVIsoil) (1)其中, NDVIsoil 为完全是裸土或无植被覆盖区域的NDVI值,NDVIveg 则代表完全被植被所覆盖的像元的NDVI值,即纯植被像元的NDVI值。
两个值的计算公式为:NDVIsoil=(VFCmax*NDVImin- VFCmin*NDVImax)/( VFCmax- VFCmin) (2)NDVIveg=((1-VFCmin)*NDVImax- (1-VFCmax)*NDVImin)/( VFCmax- VFCmin) (3)利用这个模型计算植被覆盖度的关键是计算NDVIsoil和NDVIveg。
这里有两种假设:1)当区域内可以近似取VFCmax=100%,VFCmin=0%。
公式(1)可变为:VFC = (NDVI - NDVImin)/ ( NDVImax - NDVImin) (4)NDVImax 和NDVImin分别为区域内最大和最小的NDVI值。
由于不可避免存在噪声,NDVImax 和NDVImin一般取一定置信度范围内的最大值与最小值,置信度的取值主要根据图像实际情况来定。
2)当区域内不能近似取VFCmax=100%,VFCmin=0%当有实测数据的情况下,取实测数据中的植被覆盖度的最大值和最小值作为VFCmax和VFCmin,这两个实测数据对应图像的NDVI作为NDVImax 和NDVImin。
植被覆盖度计算

(植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。
容易与植被覆盖度混淆的概念是植被盖度,植被盖度是指植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例。
两个概念主要区别就是分母不一样。
植被覆盖度常用于植被变化、生态环境研究、水土保持、气候等方面。
植被覆盖度的测量可分为地面测量和遥感估算两种方法。
地面测量常用于田间尺度,遥感估算常用于区域尺度。
估算模型目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。
下面是李苗苗等在像元二分模型的基础上研究的模型:VFC = (NDVI - NDVIsoil)/ ( NDVIveg - NDVIsoil) (1)其中, NDVIsoil 为完全是裸土或无植被覆盖区域的NDVI值,NDVIveg 则代表完全被植被所覆盖的像元的NDVI值,即纯植被像元的NDVI值。
两个值的计算公式为:NDVIsoil=(VFCmax*NDVImin- VFCmin*NDVImax)/( VFCmax- VFCmin) (2)NDVIveg=((1-VFCmin)*NDVImax- (1-VFCmax)*NDVImin)/( VFCmax- VFCmin) (3)利用这个模型计算植被覆盖度的关键是计算NDVIsoil和NDVIveg。
这里有两种假设:1)当区域内可以近似取VFCmax=100%,VFCmin=0%。
公式(1)可变为:VFC = (NDVI - NDVImin)/ ( NDVImax - NDVImin) (4)NDVImax 和NDVImin分别为区域内最大和最小的NDVI值。
由于不可避免存在噪声,NDVImax 和NDVImin一般取一定置信度范围内的最大值与最小值,置信度的取值主要根据图像实际情况来定。
2)当区域内不能近似取VFCmax=100%,VFCmin=0%当有实测数据的情况下,取实测数据中的植被覆盖度的最大值和最小值作为VFCmax和VFCmin,这两个实测数据对应图像的NDVI作为NDVImax 和NDVImin。
植被覆盖度计算

《数字地球概论》第五次作业姓名:陈桃学号:201212340703一、单击桌面ENVI快捷方式打开ENVI软件,File—openexternal file—eos--modis打开modis数据。
如图:二、点击菜单栏basic tools—band math打开band math对话框,如图:三、在band math中的enter an expression中输入需要计算的公式,在这里以下面五个公式为例进行逻辑运算,分别为:(1)找出所有负值像元并用值-999代替它们,可以使用如下的波段运算表达式:(b1 lt 0)*(-999)+(b1 ge 0)* b1在这里b1可以自己选择,这里选择ndvi然后可以保存图像到指定的文件夹或者保存为memory,点击ok:点击ok,开始执行运算,如图:在窗口中打开运算的结果与原始的图像做对比,并做统计,如图:可以分析看出找出了所有的ndvi为负值的像元并有-999代替。
(2)可以将一幅图像的黑色背景变成白色背景:(b1 eq 0)*255 + (b1 gt 0)*b1打开band math对话框在里面输入公式,如图:点击ok,b1选择红光波段;如图:点击memory,ok 点击ok开始计算,如图:结果输出在窗口中显示,并与原来的图像做对比,统计分析,如图:将一幅图像的黑色背景变成白色背景(3)将某一波段中灰度值大于等于100的像元赋予10,其他的赋予20。
那么表达式就写为:(b1 ge 100)*20+(b1 lt 100)*10点击basic tools—band math打开band math对话框输入公式,如图:点击ok这里B1选择近红外,如图:点击ok点击ok 开始运算结果比较,统计分析,如图:点击basic tools—statistic,进行统计直方图:将某一波段中灰度值大于等于100的像元赋予10,其他的赋予20(4)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10月21日1、打开需要的影像文件:
①
②
③
打开后如下:
2、举例:
2.1、计算出1等级范围内的像元植被覆盖度影像。
b1:处理后的植被覆盖度影像(0-1);
b2:植被覆盖分级图(1-5);
(b2 eq 1)*b1+(b2 ne 1)*7
2.2利用波段计算器计算后
结果:0——0.1(第一等级),3
目的:利用这个结果可以计算第1分级范围内像元的平均植被覆盖度。
公式解读:
在植被覆盖分级图中处于第一等级(0—0.1),所以b2=1的范围就赋值为b1(此处的b1是位于0——0.1等级且位于黄石市边界范围内),而b2不等于1的赋值为3,(这部分像元面积其实是我们不需要的,此处不能赋0才不会与前面的逻辑关系产生冲突,因为当分级图中有为0的面积,而FVC影像图中也有0的值同样的值会误导我们具体的像元面积。
)
3、计算第2、3、
4、5等级范围内的像元植被覆盖度影像
3.1公式:②(b2 eq 2)*b1+(b2 ne 2)*7
3.1.2利用波段计算器进行计算
b1所示影像:
b2所示影像:
结果:
3.2公式:③(b2 eq 3)*b1+(b2 ne 3)*7 3.2.1利用波段计算器进行计算
结果:
④(b2 eq 4)*b1+(b2 ne 4)*7
⑤(b2 eq 5)*b1+(b2 ne 5)*7
4、将统计结果保存为文本文件,操作如下:
其实,可以不用打开影像获取统计结果,操作如下:
在列表中选中相应项右键
(然后将导好的1、2、3、4、5个数据分别倒入excle表格中,1分级的DN值取0~1之间,其他分级依次类推,得到平均FVC.)
5、建立excl表格计算。
注意,粘贴数据时要点——选择性粘贴——数据,这样才能保证只粘贴数据,不会把公式也粘贴进来。