一元一次不等式与一次函数1导学案
一次函数与一元一次方程的关系--教学设计

《一元一次不等式与一次函数(1)》教案一、教学内容分析本节内容是在学生已有对一元一次方程、一元一次不等式和二元一次方程组等的认识之后,从变化和对应关系的角度,对一元一次不等式的运算进行更深入的讨论,是站在更高起点上的动态分析。
通过讨论一次函数与方程(组)及不等式的关系,用函数的观点加深对这些已经学习过的内容的认识,加强知识间的横向和纵向联系,发挥函数的统领作用,构建和发展相互联系的知识体系。
二、教学目的1、知识与技能目标:(1)通过观察函数图象、求方程的解和不等式的解集,体会一元一次方程、一元一次不等式与一次函数的联系;(2)会用图象法解一元一次不等式。
2、数学思考目标:通过对一次函数与一元一次不等式关系的探究及相关实际问题的解决,体会数形结合的思想。
3、问题解决目标:能利用一次函数与一元一次不等式的内在关系,解决实际问题。
4、情感态度目标:培养学生的探究精神,体会事物之间的相互联系,进一步感受数学的价值。
三、教学重点重点:通过观察函数图象解一元一次不等式。
四、教学难点难点:一元一次方程、一元一次不等式与一次函数的内在联系。
五、教学准备学情分析:学生学习了一次函数、一元一次方程和二元一次方程组,已能初步理解函数与方程的联系,同时也具备了一定的数形结合的意识和能力,积累了利用一元一次不等式解决简单实际问题的经验。
教法分析:基于本节课的内容特点和初二年级学生的年龄特征,遵循“让学生主动积极参与学习,发挥其学习的主体性”的教学理念,我决定采用“启发引导、自主学习、合作探究”的教学模式,充分发挥教师的主导作用和学生的主体作用。
六、教学流程框图七、教学过程设计预计时间(分)教学内容教师活动学生活动教学评价5分钟1、创设情境、引入新知深圳市宝安中学在全市率先开展了“学会生存”的必修课,目前“中学生生存教育的理论与实践研究”已成为学校独立承担的全国教育科学“十一五”规划教育部重点资助课题。
在周一的“防止踩踏”疏散课上,初一(4)班的同学在警报响起3秒后疏散距离y(米)与时间x(秒)满足关系式是y=2x-5。
一元一次不等式与一次函数导学案(第1课时)

1.5 3 1.5一元一次不等式与一次函数导学案(第1课时)主备人:王军 审核人: 姓名 班级学习目标:1、了解一元一次不等式与一次函数的关系.2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较3、通过一元一次不等式与一次函数的图象之间的结合,培养数形结合意识学习重点: 会用一次函数图象的性质解一元一次不等式;学习难点:运用函数图象,数形结合解一元一次不等式预习导学:1、请你写出一次函数的定义。
2、一次函数y=kx+b 图像是过_________和____________两点的一条直线。
合作探求:1、请你写出一次函数的定义。
2、一次函数y=kx+b 图像是过_________和____________两点的一条直线。
【基础知识】:一次函数与一元一次方程和一元一次不等式的关系:对于y=kx+b (k 不等于0,k,b 为常数)当y=0时,变形为kx+b=0,就形成了___________________.当y>0,或y<0时, 变形为kx+b>0或kx+b<0,就形成了___________________.由此可见,一次函数与一元一次方程、一元一次不等式之间有密切关系。
所以求不等式的解集也可以用一次函数来解决了,反过来求..........................y>0...或.y<0...的自变量取值范围........也可以用解不等式的方法来解决了。
................ 合作探究:探究点一:利用一次函数图像来求不等式的解集例1、作出函数y=2x -5的图象,观察图象回答下列问题(1)x 取哪些值时,2x -5>0?(2)x 取哪些值时,2x -5<0?(3)x 取哪些值时,2x -5>3?【小结】:运用数形结合的思想,要求2x -5>0的解集就是找X 轴_____方图像对应的自变量取值要求2x -5<0的解集就是找X 轴_____方图像对应的自变量取值。
19.2.3.1一次函数与一元一次方程、不等式教案

在今天的教学过程中,我发现学生们对一次函数与一元一次方程、不等式的关系掌握得还算不错。在导入新课环节,通过提问方式引起学生的兴趣,他们能够积极参与,分享自己在生活中遇到的相关问题。但在新课讲授环节,我发现有些学生对一次函数图像与一元一次方程之间的联系还不够理解,需要我在这里多花一些时间进行讲解和举例。
-举例:在计算成本问题时,学生需将问题抽象为一次函数y=2x+3(成本=固定成本+变动成本),然后根据实际问题求解方程或不等式。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数与一元一次方程、不等式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数关系的问题?”比如,买东西时,如何根据总价和数量来确定单价。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数与一元一次方程、不等式的奥秘。
19.2.3.1一次函数与一元一次方程、不等式教案
一、教学内容
本节课选自教材第19章第2节第3小节,主题为“一次函数与一元一次方程、不等式”。教学内容主要包括以下三个方面:
1.一次函数与一元一次方程的关系ห้องสมุดไป่ตู้引导学生理解一次函数图像上的点都满足一元一次方程,反之亦然。
2.一次函数与一元一次不等式的关系:探讨一次函数图像在不同区间内的取值情况,从而引出一元一次不等式的概念。
2.在实践活动和小组讨论中,部分学生的依赖性较强,需要我多关注并引导他们独立思考。
3.学生在分析问题时容易忽视细节,导致结论不准确,我需要在教学中加强训练学生的观察能力和逻辑思维能力。
针对今天的课堂教学,我认为在今后的教学中,可以从以下几个方面进行改进:
一次函数与一元一次不等式学案

一次函数与一元一次不等式【问题】神州行推出了一种新的轻松卡,其资费标准如下:无月租,0接听,拨打0.25元/分钟。
小明购买了此卡,并充值50元。
(1)请写出使用此卡后余额y(元)与通话时间x(分)之间的函数关系式。
(2)请画出此函数的图像。
(3)50元钱够打多少分钟?当y=0时,x的取值为多少?当y>0时,x的取值范围是多少?当y<0时,x的取值范围是多少?【探究活动一】点来解不等式?【例题】用画函数图像的方法解不等式5x+4<2x+10【归纳】对于任何一元一次不等式都可以化为一般形式ax+b >0或ax+b <0 (a 、b 为常数,a ≠0)从“函数值”的角度看: 从“函数图像”的角度看【探究活动二】右图是一次函数y 1=5x+4和y2=2x+10的图像,请根据图像思考下列问题:(1)当x 取何值时,y 1=y 2 ?(2)当x 满足什么条件时,y 1>y 2 ?(3)当x 满足什么条件时,y 1<y 2 ?思考:根据以上问题能找到不等式5x+4<2x+10的解集吗?【拓展升华】已知:函数y=kx+b 和y=mx 的图像交于点P(-3,2).(1)你能根据图像写出不等式mx>0的解集吗?(2)不等式kx+b>mx 的解集呢?(3)不等式组kx+b>mx>0的解集呢? y 2y 1= 5x+4 解一元一次不等式 ax+b >0或ax+b <0 当一次函数y=ax+b 的函数值y>0(或y<0)时,求相应___________的取值范围。
解一元一次不等式 ax+b >0或ax+b <0 确定直线y=ax+b 在x 轴___________方部分所有点的___________所构成的集合。
一元一次不等式与一次函数教学设计[五篇]
![一元一次不等式与一次函数教学设计[五篇]](https://img.taocdn.com/s3/m/f6c98becd4bbfd0a79563c1ec5da50e2524dd16f.png)
一元一次不等式与一次函数教学设计[五篇]第一篇:一元一次不等式与一次函数教学设计在教学工作者开展教学活动前,通常需要用到教学设计来辅助教学,借助教学设计可以提高教学效率和教学质量。
那么你有了解过教学设计吗?以下是小编为大家收集的一元一次不等式与一次函数教学设计,希望能够帮助到大家。
教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1.一元一次不等式与一次函数的关系.2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.(二)能力训练要求1.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.2.训练大家能利用数学知识去解决实际问题的能力.(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的`作用.教学重点了解一元一次不等式与一次函数之间的关系.教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.教学过程创设情境,导入课题,展示教学目标1.张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。
你能帮帮张大爷选择一种电话卡吗?2.展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1)x取何值时,2x-5=0?(2)x取哪些值时, 2x-5>0?(3)x取哪些值时, 2x-5<0?(4)x取哪些值时, 2x-5>3?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y<1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。
6.6一次函数、一元一次方程和一元一次不等式教学设计

5.拓展延伸,提升能力
-设计富有挑战性的拓展题目,激发学生的求知欲,提升学生的数学思维能力。
-结合现实问题,引导学生运用所学知识解决实际问题,培养学生的创新意识。
6.关注情感,营造氛围
-关注学生的情感需求,营造轻松、愉快的学习氛围,降低学生对数学的恐惧感。
(四)课堂练习,500字
在课堂练习阶段,我将设计不同难度的习题,帮助学生巩固所学知识,形成技能。
首先,我设计一些基础题,让学生独立完成,检验学生对一次函数、一元一次方程和一元一次不等式的基本概念和性质的掌握程度。然后,我逐步提高题目难度,让学生在练习中提高解题能力。
在练习过程中,我关注学生的解题方法,引导学生总结解题策略。对于学生在解题过程中遇到的问题,我及时给予解答,帮助学生突破难点。
(2)在实际问题中,如何将一元一次方程和一元一次不等式应用于求解?
5.思考题:请同学们思考以下问题,下节课分享自己的观点:
(1)一次函数、一元一次方程和一元一次不等式在实际生活中的应用有哪些?
(2)如何运用所学知识解决现实生活中的问题?
作业要求:
1.请同学们认真完成作业,书写工整,保持卷面整洁。
2.对于拓展题和小组合作探究题,同学们可以互相讨论、交流,但需独立完成作业。
-掌握一元一次不等式的符号规则,如不等式两边加减、乘除同一正数时不等号方向的变化。
-学会使用数轴、区间表示不等式的解集,并能够通过图像直观理解不等式的解。
-能够将现实生活中的不等关系抽象为一元一次不等式,并求解。
(二)过程与方法
在教学过程中,注重以下方法与过程:
1.通过情境导入、问题引导的方式,激发学生对一次函数、一元一次方程和一元一次不等式的探究兴趣。
一元一次不等式与一次函数(1)导学案

郑路中学师生导学案班级姓名温馨寄语:科目数学主备人徐秀英时间课题第二章第五节一元一次不等式与一次函数的关系(一)使用人时间课型新授课课时数1学习目标1.一元一次不等式与一次函数的关系。
2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.重点.难点重点:了解一元一次不等式与一次函数之间的关系。
难点:利用方程、不等式、函数思想解决实际问题。
教学流程一.学习准备1、一次函数y=kx+b的图像是,交x轴于点(,),交y 轴于(,)。
2.不等式kx+b>0的解即为x轴方函数图像所对应的x的值;不等式kx+b<0的解即为x轴方函数图像所对应的x的值。
3.阅读教材:二.教材精读4.例1:作出函数y=2x-5的图象,观察图象回答下列问题:(见课本50页)(1)x取哪些值时,2x-5=0?(2)x取哪些值时,2x-5<0?(3)x取哪些值时,2x-5>3?实践练习:兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,画出函数图象,观察图象回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20 m?谁先跑过100 m?(4)你是怎样求解的?与同伴交流?教师个人添加(学生学习记录)模块二合作探究5.例2:当x取什么值时,一次函数y =3x+12的值(1)是正数;(2)是负数;(3)是零?分析:x轴上方的图像对应的函数值大于0,x轴下方的图像对应的函数值小于0,x轴上的图像对应的函数值等于0.实践练习:在同一坐标系中画出一次函数y1=-x+1与y2=2x-2的图象,并根据图象回答下列问题:(1)写出直线y1=-x+1与y2=2x-2的交点P的坐标.(2)直接写出:当x取何值时y1>y2;y1<y2模块三形成提升1、某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x千米,个体车主收费y1元,国营出租车公司收费为y2元,观察下列图象可知,当x________时,选用个体车较合算. X k B 1 . c o mO 2 2 -2-2xyy =3x +by =ax -3 2、如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是_______________。
一次函数与一元一次方程及不等式复习教案

一次函数与一元一次方程及不等式复习教案沂南三中张继学联系电话: 131********一、【教材分析】二、【教学流程】合运用是8.3、根据图象,你能直接说出一元一次方程x+3=0的解吗?4、直线y=x-1上的点在x轴上方时对应的自变量的范围是()A.x>1 B.x≥1C.x<1 D.x≤15、已知直线y=2x+k与x轴的交点为(-2,0),则关于不等式2x+k<0的解集是()A.x>-2 B.x≥-2C.x<-2 D.x≤-26、已知函数y=x-3,当x时,y>0,当x时,y<0.7、已知一次函数y=kx+b的图象如图所示,则不等式kx+b>0解集是()A.x>-2 B.x<-2C.x>-1 D.x<-18、如图是一次函数y=kx+b(k≠0)的图象,则关于x的方程kx+b=0的解为;关于x的不等y=x+3的图象与x轴交点坐标为(-3,0 ),这说明方程x+3=0的解是x=-3.让学生体会解一元一次不等式与求一定条件下自变量的取值范围的关系.解一元一次不等式从函数值的角度看,就是寻求使一次函数y=ax+b的值大于或小于零的自变量的取值范围.通过图象让学生认识不等式的解集与图象3xxy3式kx+b>0的解集为;关于x的不等式kx+b <0的解集为 .9、根据下列一次函数的图像,直接写出下列不等式的解集(1)3x+6>0 (3) –x+3 ≥0(2)3x+6 ≤0 (4) –x+3<0上点的坐标的联系学生独立完成问题,然后师生共同归纳得到,解一元一次不等式从形的角度看,就是确定直线y=kx+b在x轴上(或下)部分所有点的横坐标所构成的集合。
归纳总结:一次函数、一元一次方程、一元一次不等式有着紧密的联系.已知一次函数的表达式,当其中一个变量的值确定时,可以由相应的一元一次方程确定另一个变量的值.当其中一个变量的取值范围确定时,可以由相应的一元一次不等式确定另一个变量的取值范围.1.直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()学生是能灵活运用一元一次方程、一元一-2 y=3x+6y=-x+3三、【板书设计】四、【教后反思】学生的认识是在不断实践、摸索中得以提高的,同样老师的教学能力也是通过不断的反思和反思之后的再实践得以提升的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式与一次函数1导学案
§ 1.5.1 一元一次不等式与一次函数
课堂训练:
作出函数y = 2x-5的图象,观察函数图
象回答下列问题:
当x 时,2x - 5 = 0;
当x 时,2x - 5 > 0;
当x 时,2x - 5 V 0;
当x 时,2x - 5 > 3.
如果y =—2x - 6,当x取何值时,
y > 0?y V 0?y V -3?
已知y仁-x+3,y2=2x-3 ,当x取何值时y1 > y2 ?
给出两直线的图像
、兄弟俩赛跑,哥哥先让弟弟跑3,然后自己才开始跑
已知弟弟每秒跑2,哥哥每秒跑3。
列出哥哥跑的距离y1与时间x秒之间的函数关系式,
列出弟弟跑的距离y2与时间x秒之间的函数关系式,在同一坐标系上作出函数图象,观察图象回答下列问题:
)何时哥哥追上弟弟?
)何时弟弟跑在哥哥前面?
)何时哥哥跑在弟弟前面?
)谁先跑过8?谁先跑过50?
)你是怎样求解的?与同伴交流。
晚间训练:
作出函数y = 3x —3的图象,并根据图
象填空:
当x时,y = 0;
当x时,y>0;
当x时,y v 0;
当x时,y v 3.
两个一次函数y仁ax+b,y2=x+n的图
象如图所示,看图填空:
y1 v y2时,x的取值范围是;
y1>y2时,x的取值范围是.
当x=时,y1=y2
百舸竟渡,激情飞扬,端午节期间,某地举行龙舟比赛,甲、乙两支龙舟在比赛时路程y与时间x之间的函数图象如图所示。
根据图象回答下列的问题:
8分钟时,哪支龙舟队处于领先位置?
在这次龙舟赛中,哪支龙舟队先到达终点?先到达多少时
间?
求乙队加速后,路程y 与时间x之间的函数关系式.
已知yi = 2-x, y2 = x+1,当x取何值
时,yi = y2?y1 > y2?y1 V y2?
书本23页第三题,每组1、2、3号必做。
其他同学选做甲、乙两辆摩托车从相距20的A,B两地相向而行,图中分别表示甲、乙两辆摩托车离A地的距离s与行使时间t 之间的函数关系。
哪辆摩托车的速度较快?
经过多长时间,甲车行驶到A、B两地的中点?。