福建省宁德市2016-2017学年度上期九年级期末数学试题(word版,附答案)
2016-2017学年第一学期期末考试九年级数学答案

2016—2017学年第一学期期末考试试卷九年级数学参考答案二、填空题(每题5分,共30分)11.60 12.3 13.π48 14.5415. ②③ 16.5 三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.3602r n S π= ………………4分=ππ91036021002=⨯(2cm )………………4分 18.解:(1)一次出拳小聪出“石头”的概率是;………………2分(2)如图:………………4分则小聪胜小明的概率是=; ………………2分19.设经过t 小时后,乙船在甲船的正东方………………1分︒⨯=︒-302045)10100(Sin t Sin t ………………3分解得:)12(101210-=+=t ………………3分(不化简不扣分)答:经过)12(10-小时后,乙船在甲船的正东方.………………1分 20.(1) C ………………3分(2) 4)1(221--=x y ,其顶点为(1,-4), ………………1分 而抛物线2y 的顶点坐标为(m ,2),由它们的系数关系,可以得出友好抛物线的顶点的横坐标相同,纵坐标抛物线1y 是抛物线2y 的k 倍,………………2分∴2-=k , ∴1222++-=x x y ………………2分21.解:(1)y 1=2x ﹣20,(0<x≤200)………………2分y 2=10x ﹣40﹣0.05x 2=﹣0.05x 2+10x ﹣40.(0<x≤80).………………2分(2)对于y 1=2x ﹣20,当x=200时,y 1的值最大=380万元.………………2分对于y 2=﹣0.05(x ﹣100)2+460, ∵0<x≤80, ∴x=80时,y 2最大值=440万元.………………2分∵440>380,∴选择生产乙产品利润比较高.………………2分22.(1)证△OPI ≌△ODI (SAS) ………………6分 (2) I 为△OPQ 的内心,且∠OQP=90°,所以∠OIP=135°,……………4分则∠OID=135°,所以∠PID=90°………………2分23.(1)证△BHF ∽△DFG (两角对应相等的两个三角形相似) ………2分得出DGBFDF BH =,………………2分 又因为F 是BD 的中点,所以24BD GD BH =⋅………………2分 (2)同理可得△CBF ∽△FDG , ∴FGCFDF BC =, 又∵DF=BF ,∴FGCFBF BC = ∵∠CBF=∠CFG ,∴△CBF ∽△CFG ………………4分 ∴∠BCF =∠FCG ………………1分当CA=CG 时,CF ⊥AD ………………1分24.(1)3(2)(4)8y x x =-+-343832++-=x x ………………5分(2)当CD ∥BF 时,△COD ∽△FDB ∴DBDFOD OC = ∴ tt t t --+-=4)4)(2(833………………3分解得:41-=t (舍),22=t ………………2分∴ t=2时,CD ∥BF(3)当40<<t 时,①若CE=EF ,t t t 2383452+-=,32=t ………………1分 ②若CF=EF , 53)2383(852⨯+-=t t t ,911=t ………………1分③若CE=CF , 3433438362+-++-=t t t ,0=t (舍………1分当t>4时,只有CE=EF ,t t t 2383452-=,322=t …………1分∴ 当32=t 或119或223时CEF ∆为等腰三角形.。
(2021年整理)最新2016-2017学年人教版九年级上册数学期末测试卷及答案

(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案的全部内容。
第1 页共6 页2016—-—2017学年度九年级上册数学期末试卷(时间120分钟,满分120分)一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是( )2.将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A.y=2(x-1)2-3 B.y=2(x-1)2+3C.y=2(x+1)2-3 D.y=2(x+1)2+33.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于 ( )A.55° B。
70° C。
125° D。
145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )A。
4 5.一个半径为2cm的圆内接正六边形A.24cm2 B.63 cm2 C .6.如图,若AB是⊙O的直径,CD是A.35° B.45° C.55°7.函数mxxy+--=822的图象上有两点B。
九年级上册宁德数学期末试卷易错题(Word版 含答案)

九年级上册宁德数学期末试卷易错题(Word 版 含答案)一、选择题1.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 2.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠. 3.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( )A .2011B .2015C .2019D .20204.在平面直角坐标系中,如图是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③方程ax 2+bx +c =0的两根分别为﹣3和1;④b 2﹣4ac >0,其中正确的命题有( )A .1个B .2个C .3个D .4个 5.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为( )A .45B .34 C .43 D .35 6.二次函数2(1)3y x =-+图象的顶点坐标是( )A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)--7.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50°8.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为'k 2cm ,那么'k 与k 的大小关系是( )A .'k k >B .'k k <C .'k k =D .无法判断 9.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=14410.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )A .平均分不变,方差变大B .平均分不变,方差变小C .平均分和方差都不变D .平均分和方差都改变 11.一组数据10,9,10,12,9的平均数是( )A .11B .12C .9D .10 12.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+ 二、填空题13.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.14.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.15.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表x… -1 0 1 2 3 … y … -3 -3 -1 39 … 关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.16.若圆锥的底面半径为3cm ,高为4cm ,则它的侧面展开图的面积为_____cm 2.17.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.18.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.19.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.20.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP ,以 CP 为 边,在 PC 的右侧作等边△CPQ ,连接 AQ 交 BD 延长线于 E ,当△CPQ 面积最小时,QE=____________.21.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.22.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC =_____.23.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 …y … 0 3 4 3 …24.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.三、解答题25.如图,AB BC =,以BC 为直径作O ,AC 交O 于点E ,过点E 作EG AB ⊥于点F ,交CB 的延长线于点G .(1)求证:EG 是O 的切线;(2)若23GF =,4GB =,求O 的半径. 26.(问题发现)如图1,半圆O 的直径AB =10,点P 是半圆O 上的一个动点,则△PAB的面积最大值是 ;(问题探究)如图2所示,AB 、AC 、BC 是某新区的三条规划路,其中AB =6km ,AC =3km ,∠BAC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F ,即分别在BC 、线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .显然,为了快捷环保和节约成本,就要使线段PE 、EF 、FP 之和最短(各物资站点与所在道路之间的距离、路宽均忽略不计).可求得△PEF 周长的最小值为 km ;(拓展应用)如图3是某街心花园的一角,在扇形OAB 中,∠AOB =90°,OA =12米,在围墙OA 和OB 上分别有两个入口C 和D ,且AC =4米,D 是OB 的中点,出口E 在AB上.现准备沿CE 、DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口E 设在距直线OB 多远处可以使四边形CODE 的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元.请问:在AB 上是否存在点E ,使铺设小路CE 和DE 的总造价最低?若存在,求出最低总造价和出口E 距直线OB 的距离;若不存在,请说明理由.27.如图,在平面直角坐标系中,一次函数13y x =-的图像与x 轴交于点A .二次函数22y x bx c =-++的图像经过点A ,与y 轴交于点C ,与一次函数13y x =-的图像交于另一点()2,B m -.(1)求二次函数的表达式;(2)当12y y >时,直接写出x 的取值范围;(3)平移AOC ∆,使点A 的对应点D 落在二次函数第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标.28.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y (件)与销售单价 x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?29.如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C有怎样的位置关系,并给出证明.30.如图①,在矩形ABCD中,BC=60cm.动点P以6cm/s的速度在矩形ABCD的边上沿A→D的方向匀速运动,动点Q在矩形ABCD的边上沿A→B→C的方向匀速运动.P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动.设运动的时间为t(s),△PDQ的面积为S(cm2),S与t的函数图象如图②所示.(1)AB=cm,点Q的运动速度为cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的⊙O始终与边AD、BC相切,当点P到达终点D时,运动同时停止.①当点O在QD上时,求t的值;②当PQ与⊙O有公共点时,求t的取值范围.31.已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.32.如图,O 的半径为23,AB 是O 的直径,F 是O 上一点,连接FO 、FB .C 为劣弧BF 的中点,过点C 作CD AB ⊥,垂足为D ,CD 交FB 于点E ,//CG FB ,交AB 的延长线于点G .(1)求证:CG 是O 的切线; (2)连接BC ,若//BC OF ,如图2.①求CE 的长; ②图中阴影部分的面积等于_________.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD S S =四边形, ∴1176824AGH EFCABCD S S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.2.A解析:A【解析】【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】由题意得:m ﹣1≠0,解得:m≠1,故选A .【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.C解析:C【解析】【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题.【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1,∴a−b+4=0,∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019.故选C.【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.4.C解析:C【解析】【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可.【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点,把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确;对称轴为直线x =﹣1,即:﹣2b a=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的;由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确;故选C .【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质. 5.A解析:A【解析】【分析】根据勾股定理求出AB 的长,在求出∠ACD 的等角∠B ,即可得到答案.【详解】如图,在Rt △ABC 中,∠C=90°,BC=4,AC=3,∴2222AB AC BC 345=+=+=,∵CD ⊥AB,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α,∴4cos 5BC cos B AB α===. 故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值. 6.A解析:A【解析】【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3).故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ). 7.C解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC =80°, ∴102ABCAOC 4. 故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 8.B解析:B【解析】【分析】设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可.【详解】解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦- ()()()()2222'1211172172172172172n x x k x n -⎡⎤=-+-++-+-⎣⎦ ()()()2221211172172172n x x x n -⎡⎤=-+-++-⎣⎦ ∵111n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x n n --⎡⎤⎡⎤-+-++-<-+-++-⎣⎦⎣⎦-即'k k <故选B .【点睛】此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.9.D解析:D【解析】 试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可. 解:2012年的产量为100(1+x ),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.10.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.11.D解析:D【解析】【分析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是1(10910129)10 5++++=故选:D.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.12.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC 放大到原来的2倍得到△A′B′C ,∴2(﹣1﹣x )=a+1,解得x =﹣12(a+3), 故选:D .【点睛】 本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题13.9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9解析:9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程223x x =+的一个根,∴2a 2=a+3,∴2a 2-a=3,∴()2263=32339a a a a --=⨯=.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键. 14.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.15.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k .【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x 1,再利用夹逼法可确定x 1 的取值范围,可得k .【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y =ax 2+bx +c 得313c a b c a b c -=⎧⎪-=++⎨⎪-=-+⎩,解得113a b c =⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b 2-4ac=12-4×1×(-3)=13,∴==−1±2, ∵1x <0,∴1x =−1-2<0,∵-4≤-3,∴3222-≤-≤-,∴-≤ 2.5-, ∵整数k 满足k <x 1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.16.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯= 故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70° ∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.18.【解析】【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称解析:20x -<<【解析】【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.故答案为:20x -<<.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键. 19.3000(1+ x)2=4320【解析】【分析】设增长率为x ,则2010年绿化面积为3000(1+x )m2,则2021年的绿化面积为3000(1+x )(1+x )m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x ,则2010年绿化面积为3000(1+x )m 2,则2021年的绿化面积为3000(1+x )(1+x )m 2,然后可得方程.【详解】解:设增长率为x ,由题意得:3000(1+x )2=4320,故答案为:3000(1+x )2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.20.【解析】【分析】如图,过点D 作DF⊥BC 于F ,由“SAS”可证△ACQ≌△BCP,可得AQ =BP ,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD 的长,由锐角三角函数可求BP 的长,由相【解析】【分析】如图,过点D 作DF ⊥BC 于F ,由“SAS ”可证△ACQ ≌△BCP ,可得AQ =BP ,∠CAQ =∠CBP ,由直角三角形的性质和勾股定理可求BD 的长,由锐角三角函数可求BP 的长,由相似三角形的性质可求AE 的长,即可求解.【详解】如图,过点D 作DF ⊥BC 于F ,∵△ABC ,△PQC 是等边三角形,∴BC =AC ,PC =CQ ,∠BCA =∠PCQ =60°,∴∠BCP =∠ACQ ,且AC =BC ,CQ =PC ,∴△ACQ ≌△BCP (SAS )∴AQ =BP ,∠CAQ =∠CBP ,∵AC =6,AD =2,∴CD =4,∵∠ACB =60°,DF ⊥BC ,∴∠CDF =30°,∴CF =12CD =2,DF =CF ÷tan30°3=3 ∴BF =4, ∴BD 22DF BF +1612+7,∵△CPQ 是等边三角形,∴S △CPQ =34CP 2, ∴当CP ⊥BD 时,△CPQ 面积最小,∴cos ∠CBD =BP BF BC BD =, ∴627BP =, ∴BP 127, ∴AQ =BP 127, ∵∠CAQ =∠CBP ,∠ADE =∠BDC ,∴△ADE ∽△BDC ,∴AE AD BC BD=,∴6AE ,∴AE ,∴QE =AQ−AE .故答案为;7. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP 的长是本题的关键.21.y =2(x ﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y =2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y =2(x ﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y =2(x ﹣3)2﹣2,故答案为y =2(x ﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.22.【解析】【分析】根据重心的性质可得AG :DG =2:1,然后根据平行线分线段成比例定理可得==2,从而求出CE ,即可求出结论.【详解】∵点G 为△ABC 的重心,∴AG:DG=2:1,∵GE解析:【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得CEDE=AGDG=2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE∥AC,∴CEDE=AGDG=2,∴CE=2DE=2×2=4,∴CD=DE+CE=2+4=6.故答案为:6.【点睛】此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键.23.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x=0+22=1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.24.140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.解析:140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.三、解答题25.(1)见解析;(2)O 的半径为4. 【解析】【分析】(1) 连接OE ,利用AB=BC 得出A C ∠=∠,根据OE=OC 得出,OEC C ∠=∠,从而求出OE AB ,再结合EG AB ⊥即可证明结论;(2)先利用勾股定理求出BF 的长,再利用相似三角形的性质对应线段比例相等求解即可.【详解】解:(1)证明:连接OE .∵AB BC =∴A C ∠=∠∵OE OC =∴OEC C ∠=∠∴A OEC ∠=∠∴OEAB ∵BA GE ⊥,∴OE EG ⊥,且OE 为半径 ∴EG 是O 的切线(2)∵BF GE ⊥∴90BFG ∠=︒∵23GF =4GB =∴222BF BG GF =-=∵BF OE ∥∴BGF OGE ∆∆∽ ∴BF BG OE OG =∴244OE OE=+ ∴4OE =即O 的半径为4. 【点睛】本题考查的知识点是切线的判定与相似三角形的性质,根据题目作出辅助线,数形结合是解题的关键.26.[问题发现] 25;[问题探究] 3219-;[拓展应用]①出口E设在距直线OB的7.2米处可以使四边形CODE的面积最大为60平方米,②出口E距直线OB的距离为36665-米.【解析】【分析】[问题发现]△PAB的底边AB一定,面积最大也就是P点到AB的距离最大,故当OP⊥AB时,12OP AB=时最大,值是5,再计算此时△PAB面积即可;[问题探究]先由对称将折线长转化线段长,即分别以AB、AC所在直线为对称轴,作出P关于AB的对称点为M,P关于AC的对称点为N,连接MN,易求得:3MN AP=,而3PE EF PF ME EF FN MN AP++=++≥=,即当AP最小时,PE EF PF++可取得最小值.[拓展应用]①四边形CODE面积=S△CDO+S△CDE′,求出S△CDE′面积最大时即可;②先利用相似三角形将费用问题转化为CE+2DE=CE+QE,求CE+QE的最小值问题.然后利用相似三角形性质和勾股定理求解即可。
2016--2017学年度上学期期末九年级数学试题及答案

2016-2017学年度上学期期末考试九年级数学试题2017.01注意事项:1.答题前,请先将自己的姓名、考场、考号在卷首的相应位置填写清楚;2.选择题答案涂在答题卡上,非选择题用蓝色、黑色钢笔或圆珠笔直接写在试卷上.第Ⅰ卷(选择题共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.方程xx22=的根是A.2 B.0 C.2或0 D.无解2.若反比例函数的图象过点(2,1),则这个函数的图象一定过点A.(-2,-1) B.(1,-2) C.(-2,1) D.(2,-1)3. 如图,点A为α∠边上任意一点,作BCAC⊥于点C,ABCD⊥于点D,下列用线段比表示αsin的值,错误..的是A.BCCDB.ABACC.ACADD.ACCD4. 如图,AD∥BE∥CF,直线a,b与这三条平行线分别交于点A,B,C和点D,E,F,若AB=2,AC=6,DE=1.5,则DF的长为A.7.5 B.6 C.4.5 D.35.如图,四边形A BCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是A.88°B.92°C.106°D.136°6. 在Rt△ABC中,∠C=90°,34tan=A,若AC=6cm,则BC的长度为A.8cm B.7cm C.6cm D.5cm7. 已知二次函数)0()3(2≠-+=abxay有最大值1,则该函数图象的顶点坐标为A.)1,3(-- B.)(1,3- C.)1,3( D.)1,3(-8. 从n个苹果和4个雪梨中,任选1个,若选中苹果的概率是53,则n的值是(第3题图)(第4题图)(第5题图)A .8B .6C .4D .29. 已知反比例函数xy 5-=,则下列结论不正确...的是 A .图象必经过点)5,1(-, B .图象的两个分支分布在第二、四象限 C .y 随x 的增大而增大 D .若x >1,则5-<y <010. 直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则cos ∠CBE 的值是A .724B .37C .247 D .252411. 如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形 的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这 块扇形铁皮的半径是 A .40cm B .50cm C .60cm D .80cm12.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,AE =6,则tan∠BDE 的值是 A .34 B .43 C .21D .1:2 13.如图,△ABC 中,AD 是中线,BC =4,∠B =∠DAC ,则线段AC 的长为 A .22B .2C .3D .3214. 如图所示,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (2-,0)、B (1,0),直线x =21-与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD =MC ,连接AC ,BC ,(第13题图) (第14题图)(第10题图) (第11题图)(第12题图)AD ,BD ,某同学根据图象写出下列结论:①0=-b a ; ②当x <21-时,y 随x 增大而增大;③四边形ACBD 是菱形;④cba +-39>0.你认为其中正确的是 A .②③④B .①②③C .①③④D .①②③④第II 卷 非选择题(共78分)二、填空题(本题共5小题,每小题3分,共15分)15.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是 . 16. 若n (其中0≠n )是关于x 的方程022=++n mx x 的根,则m +n 的值为 . 17.如图,大圆半径为6,小圆半径为3,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A 中”记作事件W ,请估计事件W 的概率P (W )的值 .18. 如图,在△ABC 中,AD 平分∠BAC ,与BC 边的交点为D ,且DC =31BC ,DE ∥AC ,与AB 边的交点为E ,若DE =4,则BE 的长为 .19. 如图,在直角坐标系中,直线221-=x y 与坐标轴交于A ,B 两点,与双曲线)0(2>=x xky 交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA =AD ,则以下结论:①当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小;②4=k ;③当0<x <2时,y 1<y 2;④如图,当x=4时,EF =5.其中结论正确的有____________.(填序号)三、解答题(本大题共7小题,共63分) 20.(本题满分5分) 计算:2cos30sin 45tan 601cos60︒+︒--︒o .题号 二 三Ⅱ卷总分20 21 22 23 24 25 26 得分得分 评卷人(第19题图)(第17题图) (第18题图)21.(本题满分8分)解方程:(1))1(212+=-x x ; (2)05422=--x x .22. (本题满分8分)如图,一楼房AB 后有一假山,山坡斜面CD 与水平面夹角为30°,坡面上点E 处有一亭子,测得假山坡脚C 与楼房水平距离BC =10米,与亭子距离CE =20米,小丽从楼房顶测得点E 的俯角为45°.求楼房AB 的高(结果保留根号).得分 评卷人得分 评卷人(第22题图)30°23. (本题满分9分)如图,AB 是⊙O 的直径,CD 与⊙O相切于点C ,与AB 的延长线交于点D ,DE ⊥AD 且与AC 的延长线交于点E .(1)求证:DC =DE ;(2)若tan ∠CAB =21,AB =3,求BD 的长.(第23题图)24. (本题满分10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=35.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.得分评卷人(第24题图)25.(本题满分11分)如图,已知抛物线c bx x y ++=2经过A (1-,0)、B (3,0)两点,点C 是抛物线与y 轴的交点.(1)求抛物线的解析式和顶点坐标;(2)当0<x <3时,求y 的取值范围;(3)在抛物线的对称轴上是否存在点M ,使△BCM 是等腰三角形,若存在请直接写出点M 坐标,若不存在请说明理由.得分 评卷人(第25题图)26.(本题满分12分)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°.(1)操作发现如图2,固定△ABC ,使△DE C 绕点C 旋转,当点D 恰好落在AB 边上时,填空:①线段DE 与AC 的位置..关系是_________; ②设△BDC 的面积为1S ,△AEC 的面积为2S ,则1S 与2S 的数量关系是____________.(2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE //AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使BDE DCF S S ∆∆=,请直接写出相应的BF 的长.得分 评卷人A (D )B (E )C 图1 ACBDE图22016-2017学年度上学期期末考试 九年级数学参考答案 2017-1注意:解答题只给出一种解法,考生若有其他正确解法应参照本标准给分. 一、选择题(每小题3分,共42分)1-~5 CADCD 6~10BABCD 11~14 ACAB 二、填空题(每小题3分共15分) 15.2:1 16. 2- 17.4118. 8 19.①②③④ 三、解答题(本大题共7小题,共63分)20. 解:原式=21(1)()222÷-+2分124分 =12……5分 21. (8分)解:(1)将原方程变形为:0)1(2)1)(1(=+--+x x x ……………….1分∴0)21)(1(=--+x x ∴x +1=0或x ﹣3=0,……………………….3分 ∴x 1=﹣1,x 2=3;……………………………………………………….4分 (2)∵2x 2﹣4x ﹣5=0, ∴a =2,b =﹣4,c =﹣5,∴b 2﹣4ac =16+40=56,∴4564242±=-±-=a ac b b x ,…………………….3分∴2141,214121-=+=x x .…………………………………..4分 22.(8分)解:过点E 作EF ⊥BC 于点F .在Rt △CEF 中,CE =20,∠ECF =30° ∴EF =10 …………2分 CF =3 EF =103(米) ………4分 过点E 作EH ⊥AB 于点H .则HE =BF ,BH=EF .在Rt△AHE 中,∠HAE =45°,∴AH =HE ,又∵BC =10米,∴HE =(10+103)米, ………6分∴AB =AH +BH =10+103+10=20+103(米) ………………………7分 答:楼房AB 的高为(20+103) 米. ………………………8分23. (9分)(1)证明:如图,连接OC .…………………1分∵CD 与⊙O 相切于点C , ∴∠OCD =90°. ………………………2分 ∴∠1+∠2=90°.∵ED ⊥AD ,∴∠EDA =90°,∴∠A +∠E =90°. …………………3分 ∵OC =OA ,∴∠A =∠2.(2)解:设BD =x ,则AD =AB +BD =3+x ,OD =OB +BD =1.5+x . ………5分在Rt △AED 中,∵tan ∠CAB =21=AD DE ,∴DE =21AD =21(3+x ). ………6分 由(1)得DC =DE =21(3+x ). ……………7分 在Rt △OCD 中,222OD CD OC =+,∴222)5.1()3(215.1x x +=⎥⎦⎤⎢⎣⎡++. …………8分解得11=x ,32-=x (不合题意,舍去). ∴BD =1. ……………9分24.(10分)解:(1)过点A 作AE ⊥x 轴于点E ,如图所示.∵AE ⊥x 轴,∴∠AEO =90°.在Rt △AEO 中,AO =5,sin∠AOC =35,∴AE =AO •sin∠AOC =3,OE =22AO AE -=4,………2分∴点A 的坐标为(﹣4,3). ……………………3分设反比例函数解析式为k y x =.∵点A (﹣4,3)在反比例函数ky x=的图象上, ∴3=4k -,解得k =﹣12. ∴反比例函数解析式为y =﹣12x. …………………5分(2)∵点B (m ,﹣4)在反比例函数y =﹣12x的图象上,∴﹣4=﹣12m,解得m =3,∴点B 的坐标为(3,﹣4).…………………………6分设直线AB 的解析式为y =ax +b ,将点A (﹣4,3)、点B (3,﹣4)代入y =ax +b 中, 得34,43,a b a b =-+⎧⎨-=+⎩ 解得1,1.a b =-⎧⎨=-⎩ ∴一次函数解析式为y =﹣x ﹣1.…………8分 令一次函数y =﹣x ﹣1中y =0,则0=﹣x ﹣1,解得x =﹣1,即点C 的坐标为(﹣1,0). S △AOB =12OC •(y A ﹣y B )=12×1×[3﹣(﹣4)]=72. ……………10分 25.(10分)解:(1)把A (﹣1,0)、B (3,0)分别代入y =x 2+bx +c 中,得:⎩⎨⎧=++=+-03901c b c b ,解得:⎩⎨⎧-=-=32c b ,∴抛物线的解析式为y =x 2﹣2x ﹣3.……………3分∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴顶点坐标为(1,﹣4).…………………4分(2)由图可得当0<x <3时,﹣4≤y <0;…………….5分(3)存在……………….6分①当BC BM =时,141=m ,142-=m ;②当CM =CB 时,1733+-=m , 1734--=m ;③当BM =CM 时,(1,1-).所以点M 的坐标为(1,14)或(1,14-)或(1,173+-)或(1,173--)或(1,1-).………………….11分26.(12分)解:(1)①DE ∥AC ;………………2分 ②S 1=S 2;………………4分(2)如图,∵△DEC 是由△ABC 绕点C 旋转得到,∴BC =CE ,AC =CD ,∵∠ACN +∠BCN =90°, ∠DCM +∠BCN =180°-90°=90°,∴∠ACN =∠DCM ,在△AC N 和△DCM 中,⎪⎩⎪⎨⎧=︒=∠=∠∠=∠CD AC N CMD DCN ACN 90∴△ACN ≌△DCM (AAS),…………………6分∴AN =DM ,∴△BD C 的面积和△AEC 的面积相等(等底等高的三角形的面积相等), 即S 1=S 2;…………………7分如图,过点D 作1DF ∥BE ,易求四边形1BEDF 是菱形,所以BE =1DF ,且BE 、1DF 上的高相等,此时 BDE DCF S S ∆∆=1…………………8分过点D 作BD DF ⊥2,∵∠ABC =60°,1DF ∥BE ,∴︒=∠6021F DF ,︒=∠=∠=∠30211ABC DBE DB F ,∴︒=∠6021DF F , ∴21F DF ∆是等边三角形,∴1DF =2DF ,∵BD =CD ,∠ABC =60°,点D 是角平分线上一点,∴∠CDF 1=180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,在△CDF 1和△CDF 2中,⎪⎩⎪⎨⎧=∠=∠=CD CD CDF CDF DF DF 2121,∴△CDF 1≌△CDF 2(SAS), ∴点F 2也是所求的点,……………10分∵∠ABC =60°,点D 是角平分线上一点,DE ∥AB ,DF 1∥BE ,易证1BEDF 是菱形, 连接EF 1, 则BD EF ⊥1, 垂足为O ,在1BOF Rt ∆中,BO =21BD =2,︒=∠301BO F , ∴︒=30cos 1BF BO , ∴33423230cos 1==︒=BO BF ………………11分. 在Rt BD F 2中,︒=30cos 2BF BD ,∴33823430cos 2==︒=BD BF , 故BF 的长为334或338.…………………12分。
9年级数学2016-2017上期末答案及建议

2016-2017学年度上期期末检测九年级数学参考答案及评分建议A 卷(100分)一、选择题(本大题共十小题,每小题3分,共30分) 1-5 A B A C D 6-10 C B C D B二、填空题(本大题共四小题,每小题4分,共16分)11.2312.14m 13. 14. 6 三、解答题(本大题共六小题,共54分) 15.(本小题满分12分,每题6分)解:(1)原式12222=-⨯(4分) (2)254611∆=-⨯⨯= (2分)1= (2分) ∴ (5)26x --=⨯ (2分)∴ 112x =,213x = (2分) 16.(本小题满分6分)解:在Rt BCD V 中,45BCD ∠=︒, ∴ DC BC = (2分)在Rt ACD V 中,50ADC ∠=︒ ∴tan 50ACDC=︒ 即 1.2AC DC = (2分) 由题意知: 1.25AB AC BC BC BC m =-=-=,∴25BC m = (1分)∴建筑物BC 的高度为25m . (1分)18.(本小题满分8分)解:三张扑克牌可以分别简记为红2、红3、黑4,共有9种不同结果,如图所示.(4分)(1)∵两次抽得相同花色占5种情况,∴ 两次抽得相同花色的概率为59;(2分)(2)∵两次抽得的数字和是奇数占4种,∴两次抽得的数字和是奇数的概率为49.(2分) 19.(本小题满分10分)解:(1)∵ 抛物线2y x bx c =++过点A (-4,-3),对称轴是3x =- ∴ 1643321b c b -+=-⎧⎪⎨-=-⎪⎩⨯, (2分) ∴56c b =⎧⎨=⎩(1分) ∴ 抛物线的解析式为265y x x =++; (1分)(2)抛物线265y x x =++与x 轴的交点C (-5,0)、D(-1,0);(1分)与y 轴交点B (0,5)(1分)∴ 4CD =,5OB = ∴ △BCD 的面积1102CD OB =⨯⨯=; (1分)(3)连接BC 与对称轴交于点P ,此时△PBD 的周长最小(1分) 设对称轴与轴交于Q ,由平行得比例知255PQ =,2PQ =(1分) ∴ 所求点P 的坐标为(3-,2).(1分)20.(本小题满分10分)(1)证明: ∵矩形ABCD ∴AD ∥BC ,∴∠EAO=∠FCO ,∠AEO=∠CFO , 在△AOE 和△COF 中, ∠EAO =∠FCO ,∠AEO =∠CFO ,AO =CO∴ △AOE ≌△COF (AAS ), (1分)∴ EO=FO , ∴ 四边形AFCE 是平行四边形, (1分) ∵ EF ⊥AC , ∴ 四边形AFCE 是菱形;(1分)(2) ∵∠AEP=∠AOE=90°,∠EAP=∠OAE , ∴ △AOE ∽△AEP ,(1分) ∴AO AE=AE AP,∴2AE AO AP =⋅,(1分)∵ AC=2AO ,∴22AE AC AP =⋅.(1分) (3)解:∵ EF ⊥AC ,AO=CO ,∴ AF=CF (1分) ∵ 矩形ABCD ,AB=6,AD=8 ∴ AC=10(1分) ∵ ∠OCF=∠BCA ∴ Rt OCF Rt BCA ∆∆:(1分) ∴CF OC CA CB = ∴ 5108CF = ∴254AF CF ==(1分) B 卷(50分)一、填空题(本大题共五小题,每小题4分,共20分) 21. 31x -<<- 22.(1,4) 23.4.5 24.132521 二、解答题(本大题共三小题,共30分) 26.(本小题满分8分)解:(1)设BC 的长为x 米,则AB 的长为1(26)2x -)米,依题意得:(1分)1(26)802x x -=,(1分) 化简,得2261600x x -+=,解得:110x =,216x =,(1分) 当16x =米时,BC 的长超过墙的长12米,应舍去.(1分)答:若矩形猪舍的面积为80平方米,与墙平行的一边BC 的长为10米.(1分) (2)依题意得:1(26)2012x x x ⎧≥-⎪⎨⎪<≤⎩,(2分) 解得26123x ≤≤,(1分) 答:若边BC 的长度不小于与边AB 的长度,则BC 边至少应为26米.(1分) 27.(本小题满分10分)(1)证明:由题意知点C 与点N 重合,Rt △ABC 中,AD=BD ∴DC=DA=DB (1分)∵ α=30°,90EDF ∠=︒ ∴ ∠A=∠ADM=30°,∴MA=MD , ∵ MG ⊥AD ,∴ AG=12DC ,(1分) 同理,DH=12DB , ∴AG=DH ;(1分)(2)解:当0°<α<90°时,(1)中的结论成立.如图③,∵∠MDG=α, ∴ ∠DMG=90°-α=∠NDH ,∴ Rt △MGD ∽Rt △DHN ,∴DH NHMG DG=① (1分) 同理Rt △AGM ∽Rt △NHB ,∴AG MGNH BH=②(1分) 由①×②,得DG BH AG DH =,∴DG AG BH DHAG DH++=, 即AD BD AG DH=,(1分)∵AD=DB ,∴AG=DH ;(1分) (3)在Rt △DEF 绕点D 顺时针方向旋转过程中,DMDN值没有改变,(1分 ) ∵ Rt △MGD ∽Rt △DHN ,∴ DM MG DN DH =,∵AG=DH , ∴DM MGDN AG=(1分) 当α=30°时,MGAG=tan ∠A=tan30°=33 ∴33DM MG DN AG ==.(1分) 28.(本小题满分12分)解:(1)∵ 抛物线23y ax bx =+-与y 轴交于点C ∴ C (0,-3),∴ OC=3,(1分) ∵ BO=OC=3AO , ∴ BO=3,AO=1, ∴ B (3,0),A (-1,0),(1分) ∵ 该抛物线与x 轴交于A 、B 两点,∴ 933030a b a b +-=⎧⎨--=⎩,∴12a b =⎧⎨=-⎩,(1分) ∴ 抛物线解析式为223y x x =--,(1分)(2)由(1)知,抛物线解析式为2223(1)4y x x x =--=--,∴ E (1,-4), (1分) ∵ B (3,0),A (-1,0),C (0,-3),∴ BC=32,BE=25,CE=2, (1分)∵ 直线113y x =-+与y 轴交于点D , ∴ D (0,1), ∵ B (3,0),∴ OD=1,OB=3,BD=10, (1分) ∴2CE BC BEOD OB BD===, ∴ △BCE ∽△BDO ,(1分) (3)∵ BC 所在直线过点B (3,0)、C (0,-3) ∴ 直线BC 为3y x =- (1分) ∴ 当直线y x b =+与抛物线223y x x =--有唯一交点P 时,△PBC 的最大面积(1分) 把y x b =+代入223y x x =--得2330x x b ---=,由94(3)0b ∆=++=, ∴1232x x ==∴点P (32,154-)(1分) ∴ △PBC 的最大面积1315133115327()32442422428=⨯+⨯-⨯⨯-⨯⨯=.(1分)。
2017-2018(上)宁德市九年级期末质检数学试卷

数学试题 第 1 页 共 6 页宁德市2017-2018学年度第一学期期末九年级质量检测数 学 试 题(满分:150分;考试时间:120分钟)友情提示:1.所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效.2.参考公式:抛物线2y ax bx c =++(0a ≠)的顶点是(2b a-,244ac b a -).一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.若25=b a ,则b ba -= A .32B .23 C .3 D .27 2.已知反比例函数x k y =,当x >0时,y 随x 的增大而增大.则函数xky =的图象在 A .第一、三象限 B .第一、四象限 C .第二、四象限D .第二、三象限3.已知一个几何体及其左视图如图所示,则该几何体的主视图是A B C D4.把一元二次方程0162=+-x x 配方成n m x =+2)(的形式,正确的是A .10)3(2=+xB .10)3(2=-xC .8)3(2=+xD .8)3(2=-x5.下列图形中△ABC ∽△DEF ,则这两个三角形不是位似图形的是A B C D第3题图A (D )CEFA (D )BCEFBCE FA (D )BCEF AD左视图数学试题 第 2 页 共 6 页6.若关于x 的一元二次方程022=+-m x x 有两个不相等的实数根,则m 的值可以是A .1-B .1C .3D .57.如图,点P (x ,y )(x >0,y >0)在半径为1的圆上,则αcos =A .xB .yC .yxD .xy 8.下列关于抛物线2)5(2+--=x y 有关性质的说法,错误的是A .对称轴是直线5=xB .开口向下C .与x 轴有交点D .最小值是29.如图,一架梯子斜靠在墙上,设梯子AB 的中点为O ,AB =6米,BC =2米,若梯子B 端沿地面向右滑行1米,则点O 到点C 的距离A .减小1米B .增大1米C .始终是2米D .始终是3米10.如图,在矩形ABCD 中,E 是CD 边的中点,且BE ⊥AC于点F ,连接DF ,则下列结论错误的是 A .△ADC ∽△CFB B .AD =DF C .23=AC BCD .41=∆∆ABF CEF S S 二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置) 11.计算:︒60sin 2= .12.两根不一样长的木杆垂直竖立在地面上,若它们的影长相等,则此时的投影是 .(填写“平行投影”或“中心投影”)13.在不透明的袋子中有红球、黄球共40个,除颜色外其他完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,则口袋中红球的个数大约是 .14.将抛物线22x y =向上平移3个单位,所得抛物线的表达式为 .第10题图AC BDE FA OBC第9题图第7题图xy OP (x ,y )α11数学试题 第 3 页 共 6 页15.如图,直角三角形纸片ABC ,AC 边长为10cm ,现从下往上依次裁剪宽为4cm 的矩形纸条,若剪得第二张矩形纸条恰好是正方形,那么BC 的长度是 cm . 16.如图,点A ,B 在反比例函数xky =图象上,且直线AB 经过原点,点C 在y 轴正半轴上,直线CA 交x 轴于点E ,直线CB 交x 轴于点F ,若3=AE AC ,则=CF BF .三、解答题(本大题有9小题,共86分.请在答题卡的相应位置作答) 17.(本题满分8分)如图,D ,E 分别为△ABC 边AB ,AC 上的点,且DE ∥BC ,若AD =5,AB =15,AE =3,求AC 的长.18.(本题满分8分)已知关于x 的一元二次方程042=+-c x x 有一个根是3=x ,求c 与另一个根.19.(本题满分8分)贴春联是中华民族的传统文化.不识字的王爷爷不小心将两幅对联弄混了,已知这四张联纸上的文字分别是:①天涯若比邻,②修业勤为贵,③行文意必高,④海内存知己.若他任意取出两张联纸,求这两张联纸恰好组成一副对联的概率.第15题图 ABC第16题图ADEB数学试题 第 4 页 共 6 页B 20.(本题满分9分)如图,点A (5,2),B (m ,n )(m <5)在反比例函数xky =的图象上,作AC ⊥y 轴于点C .(1)求反比例函数的表达式;(2)若△ABC 的面积为10,求点B 的坐标.21.(本题满分9分)如图,已知□ABCD ,点E 在BC 上,点F 在AD 上.(1)请用尺规确定点E ,F 的位置,使得四边形AECF 是菱形;(保留作图痕迹,不写作法)(2)利用(1)中作图所确定的条件证明四边形AECF 是菱形.22.(本题满分9分)如图是小明家阁楼储藏室的侧面示意图.现他有一个棱长为1.1米的正方体包裹,请通过计算判断,该包裹能否平放入这个储藏室.(参考数据:52.031sin ≈︒,86.031cos ≈︒,.031tan ≈︒数学试题 第 5 页 共 6 页23.(本题满分11分)万达大厦销售某种T 恤,平均每天可销售40件,每件盈利20元.为尽量减小库存,提高日盈利,商场决定采取适当的降价措施.经调查发现,若该种T 恤每件降价x 元,则每天的销售量y (件)与x 之间的关系如图1所示,每天销售该种T 恤的日盈利额S (元)与x 之间的关系如图2所示.(1)当T 恤降价x 元时,每件T 恤盈利 元,商场日销售量为 件;(用含x 的代数式表示)(2)若商场计划销售该种T 恤的日盈利达到900元,求每件T 恤应降价多少元? (3)直接写出图2中顶点A 的坐标,并说明点A 的实际意义.24.(本题满分11分)如图,已知正方形ABCD ,点E 在BC 上,点F 在CD 延长线上,BE=DF . (1)求证:AE=AF ;(2)若BD 与EF 交于点M ,连接AM ,试判断AM 与EF 的数量与位置关系,并说明理由.图1图2F ACDM25.(本题满分13分)如图,二次函数c-=2的图象与x轴交于A,B两点(点A在点B的左边),+y+xbx顶点为P.(1)若6==c,求A,B两点的坐标;-b,5(2)过点P作PE⊥y轴于点E,若点A的坐标为(1,0),且四边形ABPE是平行四边形,求b,c的值;(3)若b=7,且点A,B在点(1,0)与点(5,0)之间,求c的取值范围.数学试题第 6 页共 6 页。
2016-2017学年第一学期九年级数学期末试题及答案

2016-2017学年第一学期期末测试九年级数学试卷(时间120分钟,满分120分)一、 选择题(本大题共10小题,每小题3分,共30分,请将答案填涂在答题卡上) 1、-5的倒数是( )A 、B 、C 、-5D 、52、a 2•a 3等于( )A 、3a 2B 、a 5C 、a 6D 、a 83、下列事件为必然事件的是( )A 、打开电视机,它正在播广告B 、抛掷一枚硬币,一定正面朝上C 、投掷一枚普通的正方体骰子,掷得的点数小于7D 、某彩票的中奖机会是1%,买1张一定不会中奖4、下面如图是一个圆柱体,则它的主视图是( )A B C D5.下列命题中,假命题是( ) A . 平行四边形是中心对称图形B . 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C . 对于简单的随机样本,可以用样本的方差去估计总体的方差D . 若x 2=y 2,则x=y6.若关于x 的不等式⎩⎨⎧≤-<-1270x m x 的整数解共有4个,则m 的取值范围是A .76<<mB .76<≤mC .76≤≤mD .76≤<m7.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A .3 B .4 C .5 D .6ABCDFE8.如图是一块△ABC 余料,已知AB=20cm ,BC=7cm ,A C=15cm ,现将余料裁剪成一个圆形材料,则该圆的最大面积是( )A . πcm 2B . 2πcm 2C . 4πcm 2D . 8πcm 29.如图,△ABC 中,∠ACB=90°,∠A=30°,AB=16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边A C (或边CB )于点Q .设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致是( )A .B .C .D .10. 如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交CE于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有A .1个B .2个C .3个D .4个A BCDEFG二、填空题(本大题共8小题,11--14每小题3分,15--18每小题4分,共28分,请将答案填在后面的表格里)11.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为_ 12. 因式分解:22a b ab b ++= .13.随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是 .14.现有一张圆心角为108°,半径为40cm 的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为 .15.如图,已知正方形ABCD 的边长是8,M 在DC 上,且DM=2,N 是AC 边上的一动点,则DN+NM 的最小值是_______.16. 如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .17.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则PQ 的长为xyABO1S2S16题图18.如图,点M 是反比例函数y=在第一象限内图象上的点,作MB⊥x 轴于B .过点M 的第一条直线交y 轴于点A 1,交反比例函数图象于点C 1,且A 1C 1=A 1M ,△A 1C 1B 的面积记为S 1;过点M 的第二条直线交y 轴于点A 2,交反比例函数图象于点C 2,且A 2C 2=A 2M ,△A 2C 2B 的面积记为S 2;过点M 的第三条直线交y 轴于点A 3,交反比例函数图象于点C 3,且A 3C 3=A 3M ,△A 3C 3B 的面积记为S 3;以此类推…;则S 1+S 2+S 3+…+S 8= _________ .11 12 13 1415 16 17 18三.解答题:本大题共7小题,总分62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分7分,第⑴题3分,第⑵题4分)(1) 计算:1021()(52)18(2)23---+--⋅(2) 先化简再计算:(x -1x -x -2x +1)÷2x 2-x x 2+2x +1,其中x 满足x 2-x -1=0.20. (本题满分8分)某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000 名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:(1)表中a和b所表示的数分别为:a=___________,b=_______________;(2)请在图中补全额数分布直方图;(3)如果把成绩在70分以上(含70分)定为合格,那么该市20000名九年级考生数学成绩为合格的学生约有多少名?21.(本题满分8分)如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.22. (本题满分8分)周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)23. (本题满分9分)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.24.(本题满分10分)已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P 是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请直接写出它们所满足的数量关系式,不需要说明理由.25.(本题满分12分)如图,抛物线经过(40)(10)(02),,,,,三点.A B C-(1)求出抛物线的解析式;⊥轴,垂足为M,是否存在P点,使得以A,P,M为(2)P是抛物线上一动点,过P作PM x△相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;顶点的三角形与OAC△的面积最大,求出点D的坐标.(3)在直线AC上方的抛物线上有一点D,使得DCAO xy AB C 4 12-(第25题图) O xyAB C4 12-(备用)数学答案1—10题:ABCAD,DDCDD 11---18题:9.63×10-5b(a+1)27/8, 18. 10 4 3 255/51219题:2-221xx 1 20题:解:(1)a=40,b=0.09;(2)如图:;(3)(0.12+0.09+0.08)×24000 =0.29×24000=6960(人)答:该市24000名九年级考生数学成绩为优秀的学生约有6960名。
2016年宁德市初中毕业班质量检测数学试卷(附答案)

宁德市初中毕业班质量检测数学试卷(满分:150分;考试时间:120分钟)友情提示:1.所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;2.抛物线2y ax bx c =++的顶点坐标是(2b a -,244ac b a-).一、选择题(本大题有10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.-2的倒数是A .-2B .2C .21 D .12-2.如图,若a ∥b ,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是A .B .C .D .3.下列运算正确的是A .523a a a =+B .a a a =-23C .623a a a =⨯D .a a a =÷234.在下列调查中,适宜采用普查的是A .了解某校九(1)班学生视力情况B .调查2016年央视春晚的收视率C .检测一批电灯泡的使用寿命D .了解我市中学生课余上网时间5.如图,下列几何体中,左视图不是矩形的是A .B .C .D .6.化简2111x x x ---的结果是A .1x -B .11x +C .1x +D .1x x - 7.某商场利用摸奖开展促销活动,中奖率为13,则下列说法正确的是A .若摸奖三次,则至少中奖一次121 21 212a baba ba bB .若连续摸奖两次,则不会都中奖C .若只摸奖一次,则也有可能中奖D .若连续摸奖两次都不中奖,则第三次一定中奖 8.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,且AC =BD ,则下列条件能判定四边形ABCD 为矩形的是 A .AB =CD B .OA =OC ,OB =OD C .AC ⊥BDD .AB ∥CD ,AD =BC9.如图,在4×4的正方形网格中,已有四个小正方形被涂黑.若将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形,则该小正方形的位置可以是 A .(一,2) B .(二,4) C .(三,2)D .(四,4)10.某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程:6606606(110%)x x -=+.则方程中未知数x 所表示的量是 A .实际每天铺设管道的长度 B .实际施工的天数 C .原计划每天铺设管道的长度D .原计划施工的天数二、填空题(本大题有6小题,每小题4分,共24分.请将答案填入答题卡...的相应位置) 11.计算:113+()2--=________.12.分解因式:236x x -=________.13.“十二五”期间,我市累计新增城镇就业人口147 000人,147 000用科学记数法表示为________.14.如图,有甲,乙两个可以自由转动的转盘,若同时转动,则停止后指针都落在阴影区域内的概率是________.15.如图,在离地面高度5米处引拉线固定电线杆,拉线和地面成50°角,则拉线AC 的长为________米(精确到0.1米).ABCDO第8题图 2 3 41 二三四一 第9题图 90°甲120°乙第14题图16.如图,已知矩形ABCD 中,AB =4,AD =3,P 是以CD 为直径的半圆上的一个动点,连接BP ,则BP 的最大值是________.三、解答题(本大题有9小题,共86分.请在答题卡...的相应位置作答) 17.(本题满分7分)化简:2(3)(2)a a a +-+.18.(本题满分7分)求不等式组21,223x x x +⎧⎪-⎨⎪⎩<≤的整数解.19.(本题满分8分)如图,M 为正方形ABCD 边AB 上一点,DN ⊥DM 交BC 的延长线于点N . 求证:AM =CN .20.(本题满分8分)某校九年级共有四个班,各班人数比例如图1所示.在一次数学考试中,四个班的平均成绩如图2所示.(1)四个班平均成绩的中位数是________;(2)下列说法:① 3班85分以上人数最少;② 1,3两班的平均分差距最小;③ 本次考试年段成绩最高的学生在4班.其中正确的是________(填序号); (3)若用公式2m nx +=(m ,n 分别表示各班平均成绩)分别计算1,2两班和3,4两班的平均成绩,哪两班的计算结果会与实际平均成绩相同,请说明理由.平均成绩/分 1班 67657120 040 60 80 100班级2班 3班 4班 74图25米ABCD 50° 第15题图1班 2班 4班 3班 a % b % 图1c %c %BCDPA第16题图21 3A BC D MN21.(本题满分10分)如图,已知△ABC 中,∠ABC =∠ACB ,以点B 为圆心,BC 长为半径的弧分别交AC ,AB 于点D ,E ,连接BD ,ED . (1)写出图中所有的等腰三角形;(2)若∠AED =114°,求∠ABD 和∠ACB 的度数.22.(本题满分10分)如图1,在矩形ABCD 中,动点P 从点A 出发,沿A →D →C →B 的路径运动.设点P 运动的路程为x ,△P AB 的面积为y .图2反映的是点P 在A →D →C 运动过程中,y 与x 的函数关系.请根据图象回答以下问题: (1)矩形ABCD 的边AD =________,AB =________;(2)写出点P 在C →B 运动过程中y 与x 的函数关系式,并在图2中补全函数图象.23.(本题满分10分)如图,已知△ABC ,以AB 为直径的⊙O 交AC 于点D ,CBD A ∠=∠.(1)求证:BC 为⊙O 的切线;(2)若E 为AB ⌒中点,BD =6,3sin 5BED ∠=,求BE 的长.ABECDABCDP图1图2y x1 23 451 2 3 4 5 6 78 9BCAD EO24.(本题满分12分)如图,直线12y kx =+与x 轴交于点A (m ,0)(m >4),与y 轴交于点B ,抛物线224c y ax ax =-+(a <0)经过A ,B 两点.P 为线段AB 上一点,过点P 作PQ ∥y 轴交抛物线于点Q . (1)当m =5时,① 求抛物线的关系式;② 设点P 的横坐标为x ,用含x 的代数式表示PQ 的长,并求当x 为何值时,PQ =85;(2)若PQ 长的最大值为16,试讨论关于x 的一元二次方程h kx ax ax =--42的解的个数与h 的取值范围的关系.yBA xO QP25.(本题满分14分)我们把有一组邻边相等,一组对边平行但不相等的四边形称作 “准菱形”.(1)证明“准菱形”性质:“准菱形”的一条对角线平分一个内角.(要求:根据图1写出已知,求证,证明) 已知: 求证: 证明:(2)已知,在△ABC 中,∠A=90°,AB =3,AC =4.若点D ,E 分别在边BC ,AC 上,且四边形ABDE 为“准菱形”.请在下列给出的△ABC 中,作出满足条件的所有“准菱形”ABDE ,并写出相应DE 的长.(所给△ABC 不一定都用,不够可添)ABCD图1CAB DE = ________CAB DE =________CABDE =________CAB DE = ________参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分. ⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数. ⑷评分只给整数分,选择题和填空题均不给中间分. 一、选择题:(本大题有10小题,每小题4分,满分40分)1.D 2.B 3.D 4.A 5.A 6.C 7.C 8.B 9.B 10.C 二、填空题:(本大题有6小题,每小题4分,满分24分)11.5 12.3(2)x x - 13.51.4710⨯ 14.12 15.6.5 16.213+ 三、解答题(本大题共9小题,共86分.请在答题卡...的相应位置作答) 17.(本题满分7分)解:原式=22692a a a a ++--, ··························································· 4分= 49a +. ···································································· 7分18.(本题满分7分)21,2 2.3x x x +⎧⎪⎨-⎪⎩<①≤②解:解不等式①,得 1x <. ································································ 2分解不等式②,得 4x ≥-. ······························································ 4分 在同一数轴上表示不等式①②的解集,如图∴原不等式组的解集为41x -≤<. ························································ 6分 ∴原不等式组的整数解为-4,-3,-2,-1,0. ··········································· 7分 19.(本题满分8分)证明:∵四边形ABCD 是正方形,∴AD =CD ,∠A =∠ADC=∠BCD=90°. ······· 2分 ∴∠DCN =90°.∴∠DCN =∠A . ······································································ 4分 ∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3. ·············································································· 6分0 1 -1 2-2 -3-4 -5 213 ABCDM N∴△ADM ≌△DCN . ······························································· 7分 ∴AM =CN . ··············································································· 8分20.(本题满分8分)(1)69; ······················································································ 2分 (2)②; ······················································································ 5分 (3)用公式2m nx +=计算3,4两班的平均成绩,结果会与实际平均成绩相同,因为3,4两班权重(人数或比例)相同. ················································ 8分21.(本题满分10分)(1)答:等腰三角形有:△ABC ,△BCD ,△BED ; ··································· 3分 (2)解:∵∠AED =114°,∴∠BED =180°-∠AED=66°. ······· 4分 ∵BD =BE ,∴∠BDE =∠BED=66°.∴∠A BD =180°-66°×2=48°. ······ 6分 解法一:设∠ACB =x °,∴∠ABC =∠ACB =x °. ∴∠A =180°-2x °. ∵BC =BD ,∴∠BDC =∠ACB =x °. 又∵∠BDC 为△ABD 的外角,∴∠BDC =∠A+∠ABD . ·························································· 8分 ∴x =180-2x +48,解得:x =76.∴∠ACB =76°. ·································································· 10分 解法二:设∠ACB =x °,∴∠ABC =∠ACB =x °. ∴∠DBC =x °-48°. ∵BC =BD ,∴∠BDC =∠ACB =x °. ··························································· 8分 又∵∠DBC +∠BCD +∠BDC =180°, ∴x -48+x +x =180,解得:x =76.∴∠ACB =76°. ·································································· 10分22.(本题满分10分)ABECD(1) 2,4;(每空2分) ········································································ 4分 (2) 当点P 在C →B 运动过程中,PB =8-x ,∴14(8)2APB y S x ∆==⨯⨯-,即:216y x =-+(68x ≤≤).······· 8分 正确作出图象. ·························· 10分(提示:学生未对函数关系式化简,未写出取值范围不扣分)23.(本题满分10分)解:(1)∵AB 是⊙O 的直径,∴ ∠ADB =90°. ····································1分 ∴∠A+∠ABD=90°. 又∵∠A=∠CBD , ∴∠CBD+∠ABD=90°. ∴∠ABC =90°.∴AB ⊥BC . ·········································4分 又∵AB 是⊙O 的直径,∴BC 为⊙O 的切线.·····························5分 (2)连接AE .∵AB 是⊙O 的直径, ∴∠AEB =∠ADB =90°. ∵∠BAD=∠BED , ∴3sin sin 5BAD BED ∠=∠=. ························································· 6分 ∴在Rt ABD △中,3sin 5BD BAD AB ∠==. ∵6BD =,∴AB=10. ··················································································· 8分 ∵E 为AB ⌒中点, ∴AE =BE .∴AEB △是等腰直角三角形. ∴∠BAE =45°.∴2sin 10522BE AB BAE =∠=⨯=. ············································ 10分BCADEOy 图2y x1 23 451 2 3 4 5 6 78 924.(本题满分12分)解:(1)①∵m =5,∴点A 的坐标为(5,0). 将x=0代入12y kx =+,得y =2. ∴点B 的坐标为(0,2).将A (5,0),B (0,2)代入224y ax ax c =-+,得252002.a a c c -+=⎧⎨=⎩, ···································································· 2分解得 252.a c ⎧=-⎪⎨⎪=⎩,∴抛物线的表达式为2228255y x x =-++. ········································· 4分②将A (5,0)代入12y kx =+,解得:25k =-.∴一次函数的表达为1225y x =-+. ··················································· 5分∴点P 的坐标为2(,2)5x x -+.又∵PQ ∥y 轴,∴点Q 的坐标为228(,2)55x x x -++.∴22822(2)555PQ x x x =-++--+,2225x x =-+. ······································································· 7分∵85PQ =,∴228255x x -+=.解得:11x =,24x =.∴当x =1或x =4时,85PQ =. ·························································· 9分(2)设22214(2)4S y y ax ax c kx ax ax kx =-=-+-+=--.∴S 为x 的二次函数 ∵PQ 长的最大值为16,第 11 页 共 11 页 ∴S 最大值为16.∵a <0,∴由二次函数的图象性质可知当h =16时,一元二次方程h kx ax ax =--42有一个解;当h >16时,一元二次方程h kx ax ax =--42无解;当h <16时,一元二次方程h kx ax ax =--42有两个解. ···················· 12分 (提示:学生答对一种情况即得2分,未说明理由不扣分)25.(本题满分14分)解:(1)已知:如图,“准菱形”ABCD 中,AB =AD ,AD ∥BC, (AD BC ≠). ·································································································· 2分 求证:BD 平分∠ABC . ··································································· 3分 证明:∵AB =AD ,∴∠ABD=∠BDA .又∵AD ∥BC ,∴∠DBC=∠BDA .∴∠ABD=∠DBC . 即BD 平分∠ABC . ········································································ 6分(2)可以作出如下四种图形: ····························································· 14分(提示:正确作出一个图形并给出对应的DE 值得2分.若作图不规范适当扣分,最多扣2分)A B C D图1 C A B E D 34DE = C A B E D 65DE = C A B E D 127DE = C A B E D 158DE =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁德市2016-2017学年度第一学期期末九年级质量检测数 学 试 题(满分:150分;考试时间:120分钟)友情提示:1.所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效.2.参考公式:抛物线2y ax bx c =++(0a ≠)的顶点是(2b a -,244ac b a-).一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.若∠A 为锐角,cos A =22,则∠A 的度数为( ) A .75°B .60°C .45°D .30°2.如图所示几何体的左视图是( )A B C D 3.由下列光源产生的投影,是平行投影的是( )A .太阳B .路灯C .手电筒D .台灯4.已知Rt △ABC 中,∠ACB=90º,∠B=54º,CD 是斜边AB上的中线,则∠ACD 的度数是( ) A .18 º B .36 º C .54 ºD .72 º5.二次函数2(1)2y x =--图象的对称轴是( )A .直线1x =B .直线1x =-C .直线2x =D .直线2x =-6.下列方程中,没有实数根的是( )A .2690x x -+=B .2230x x -+=C .20x x -=D .(2)(1)0x x +-=C BAD第2题图第4题图7.如图,以点O为位似中心,将△ABC缩小后得到△DEF,已知OD=1,OA=3.若△DEF的面积为S,则△ABC的面积为()A.2S B.3SC.4S D.9S8.口袋中有若干个形状大小完全相同的白球,为估计袋中白球的个数,现往口袋中放入10个形状大小与白球相同的红球.混匀后从口袋中随机摸出40个球,发现其中有3个红球.设袋中有白球x个,则可用于估计袋中白球个数的方程是()A.10340x=B.10140x=C.1013x=D.1031040x=+9.如图,方格纸中的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上,则sin∠ACB的值为()A.24B.13C.1010D.3101010.如图,已知动点A,B分别在x轴,y轴正半轴上,动点P在反比例函数6(0)y xx=>图象上,P A⊥x轴,△P AB是以P A为底边的等腰三角形.当点A的横坐标逐渐增大时,△P AB的面积将会()A.越来越小B.越来越大C.不变D.先变大后变小二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.已知C是线段AB上一点,若23ACBC=,则ABBC=.12.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,则当0x<时,y随x的增大而.(填“增大”或“减小”)AFEDOCB第7题图第9题图第10题图CAB第12题图xyOA xyOPB13.如图一组平行线,每相邻两条平行线间的距离都相等,△ABC 的三个顶点都在平行线上,则图中一定等于14BC的线段是 .14.如图是某超市楼梯示意图,若BA 与CA 的夹角为α,∠C=90︒,AC =6米,则楼梯高度BC 为 米.15.二次函数2y ax bx c =++(a ,b ,c 为常数且a ≠0)中的x 与y 的部分对应值如下表:已知表中有且只有一组数据错误,则这组错误数据中的x 值是 . 16.如图,1ABB △,112A B B △,…,221n n n A B B ---△,11n n n A B B --△是n 个全等的等腰三角形,其中2AB =,11BB =,底边1BB ,12B B ,…,21n n B B --,1n n B B -在同一条直线上,连接n AB 交21n n A B --于点P ,则1n PB -的值为 .三、解答题(本大题有9小题,共86分.请在答题卡的相应位置作答) 17.(本题满分8分)已知点P (-2,3)在反比例函数ky x=(k 为常数,且0k ≠)的图象上. (1)求这个函数的解析式;(2)判断该反比例函数图象是否经过点A (-1,-3),并说明理由.18.(本题满分8分)小明同学解一元二次方程2410x x --=的过程如图所示, (1)小明解方程的方法是 ,他的求解过程从第 步开始出现错误,这一步的运算依据应该是 ;(2)解这个方程.x … -1 0 1 2 3 … y…-3-41…解:241x x -=……① 2441x x -+=……② 2(2)1x -= ……③ 21x -=± ……④ 123,1x x ==……⑤A BCD E FG HI 第13题图 ABA 1A n-1B 1B 2B n -2 B n-1B nP A n-2第16题图第14题图BCAα19.(本题满分8分)如图,将矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为E ,BE 交AD 于点F .求证:△ABF ≌△EDF .20.(本题满分8分)如图,四边形ABCD 是平行四边形,E 为边CD 延长线上一点,连接BE 交边AD 于点F .请找出一对相似三角形,并加以证明.21.(本题满分8分)如图所示,有4张除了正面图案不同,其余都相同的图片.(1)以上四张图片所示的立体图形中,主视图是矩形的有 ;(填字母序号) (2)将这四张图片背面朝上混匀,从中随机抽出一张后放回,混匀后再随机抽出一张.求两次抽出的图片所示的立体图形中,主视图都是矩形的概率. 22.(本题满分10分)某商城将每件成本为50元的工艺品,以60元的单价出售时,每天的销售量是400件.已知在每件涨价幅度不超过15元的情况下,若每件涨价1元,则每天就会少售出10件.设每件工艺品涨了x 元.(1)小明根据题中的数量关系列出代数式(6050)x -+和(40010)x -,其中代数式(6050)x -+表示 ,代数式(40010)x -错误!未找到引用源。
表示 ;(2)若商城想每天获得6000元的利润,应涨价多少元?C正面 圆锥A正面 球B正面 长方体D正面 圆柱BCADEFABDCEF如图,已知∠A =36º,线段AB =6.(1)尺规作图:求作菱形ABCD ,使线段AB 是菱形的边,顶点C 在射线AP 上; (2)求(1)中菱形对角线AC 的长.(精确到0.1,参考数据:sin 360.5878︒≈,cos360.8090︒≈,tan 360.7265︒≈)24.(本题满分13分)如图1,在矩形ABCD 中,BC =4 cm .点P 与点Q 同时从点C 出发,点P 沿CB 向点B 以2 cm/s 的速度运动,点Q 沿CD 向点D 以1 cm/s 的速度运动,当点P 与点Q 其中一点到达终点时,另一点也停止运动.设运动时间为t 秒,顺次连接A ,B ,P ,Q ,A 得到的封闭图形面积为S cm 2.(1)当AB =m cm 时,S 与t 的函数图象为抛物线的一部分(如图2),求S 与t 的函数关系式及m 的值,并直接写出t 的取值范围;(2)当AB =6 cm 时,探究:此时S 与t 的函数图象可以由(1)中函数图象怎样变换得到?ABP图1ACBDQP 图2F G (1,5)E (2,4)t=1 tS O1 23412 3 4 56如图,已知点E 在正方形ABCD 内,△EBC 为等边三角形,AB =2.P 是边CD 上一个动点,将线段BP 绕点B 逆时针旋转60°得到线段BQ ,分别连接AQ ,QE .(1)如图1,当点Q 落在边AD 上时,以下结论:①AQ =CP ,②∠BEQ =90°,正确的有 ;(填序号)(2)如图2,当点P 是边CD 上任意一点(点C 除外),分别判断(1)中所给的两个结论是否正确,若有正确的结论,请加以证明;(3)直接写出在点P 的运动过程中线段AQ 的最小值.图1A B C D P EQ Q图2 ABC DP E宁德市2016-2017学年度第一学期期末九年级质量检测数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分.⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数.⑷评分只给整数分,选择题和填空题均不给中间分.一、选择题:(本大题有10小题,每小题4分,满分40分)1.C 2.B 3.A 4.B 5.A 6.B 7.D 8.D 9.C 10.C二、填空题:(本大题有6小题,每小题4分,满分24分)11.53;12.增大;13.DE;14.6tanα;15.2;16.21n-.三、解答题(本大题共9小题,共86分)17.(本题满分8分)解:(1)将P(-2,3)代入反比例函数kyx=,得32k=-解得:6k=-∴反比例函数表达式为6yx=- ············································4分(2)反比例函数图象不经过点A. ···············································5分理由是:将1x=-代入kyx=,得63y=≠-,∴反比例函数图象不经过点A. ············································8分(若从函数图象所在象限或增减性角度说理,只要言之有理,也给满分)18.(本题满分8分)解:(1)配方法,②,等式的基本性质;··································3分(或等式两边同时加上4,等式仍成立)(2)解法一: 241x x -=, ··························································· 4分24414x x -+=+,2(2)5x -=, ·························································· 6分 25x -=±,∴125x =+,225x =-. ······································ 8分解法二:2410x x --=∵1a =,4b =-,1c =-, ····················································· 4分 ∴241641(1)20b ac -=-⨯⨯-=>0, ·········································· 5分 ∴420252x ±==±, ························································ 7分 即 125x =+,225x =-. ················································· 8分19.(本题满分8分)证明:∵四边形ABCD 是矩形,∴AB=CD ,∠A=∠C=90°. ······················ 2分 由折叠可知:DE=CD ,∠E=∠C=90°, ······· 4分 ∴AB=DE ,∠A=∠E . ····························· 6分 又∵∠AFB=∠EFD , ∴△ABF ≌△EDF . ································· 8分 20.(本题满分8分)解:△ABF ∽△DEF ·············································································· 3分 (选△EDF ∽△ECB 或△ABF ∽△CEB 也可) ①选择:△ABF ∽△DEF理由:∵四边形ABCD 是平行四边形, ∴AB ∥CD .∴∠ABF=∠E ,∠A=∠FDE . ················ 6分 ∴△ABF ∽△DEF . ································ 8分 ②选择:△EDF ∽△ECB理由:∵四边形ABCD 是平行四边形,BCADEFABDCEF∴AD ∥BC .∴∠C=∠FDE . ································· 6分 又∵∠E=∠E ,∴△EDF ∽△ECB . ····························· 8分 ③选择:△ABF ∽△CEB理由:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∠A=∠C .∴∠ABF=∠E . ································ 6分 ∴△ABF ∽△CEB . ······························ 8分 21.(本题满分8分)解:(1)B ,D ; ····························· 3分 (答对一个得1分,两个得3分) (2)解:列表可得第二张第一张ABCDA (A ,A ) (A ,B ) (A ,C ) (A ,D ) B (B ,A ) (B ,B ) (B ,C ) (B ,D ) C (C ,A ) (C ,B ) (C ,C ) (C ,D ) D(D ,A ) (D ,B ) (D ,C ) (D ,D )······························································································ 6分由表可知,共有16种等可能结果,其中两次抽出的图片所示立体图形的主视图都是矩形的有4种,分别是(B ,B ),(B ,D ),(D ,B ),(D ,D ),所以两次抽出的图片所示立体图形的主视图都是矩形的概率为416,即14. ··········································· 8分22.(本题满分10分)解:(1)上涨后每件工艺品的利润,上涨后每天的销售量 ····························· 4分 (2)依题意,可得:(6050)(40010)6000x x -+-= ································ 7分解这个方程,得 1210,20x x == ··················································· 9分 ∵22015x =>,不合题意舍去 ∴10x =答:应涨价10元. ·································································· 10分23.(本题满分10分)解:(1)如图,菱形ABCD 为所求作的图形.··· 4分 (2)连接BD 交AC 于点O . ∵四边形ABCD 是菱形,∴BD ⊥AC ,AC =2AO . ························· 5分 在Rt △ABO 中,∠A =36º,AB =6. ∵cos AOBAO AB ∠=,∴cos36 4.85AO AB =︒≈. ······················ 8分 ∴AC =2AO ≈9.7. ······························ 10分24.(本题满分13分)解:(1)法一:∵抛物线的顶点坐标为(1,5), ∴可设S 与t 的函数关系式为2(1)5S a t =-+,代入点E (2,4)得24(21)5a =⨯-+. 解得 1a =-.∴2(1)5S t =--+. ································· 4分 (即224S t t =-++)t 的取值范围为0≤t ≤2. ························ 6分 由关系式得F (0,4) .∴当t =0时,S =4,即△ABC 的面积为4. ∴142ABC S AB BC =⨯=V .∴m =2. ·············································· 8分 法二:如图2,抛物线的对称轴为直线1t =, ∵点E 的坐标为(2,4),∴点F 为(0,4). ∴当t =0时,S =4,即△ABC 的面积为4. ∴142ABC S AB BC =⨯=V .ACB DQP图1CABPOD图2F G (1,5)E (2,4)t=1 tSO1 2 3 41 2 3 4 56∴m =2 . ································· 2分∴由图1可知:-ADQ CPQ ABCD S S S S ∆∆=-矩形11424(2)222t t t =⨯-⨯--⨯⨯ 224t t =-++(即2(1)5S t =--+ ) ················ 6分t 的取值范围为0≤t ≤2. ······························ 8分(2)当AB =6时,由图1可知:ADQ CPQ ABCD S S S S ∆∆=--矩形11464(6)222t t t =⨯-⨯--⨯⨯ 2212t t =-++. ···························································· 11分(即2(1)13S t =--+ )t 的取值范围为0≤t ≤2.∴S 与t 的函数图象可以由(1) 中函数图象向上平移8个单位得到. ············· 13分25.(本题满分13分)解:(1)①,②; ············································································· 3分 (答对一个得1分,两个得3分)(2)①AQ =CP 不成立,②∠BEQ =90°成立. ·································································· 5分 理由如下:∵△BEC 为等边三角形,∴BE =BC ,∠EBC=60°. ·················· 6分∵线段BP 绕点B 逆时针旋转60°得到线段BQ ,∴BQ =BP , ∠QBP=60°=∠EBC .∴∠QBE= ∠PBC . ··························· 8分∴△QBE ≌△PBC . ··························· 9分∴∠BEQ =∠BCP .∵四边形ABCD 为正方形,∴∠BEQ =∠BCP=90°. ··················· 10分 Q A B CD P E(3)AQ最小值为23.················13分。