2018届上海市高三数学一模金山卷(含答案)

合集下载

上海市崇明区2018届高三第一次高考模拟考试数学---精校解析Word版

上海市崇明区2018届高三第一次高考模拟考试数学---精校解析Word版

2018年上海市崇明县高考数学一模试卷一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1. 已知集合,若,则_____.【答案】【解析】因为集合,且,所以,故答案为.2. 抛物线的焦点坐标为_____.【答案】【解析】抛物线的焦点在轴上,且,所以抛物线的焦点坐标为,故答案为.3. 不等式的解是_____.【答案】【解析】由可得,,所以不等式的解是,故答案为. 4. 若复数满足为虚数单位),则_____.【答案】【解析】试题分析:因为,所以本题也可设,因为由复数相等得:考点:复数的四则运算.5. 在代数式的展开式中,一次项的系数是_____.(用数字作答)【答案】【解析】展开式的通项为,令,得,,故答案为.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.6. 若函数的最小正周期是,则_____.【答案】【解析】因为函数的最小正周期是,所以,解得,故答案为.7. 若函数的反函数的图象经过点,则_____.【答案】【解析】函数的反函数的图象经过点,所以,函数的图象经过点,,,故答案为.8. 将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为,则该几何体的侧面积为_____.【答案】【解析】将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为,设正方体的边长为,则,解得该圆柱的侧面积为,故答案为.9. 已知函数是奇函数,当时,,且,则_____.【答案】【解析】是奇函数,且当时,,,解得,故答案为.10. 若无穷等比数列的各项和为,首项,公比为,且,则_____.【答案】【解析】无穷等比数列的前项和为,首项为,公比,且,,或,或,,故答案为.11. 从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成 4人志愿者服务队,要求服务队中至少有 1 名女生,共有_____种不同的选法.(用数字作答)【答案】12. 在中,边上的中垂线分别交于点.若,则_____.【答案】【解析】设,则,,又,即,故答案为.二、选择题(本大题共有4题,满分20分)13. 展开式为的行列式是()A. B. C. D.【答案】B【解析】,错误;,正确; ,错误;,错误,故选B.14. 设,若,则()A. B. C. D.【答案】D【解析】,当时,不成立,根据对数函数的定义,可知真数必需大于零,故不成立,由于正弦函数具有周期性和再某个区间上为单调函数,故不能比较,故不成立,根据指数函数的单调性可知,正确,故选D.15. 已知等差数列的公差为,前项和为,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】,,充分性成立,若“”则,必要性成立,所以“”是“”的充分必要条件,故选C.【方法点睛】本题通过等差数列前项和的基本量运算,主要考查充分条件与必要条件,属于中档题. 判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.16. 直线与双曲线的渐近线交于两点,设为双曲线上任一点,若为坐标原点),则下列不等式恒成立的是()A. B. C. D.【答案】C【解析】由题意,双曲线渐近线方程为,联立直线,解得不妨设,,,为双曲线上的任意一点,,,时等号成立),可得,故选C.【方法点睛】本题主要考查双曲线的的渐近线、向量相等的应用以及平面向量的坐标运算、不等式的性质,属于难题.向量的运算有两种方法,一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答,解答本题的关键是根据坐标运算.三、解答题(本大题共有5题,满分76分)17. 如图,长方体中,与底面所成的角为.(1)求四棱锥的体积;(2)求异面直线与所成角的大小.【答案】(1) ;(2).【解析】试题分析:(1)先证明是与底面所成的角,可得,利用棱锥的体积公式可得结果;(2)由,可得是异面直线与所成角(或所成角的补角),利用余弦定理可得结果.试题解析:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,∵S正方形ABCD=AB×BC=2×2=4,∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与 B1D1所成角是arccos...................18. 已知.(1)求的最大值及该函数取得最大值时的值;(2)在中,分别是角所对的边,若,且,求边的值.【答案】(1),;(2).【解析】试题分析:(1)跟据二倍角的正弦、余弦公式以及两角和的正弦公式可得,根据正弦函数的图象与性质可得结果;(2)由,得,结合三角形内角的范围可得或,讨论两种情况分别利用余弦定理可求出边的值.试题解析:f(x)=2sinxcosx+2cos2x﹣1=sin2x+cos2x=2sin(2x+)(1)当2x+=时,即x=(k∈Z),f(x)取得最大值为2;(2)由f()=,即2sin(A+)=可得sin(A+)=∵0<A<π∴<A<∴A=或∴A=或当A=时,cosA==∵a=,b=,解得:c=4当A=时,cosA==0∵a=,b=,解得:c=2.19. 2016 年崇明区政府投资 8 千万元启动休闲体育新乡村旅游项目.规划从 2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长.记 2016 年为第 1 年,为第 1 年至此后第年的累计利润(注:含第年,累计利润=累计净收入﹣累计投入,单位:千万元),且当为正值时,认为该项目赢利.(1)试求的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.【答案】(1);(2).【解析】试题分析:(1)由题意知,第一年至此后第年的累计投入为(千万元),第年至此后第年的累计净收入为,利用等比数列数列的求和公式可得;(2)由,利用指数函数的单调性即可得出. 试题解析:(1)由题意知,第1年至此后第n(n∈N*)年的累计投入为8+2(n﹣1)=2n+6(千万元),第1年至此后第n(n∈N*)年的累计净收入为+×+×+…+×=(千万元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千万元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣4],∴当n≤3时,f(n+1)﹣f(n)<0,故当n≤4时,f(n)递减;当n≥4时,f(n+1)﹣f(n)>0,故当n≥4时,f(n)递增.又f(1)=﹣<0,f(7)=≈5×﹣21=﹣<0,f(8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利;方法二:设f(x)=﹣2x﹣7(x≥1),则f′(x)=,令f'(x)=0,得=≈=5,∴x≈4.从而当x∈[1,4)时,f'(x)<0,f(x)递减;当x∈(4,+∞)时,f'(x)>0,f(x)递增.又f(1)=﹣<0,f(7)=≈5×﹣21=﹣<0,f(8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利.20. 在平面直角坐标系中,已知椭圆的两个焦点分别是,直线与椭圆交于两点.(1)若为椭圆短轴上的一个顶点,且是直角三角形,求的值;(2)若,且是以为直角顶点的直角三角形,求与满足的关系;(3)若,且,求证:的面积为定值.【答案】(1)或;(2);(3)证明见解析.【解析】试题分析:(1)根据为等腰直角三角形,可得,两种情况讨论,可得的值为或;(2)当时,,设,由,即,由韦达定理及平面向量数量积公式可得结果;(3)由可得,结合韦达定理可得,根据以上结论,利用三角形面积公式化简即可得结论.试题解析:(1)∵M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,∴△MF1F2为等腰直角三角形,∴OF1=OM,当a>1时,=1,解得a=,当0<a<1时,=a,解得a=,(2)当k=1时,y=x+m,设A(x1,y1),(x2,y2),由,即(1+a2)x2+2a2mx+a2m2﹣a2=0,∴x1+x2=﹣,x1x2=,∴y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2=,∵△OAB是以O为直角顶点的直角三角形,∴•=0,∴x1x2+y1y2=0,∴+=0,∴a2m2﹣a2+m2﹣a2=0∴m2(a2+1)=2a2,(3)证明:当a=2时,x2+4y2=4,设A(x1,y1),(x2,y2),∵k OA•k OB=﹣,∴•=﹣,∴x1x2=﹣4y1y2,由,整理得,(1+4k2)x2+8kmx+4m2﹣4=0.∴x1+x2=,x1x2=,∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=++m2=,∴=﹣4×,∴2m2﹣4k2=1,∴|AB|=•=•=2•=∵O到直线y=kx+m的距离d==,∴S△OAB=|AB|d==•==1.【方法点睛】本题主要考查待定系数法求椭圆标准方程、韦达定理以及平面向量数量积公式、圆锥曲线的定值问题,属于难题. 探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21. 若存在常数,使得对定义域内的任意,都有成立,则称函数在其定义域上是“利普希兹条件函数”.(1)若函数是“利普希兹条件函数”,求常数的最小值;(2)判断函数是否是“利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若是周期为2的“利普希兹条件函数”,证明:对任意的实数,都有.【答案】(1);(2)不是,理由见解析;(3)证明见解析.【解析】试题分析:(1)不妨设,则恒成立.,从而可得结果;(2)令,则,从而可得函数不是“利普希兹条件函数”;(3)设的最大值为,最小值为,在一个周期,内,利用基本不等式的性质可证明.试题解析:(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,则对于定义域[1,4]上任意两个x1,x2(x1≠x2),均有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,不妨设x1>x2,则k≥=恒成立.∵1≤x2<x1≤4,∴<<,∴k的最小值为.(2)f(x)=log2x的定义域为(0,+∞),令x1=,x2=,则f()﹣f()=log2﹣log2=﹣1﹣(﹣2)=1,而2|x1﹣x2|=,∴f(x1)﹣f(x2)>2|x1﹣x2|,∴函数f(x)=log2x 不是“2﹣利普希兹条件函数”.(3)设f(x)的最大值为M,最小值为m,在一个周期[0,2]内f(a)=M,f(b)=m,则|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b)≤|a﹣b|.若|a﹣b|≤1,显然有|f(x1)﹣f(x2)|≤|a﹣b|≤1.若|a﹣b|>1,不妨设a>b,则0<b+2﹣a<1,∴|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b+2)≤|a﹣b﹣2|<1.综上,|f(x1)﹣f(x2)|≤1.。

上海市金山区达标名校2018年高考一月大联考数学试卷含解析

上海市金山区达标名校2018年高考一月大联考数学试卷含解析

上海市金山区达标名校2018年高考一月大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{2,0,1,3}A =-,{53}B x x =-<<,则集合A B 子集的个数为( )A .4B .8C .16D .322.设,a b 为非零向量,则“a b a b +=+”是“a 与b 共线”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件3.中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以A 、B 、C 、D 、E 为顶点的多边形为正五边形,且512PT AP -=,则512AT ES --=( )A .51QR + B .51RQ + C .51RD - D .51RC - 4.数列{}n a 的通项公式为()n a n c n N *=-∈.则“2c <”是“{}na 为递增数列”的( )条件.A .必要而不充分B .充要C .充分而不必要D .即不充分也不必要5.设,,a b c ∈R 且a b >,则下列不等式成立的是( ) A .c a c b -<-B .22ac bc >C .11a b< D .1b a< 6.设()f x 是定义在实数集R 上的函数,满足条件()1y f x =+是偶函数,且当1x ≥时,()112xf x ⎛⎫=- ⎪⎝⎭,则()3log 2a f =,3log2b f ⎛=- ⎪⎝⎭,()3c f =的大小关系是( ) A .a b c >>B .b c a >>C .b a c >>D .c b a >>7.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .8.关于函数()sin 6f x x π⎛⎫=-- ⎪⎝⎭在区间,2ππ⎛⎫⎪⎝⎭的单调性,下列叙述正确的是( ) A .单调递增 B .单调递减 C .先递减后递增D .先递增后递减9.设数列{}()*n a n N ∈的各项均为正数,前n 项和为nS ,212log 1log n n a a +=+,且34a =,则6S =( )A .128B .65C .64D .6310.若集合{}2|0,|121x A x B x x x +⎧⎫=≤=-<<⎨⎬-⎩⎭,则A B =( ) A .[2,2)-B .(]1,1-C .()11-,D .()12-, 11.抛物线()220y px p =>的准线与x 轴的交点为点C ,过点C 作直线l 与抛物线交于A 、B 两点,使得A 是BC 的中点,则直线l 的斜率为( ) A .13±B .22C .±1D . 3±12.已知向量(3sin ,2)a x =-,(1,cos )b x =,当a b ⊥时,cos 22x π⎛⎫+= ⎪⎝⎭( ) A .1213-B .1213C .613-D .613二、填空题:本题共4小题,每小题5分,共20分。

上海市金山区达标名校2018年高考一月质量检测数学试题含解析

上海市金山区达标名校2018年高考一月质量检测数学试题含解析

上海市金山区达标名校2018年高考一月质量检测数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y =-+的最大值为n ,则2n x ⎛ ⎝的展开式中2x 项的系数为( ) A .60B .80C .90D .1202.设i 为虚数单位,若复数(1)22z i i -=+,则复数z 等于( ) A .2i -B .2iC .1i -+D .03.已知函数()ln f x x =,()()23g x m x n =++,若()0,x ∀∈+∞总有()()f x g x ≤恒成立.记()23m n +的最小值为(),F m n ,则(),F m n 的最大值为( )A .1B .1eC .21e D .31e 4.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数()0,1k k k >≠的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B 的距离,当P ,A ,B 不共线时,PAB ∆的面积的最大值是( ) A.BC.3D.35.已知复数552iz i i=+-,则||z =( ) AB.C.D.6.已知函数()e ln mx f x m x =-,当0x >时,()0f x >恒成立,则m 的取值范围为( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,e e ⎛⎫ ⎪⎝⎭C .[1,)+∞D .(,e)-∞7.定义在R 上的偶函数()f x 满足()()11f x f x +=-()()0≠f x ,且在区间()20172018,上单调递减,已知,αβ是锐角三角形的两个内角,则()()sin cos f f βα,的大小关系是( ) A .()()sin cos βα<f f B .()()sin cos βα>f f C .()()sin =cos βαf fD .以上情况均有可能8.已知将函数()sin()f x x ωϕ=+(06ω<<,22ππϕ-<<)的图象向右平移3π个单位长度后得到函数()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则下述四个结论:①3ω=②4πϕ=③262f π⎛⎫=⎪⎝⎭④点,012π⎛⎫ ⎪⎝⎭为函数()f x 的一个对称中心 其中所有正确结论的编号是( ) A .①②③B .①③④C .①②④D .②③④9.设n S 是等差数列{}n a 的前n 项和,且443S a =+,则2a =( ) A .2-B .1-C .1D .210.已知向量()3,2AB =,()5,1AC =-,则向量AB 与BC 的夹角为( ) A .45︒ B .60︒C .90︒D .120︒11.设函数'()f x 是奇函数()()f x x R ∈的导函数,当0x >时,1'()ln ()<-f x x f x x,则使得2(1)()0x f x ->成立的x 的取值范围是( )A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-12.已知33a b ==,且(2)(4)a b a b -⊥+,则2a b -在a 方向上的投影为( ) A .73B .14C .203D .7二、填空题:本题共4小题,每小题5分,共20分。

最新上海市2018届高三一模数学试卷(含答案)

最新上海市2018届高三一模数学试卷(含答案)

高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 方程lg(34)1x +=的解x =2. 若关于x 的不等式0x a x b->-(,a b R ∈)的解集为(,1)(4,)-∞+∞,则a b += 3. 已知数列{}n a 的前n 项和为21n n S =-,则此数列的通项公式为4. 函数()1f x x =+的反函数是5. 6(12)x +展开式中3x 项的系数为 (用数字作答)6. 如图,已知正方形1111ABCD A B C D -,12AA =,E 为棱1CC 的中点,则三棱锥1D ADE -的体积为7. 从单词“shadow ”中任意选取4个不同的字母排成一排,则其中含有“a ”的共有 种排法(用数字作答)8. 集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示)9. 如图,已知半径为1的扇形AOB ,60AOB ∠=︒,P为弧AB 上的一个动点,则OP AB ⋅取值范围是10. 已知x 、y 满足曲线方程2212x y+=,则22x y +的 取值范围是11. 已知两个不相等的非零向量a 和b ,向量组1234(,,,)x x x x 和1234(,,,)y y y y 均由2个a 和2个b 排列而成,记11223344S x y x y x y x y =⋅+⋅+⋅+⋅,那么S 的所有可能取值中的最 小值是 (用向量a 、b 表示)12. 已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=,数列{}n b 满足1n n n b b a +-=(*n N ∈),若数列2{}n nb a 中的任意一项都在该数列中重复出现无数次,则满 足要求的1b 的值为二. 选择题(本大题共4题,每题5分,共20分)13. 若a 、b 为实数,则“1a <”是“11a>”的( )条件 A. 充要 B. 充分不必要 C. 必要不充分 D. 既不充分也不必要14. 若a 为实数,(2)(2)4ai a i i +-=-(i 是虚数单位),则a =( )A. 1-B. 0C. 1D. 215. 函数2()||f x x a =-在区间[1,1]-上的最大值是a ,那么实数a 的取值范围是( ) A. [0,)+∞ B. 1[,1]2 C. 1[,)2+∞ D. [1,)+∞ 16. 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( ) A. 恒为偶数 B. 恒为奇数 C. 不超过2017 D. 可超过2017三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在Rt AOB ∆中,6OAB π∠=,斜边4AB =,D 是AB 中点,现将Rt AOB ∆以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上一点,且90BOC ∠=︒,(1)求圆锥的侧面积;(2)求直线CD 与平面BOC 所成的角的大小;(用反三角函数表示)18. 已知(23,1)m =,2(cos ,sin )2A n A =,A 、B 、C 是ABC ∆的内角; (1)当2A π=时,求||n 的值;(2)若23C π=,||3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长;19. 如图所示,沿河有A 、B 两城镇,它们相距20千米,以前,两城镇的污水直接排入河 里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污 水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送), 依据经验公式,建厂的费用为0.7()25f m m =⋅(万元),m 表示污水流量,铺设管道的费 用(包括管道费)() 3.2g x x =(万元),x 表示输送污水管道的长度(千米);已知城镇A 和城镇B 的污水流量分别为13m =、25m =,A 、B 两城镇连接污水处理 厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排 入河中;请解答下列问题(结果精确到0.1)(1)若在城镇A 和城镇B 单独建厂,共需多少总费用?(2)考虑联合建厂可能节约总投资,设城镇A 到拟建厂的距离为x 千米,求联合建厂的总费用y 与x 的函数关系式,并求y 的取值范围;20. 如图,椭圆2214yx+=的左、右顶点分别为A、B,双曲线Γ以A、B为顶点,焦距为25,点P是Γ上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为k,O为坐标原点;(1)求双曲线Γ的方程;(2)求点M的纵坐标M y的取值范围;(3)是否存在定直线l,使得直线BP与直线OM关于直线l对称?若存在,求直线l方程,若不存在,请说明理由;21. 在平面直角坐标系上,有一点列01231,,,,,,n n P P P P P P -⋅⋅⋅,设点k P 的坐标(,)k k x y (k N ∈,k n ≤),其中k x 、k y Z ∈,记1k k k x x x -∆=-,1k k k y y y -∆=-,且满足 ||||2k k x y ∆⋅∆=(*k N ∈,k n ≤);(1)已知点0(0,1)P ,点1P 满足110y x ∆>∆>,求1P 的坐标;(2)已知点0(0,1)P ,1k x ∆=(*k N ∈,k n ≤),且{}k y (k N ∈,k n ≤)是递增数列,点n P 在直线:38l y x =-上,求n ;(3)若点0P 的坐标为(0,0),2016100y =,求0122016x x x x +++⋅⋅⋅+的最大值;。

2018年上海市高考数学一模试卷(解析卷)

2018年上海市高考数学一模试卷(解析卷)

2018年上海市高考数学试卷一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.(4分)设全集U=Z,集合M={1,2},P={﹣2,﹣1,0,1,2},则P∩C U M {﹣2,﹣1,0} .【解答】解:C U M={﹣2,﹣1,0},故P∩C U M={﹣2,﹣1,0}故答案为:{﹣2,﹣1,0}2.(4分)已知复数(i为虚数单位),则=.【解答】解:复数==,∴=,∴=•==,故答案为.3.(4分)不等式2>()3(x﹣1)的解集为(﹣∞,﹣2)∪(3,+∞).【解答】解:不等式2>()3(x﹣1)化为2>23﹣3x,即x2﹣4x﹣3>3﹣3x,∴x2﹣x﹣6>0,解得x<﹣2或x>3,∴原不等式的解集为(﹣∞,﹣2)∪(3,+∞).故答案为:(﹣∞,﹣2)∪(3,+∞).4.(4分)函数f(x)=sinxcosx+cos2x的最大值为.【解答】解:函数f(x)=sinxcosx+cos2x=sin2x+cos2x+=sin(2x+)+,当2x+=2kπ+,k∈Z,即x=kπ+,k∈Z,函数取得最大值1+=,故答案为:.5.(4分)在平面直角坐标系xOy中,以直线y=±2x为渐近线,且经过椭圆x2+=1右顶点的双曲线的方程是x2﹣=1.【解答】解:设以直线y=±2x为渐近线的双曲线的方程为x2﹣=λ(λ≠0),∵双曲线椭圆x2+=1右顶点(1,0),∴1=λ,∴双曲线方程为:x2﹣=1.故答案为:x2﹣=1.6.(4分)将圆锥的侧面展开后得到一个半径为2的半圆,则此圆锥的体积为.【解答】解:设圆锥的底面半径为r,则2πr=2π,∴r=1.∴圆锥的高h=.∴圆锥的体积V==.故答案为:.7.(5分)设等差数列{a n}的公差d不为0,a1=9d.若a k是a1与a2k的等比中项,则k=4.【解答】解:因为a k是a1与a2k的等比中项,则a k2=a1a2k,[9d+(k﹣1)d]2=9d•[9d+(2k﹣1)d],又d≠0,则k2﹣2k﹣8=0,k=4或k=﹣2(舍去).故答案为:4.8.(5分)已知(1+2x)6展开式的二项式系数的最大值为a,系数的最大值为b,则=12.【解答】解:由题意可得a==20,再根据,解得,即≤r≤,∴r=4,此时b=×24=240;∴==12.故答案为:12.9.(5分)同时掷两枚质地均匀的骰子,则两个点数之积不小于4的概率为.【解答】解:同时掷两枚质地均匀的骰子,基本事件总数n=6×6=36,两个点数之积小于4包含的基本事件(a,b)有:(1,1),(1,2),(2,1),(1,3),(3,1),共5个,∴两个点数之积不小于4的概率为p=1﹣=.故答案为:.10.(5分)已知函数f(x)=有三个不同的零点,则实数a的取值范围是[1,+∞).【解答】解:由题意可知:函数图象的左半部分为单调递增对数函数的部分,函数图象的右半部分为开口向上的抛物线,对称轴为x=,最多两个零点,如上图,要满足题意,必须指数函数的部分向下平移到与x轴相交,由对数函数过点(1,0),故需左移至少1个单位,故a≥1,还需保证抛物线与x轴由两个交点,故最低点<0,解得a<0或a>,综合可得:a≥1,故答案为:[1,+∞).11.(5分)已知S n为数列{a n}的前n项和,a1=a2=1,平面内三个不共线的向量,,,满足=(a n﹣1+a n+1)+(1﹣a n),n≥2,n∈N*,若A,B,C在同一直线上,则S2018=2.【解答】解:若A,B,C三点共线,则=x+(1﹣x),∴根据条件“平面内三个不共线的向量,,,满足=(a n﹣1+a n+1)+(1﹣a n),n≥2,n∈N*,A,B,C在同一直线上,”得出a n﹣1+a n+1+1﹣a n=1,∴a n﹣1+a n+1=a n,∵S n为数列{a n}的前n项和,a1=a2=1,∴数列{a n}为:1,1,0,﹣1,﹣1,0,1,1,0,﹣1,﹣1,0,…即数列{a n}是以6为周期的周期数列,前6项为1,1,0,﹣1,﹣1,0,∵2018=6×336+2,∴S2018=336×(1+1+0﹣1﹣1+0)+1+1=2.故答案为:2.12.(5分)已知函数f(x)=m(x﹣m)(x+m+2)和g(x)=3x﹣3同时满足以下两个条件:①对任意实数x都有f(x)<0或g(x)<0;②总存在x0∈(﹣∞,﹣2),使f(x0)g(x0)<0成立.则m的取值范围是(﹣3,﹣2).【解答】解:对于①∵g(x)=3x﹣3,当x<1时,g(x)<0,又∵①∀x∈R,f(x)<0或g(x)<0∴f(x)=m(x﹣m)(x+m+2)<0在x≥1时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面,即,可得﹣3<m<0又∵②x∈(﹣∞,﹣2),f(x)g(x)<0∴此时g(x)=3x﹣3<0恒成立∴f(x)=m(x﹣m)(x+m+2)>0在x∈(﹣∞,﹣2)有成立的可能,则只要﹣2比x1,x2中的较小的根大即可,(i)当﹣1<m<0时,较小的根为﹣m﹣2,﹣m﹣2>﹣2不成立,(ii)当m=﹣1时,两个根同为﹣1>﹣3,不成立,(iii)当﹣3<m<﹣1时,较小的根为m,即m<﹣2成立.综上可得①②成立时﹣3<m<﹣2.故答案为:(﹣3,﹣2).二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)“a>b”是“()2>ab”成立的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件【解答】解:由()2>ab得>ab,即a2+2ab+b2>4ab,则a2﹣2ab+b2>0,即(a﹣b)2>0,则a≠b,则“a>b”是“()2>ab”成立的充分不必要条件,故选:A.14.(5分)已知函数f(x)=2sin(x+),若对任意实数x,都有f(x1)≤f (x)≤f(x2),则|x2﹣x1|的最小值是()A.πB.2πC.2 D.4【解答】解:对于函数f(x)=2sin(x+),若对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x2﹣x1|的最小值为函数f(x)的半个周期,即===2,故选:C.15.(5分)已知和是互相垂直的单位向量,向量满足:,,n∈N*,设θn为和的夹角,则()A.θn随着n的增大而增大B.θn随着n的增大而减小C.随着n的增大,θn先增大后减小D.随着n的增大,θn先减小后增大【解答】解:分别以和所在的直线为x轴,y轴建立坐标系,则=(1,0),=(0,1),设=(x n,y n),∵,,n∈N*,∴x n=n,y n=2n+1,n∈N*,∴=(n,2n+1),n∈N*,∵θn为和的夹角,∴tanθn===2+∴y=tanθn为减函数,∴θn随着n的增大而减小.故选:B.16.(5分)在平面直角坐标系xOy中,已知两圆C1:x2+y2=12和C2:x2+y2=14,又点A坐标为(3,﹣1),M、N是C1上的动点,Q为C2上的动点,则四边形AMQN能构成矩形的个数为()A.0个 B.2个 C.4个 D.无数个【解答】解:如图所示,任取圆C2上一点Q,以AQ为直径画圆,交圆C1与M、N两点,则四边形AMQN能构成矩形,由作图知,四边形AMQN能构成矩形的个数为无数个.故选:D.三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2AB=2,E是PB的中点.(1)求三棱锥P﹣ABC的体积;(2)求异面直线EC和AD所成的角(结果用反三角函数值表示).【解答】解:(1)∵PA⊥平面ABCD,底面ABCD是矩形,高PA=2,BC=AD=2,AB=1,==1.∴S△ABC故V P==.﹣ABC(2)∵BC∥AD,∴∠ECB或其补角为异面直线EC和AD所成的角θ,又∵PA⊥平面ABCD,∴PA⊥BC,又BC⊥AB,∴BC⊥平面PAB,∴BC⊥PB,于是在Rt△CEB中,BC=2,BE=PB=,tanθ==,∴异面直线EC和AD所成的角是arctan.18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.【解答】解:(1)∵y2=2px过点P(1,1),∴1=2p,解得p=,∴y2=x,∴焦点坐标为(,0),准线为x=﹣,(2)证明:设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),∴直线OP为y=x,直线ON为:y=x,由题意知A(x1,x1),B(x1,),由,可得k2x2+(k﹣1)x+=0,∴x1+x2=,x1x2=∴y1+=kx1++=2kx1+=2kx1+=2kx1+(1﹣k)•2x1=2x1,∴A为线段BM的中点.19.(14分)如图,某大型厂区有三个值班室A、B、C.值班室A在值班室B的正北方向2千米处,值班室C在值班室B的正东方向2千米处.(1)保安甲沿CA从值班室出发行至点P处,此时PC=1,求PB的距离;(2)保安甲沿CA从值班室C出发前往值班室A,保安乙沿AB从值班室A出发前往值班室B,甲乙同时出发,甲的速度为1千米/小时,乙的速度为2千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?【解答】解:(1)在Rt△ABC中,AB=2,BC=2,所以∠C=30°,在△PBC中PC=1,BC=2,由余弦定理可得BP2=BC2+PC2﹣2BC•PCcos30°=(2)2+1﹣2×2×1×=7,即BP=;(2)在Rt△ABC中,BA=2,BC=2,AC==4,设甲出发后的时间为t小时,则由题意可知0≤t≤4,设甲在线段CA上的位置为点M,则AM=4﹣t,①当0≤t≤1时,设乙在线段AB上的位置为点Q,则AQ=2t,如图所示,在△AMQ中,由余弦定理得MQ2=(4﹣t)2+(2t)2﹣2•2t•(4﹣t)cos60°=7t2﹣16t+7>9,解得t<或t>,所以0≤t≤;②当1≤t≤4时,乙在值班室B处,在△ABM中,由余弦定理得MB2=(4﹣t)2+4﹣2•2t•(4﹣t)cos60°=t2﹣6t+12>9,解得t<3﹣或t>3+,又1≤t≤4,不合题意舍去.综上所述0≤t≤时,甲乙间的距离大于3千米,所以两人不能通话的时间为小时.20.(16分)设集合A,B均为实数集R的子集,记A+B={a+b|a∈A,b∈B}.(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*且n≥2时,曲线+=的焦距为a n,如果A={a1,a2,…,a n},B={﹣,﹣,﹣},设A+B中的所有元素之和为S n,求S n的值;(3)在(2)的条件下,对于满足m+n=3k,且m≠n的任意正整数m,n,k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值.【解答】解:(1)∵A+B={a+b|a∈A,b∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线+=,即﹣=,在n≥2时表示双曲线,故a n=2=n,∴a1+a2+a3+…+a n=∵B={﹣,﹣,﹣},∴A+B中的所有元素之和为S n=3(a1+a2+a3+…+a n)+n(﹣﹣﹣)=3•+n (﹣﹣﹣)=n2,(3)∵∴S m+S n﹣λS k>0恒成立⇔λ<=恒成立,∵m+n=3k,且m≠n,∴==>,∴λ≤,故实数λ的最大值为21.(18分)对于定义在[0,+∞)上的函数f(x),若函数y=f(x)﹣(ax+b)满足:①在区间[0,+∞)上单调递减,②存在常数p,使其值域为(0,p],则称函数g(x)=ax+b是函数f(x)的“逼进函数”.(1)判断函数g(x)=2x+5是不是函数f(x)=,x∈[0,+∞)的“逼进函数”;(2)求证:函数g(x)=x不是函数f(x)=()x,x∈[0,+∞)的“逼进函数”(3)若g(x)=ax是函数f(x)=x+,x∈[0,+∞)的“逼进函数”,求a 的值.【解答】解:(1)f(x)﹣g(x)=﹣(2x+5)=,可得y=f(x)﹣g(x)在[0,+∞)递减,且x+2≥2,0<≤,可得存在p=,函数y的值域为(0,],则函数g(x)=2x+5是函数f(x)=,x∈[0,+∞)的“逼进函数”;(2)证明:f(x)﹣g(x)=()x﹣x,由y=()x,y=﹣x在[0,+∞)递减,则函数y=f(x)﹣g(x)在[0,+∞)递减,则函数y=f(x)﹣g(x)在[0,+∞)的最大值为1;由x=1时,y=﹣=0,x=2时,y=﹣1=﹣<0,则函数y=f(x)﹣g(x)在[0,+∞)的值域为(﹣∞,1],即有函数g(x)=x不是函数f(x)=()x,x∈[0,+∞)的“逼进函数”;(3)g(x)=ax是函数f(x)=x+,x∈[0,+∞)的“逼进函数”,可得y=x+﹣ax为[0,+∞)的减函数,可得导数y′=1﹣a+≤0在[0,+∞)恒成立,可得a﹣1≥,由x>0时,=≤1,则a﹣1≥1,即a≥2;又y=x+﹣ax在[0,+∞)的值域为(0,1],则>(a﹣1)x,x=0时,显然成立;x>0时,a﹣1<,可得a﹣1≤1,即a≤2.则a=2.。

2018——2019年上海各区高中数学高三数学一模试卷试题汇总

2018——2019年上海各区高中数学高三数学一模试卷试题汇总

第一学期教学质量检测高三数学试卷一、填空题(本大题共有12题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分. 1. 已知全集R U =,集合(][)12,,=-∞+∞A ,则U=A ______________.()12,2. 抛物线24=y x 的焦点坐标为_________.()10, 3. 不等式2log 1021>x 的解为____________.4(,)+∞4. 已知复数z 满足(1i)4i z +⋅=(i 为虚数单位),则z 的模为_________. 225. 若函数()=y f x 的图像恒过点01(,),则函数13()-=+y fx 的图像一定经过定点____.()13,6. 已知数列{}n a 为等差数列,其前n 项和为n S .若936=S ,则348++=a a a ________.127. 在△ABC 中,内角,,A B C 的对边是,,a b c .若22)32(b a ⋅+=,c b =,则=A ___.56π 8. 已知圆锥的体积为π33,母线与底面所成角为3π,则该圆锥的表面积为 .π3 9.已知二项式n的展开式中,前三项的二项式系数之和为37,则展开式中的第五项为________.358x 10. 已知函数()2||1=+-f x x x a 有三个不同的零点,则实数a 的取值范围为_____.(,-∞11. 已知数列{}n a 满足:211007(1)2018(1)++=-++n n n na n a n a *()∈n N , 且121,2,a a ==若1lim,+→∞=n n na A a 则=A ___________. 100912. 已知函数()2,24161,22-⎧≥⎪+⎪=⎨⎛⎫⎪< ⎪⎪⎝⎭⎩x ax x x f x x ,若对任意的[)12,∈+∞x ,都存在唯一的()2,2∈-∞x ,满足()()12=f x f x ,则实数a 的取值范围为_________. [)2,6∈-a解:当[)12,∈+∞x 时,1211041616x x ⎛⎤∈ ⎥+⎝⎦,.当()2,2∈-∞x 时,(1)若2a ≥,则()11=22x aa xf x --⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭在(),2-∞上是单调递增函数,所以()2210,2a f x -⎛⎫⎛⎫∈ ⎪ ⎪ ⎪⎝⎭⎝⎭.若满足题目要求,则21100,162a -⎛⎫⎛⎤⎛⎫⊆ ⎪ ⎪⎥ ⎪⎝⎦⎝⎭⎝⎭,,所以24111,24,62162a a a -⎛⎫⎛⎫>=∴-<< ⎪⎪⎝⎭⎝⎭.又2a ≥,所以[)2,6a ∈. (2)若2a <,则()1,,21=21, 2.2a xx ax ax a f x a x ---⎧⎛⎫<⎪ ⎪⎪⎝⎭⎛⎫=⎨ ⎪⎝⎭⎛⎫⎪≤< ⎪⎪⎝⎭⎩,()f x 在(),a -∞上是单调递增函数,此时()()0,1f x ∈;()f x 在[),2a 上是单调递减函数,此时()21,12a f x -⎛⎤⎛⎫∈ ⎥ ⎪ ⎝⎭⎥⎝⎦.若满足题目要求,则211,2162aa -⎛⎫≤∴≥- ⎪⎝⎭,又2a <,所以[)2,2a ∈-.综上,[)2,6a ∈-.二、选择题(本大题共有4题,满分20分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分. 13. “14<a ”是“一元二次方程20-+=x x a 有实数解”的( A ) (A )充分非必要条件 (B )充分必要条件(C )必要非充分条件 (D )非充分非必要条件 14. 下列命题正确的是( D )(A )如果两条直线垂直于同一条直线,那么这两条直线平行(B )如果一条直线垂直于一个平面内的两条直线,那么这条直线垂直于这个平面 (C )如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面 (D )如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行15. 将4位志愿者分配到进博会的3个不同场馆服务,每个场馆至少1人,不同的分配方案有( B )种.(A )72 (B )36 ( (D )81 16. 已知点()()1,2,2,0-A B ,P ⋅AP AB 的取值范围为( A )(A )[]1,7 (B )[]1,7- (C)1,3⎡+⎣ (D)1,3⎡-+⎣三、解答题(本大题共有5题,满分76分)解答下列各题必须写出必要的步骤. 17.(本小题满分14分,第1小题满分7分,第2小题满分7分 已知直三棱柱ABC C B A -111中,︒=∠===9011BAC ,AA AC AB .(1)求异面直线B A 1与11C B 所成角; (2)求点1B 到平面BC A 1的距离.解:(1)在直三棱柱ABC C B A -111中,AB AA ⊥1,AC AA ⊥1,︒=∠===9011BAC ,AA AC AB所以,211===BC C A B A .…………………………2分因为,11C B //BC ,所以,BC A 1∠为异面直线B A 1与11C B 所成的角或补角.……4分 在BC A 1∆中,因为,211===BC C A B A ,所以,异面直线B A 1与11C B 所成角为3π.…………………………7分 (2)设点1B 到平面BC A 1的距离为h , 由(1)得23322211=π⋅⨯⨯=∆sin S BC A ,…………………………9分 21112111=⨯⨯=∆B B A S ,…………………………11分 因为,B B A C BC A B V V 1111--=,…………………………12分所以,CA S h S B B A BC A ⋅=⋅∆∆1113131,解得,33=h . 所以,点1B 到平面BC A 1的距离为33.…………………………14分 或者用空间向量:(1) 设异面直线B A 1与11C B 所成角为θ,如图建系,则()1011-=,,A ,()01111,,C B -=,…………4分A1C CB1B 1A因为,321221π=θ⇒=⋅-==θcos 所以,异面直线B A 1与11C B 所成角为3π.…………7分 (2)设平面BC A 1的法向量为()w ,v ,u n =,则B A n ,BC n 1⊥⊥. 又()011,,-=,()1011-=,,A ,……………9分所以,由⎩⎨⎧=-=+-⇒⎪⎩⎪⎨⎧=⋅=⋅00001w u v u A ,得()111,,n =.…………12分所以,点1B 到平面BC A 1的距离33==d .…………………………14分 18.(本小题满分14分,第1小题满分7分,第2小题满分7分)已知函数2()cos 2sin f x x x x =-.(1)若角α的终边与单位圆交于点3455(,)P ,求()f α的值; (2)当[,]63ππ∈-x 时,求()f x 的单调递增区间和值域.解:(1)∵角α的终边与单位圆交于点3455(,)P ,∴43sin =,cos =55αα ……2分2243432()cos 2sin 2()55525αααα=-=⨯-⨯=f …4分(2)2()cos 2sin f x x x x =-2cos21x x =+- …………………6分2sin(2)16x π=+- …………………………8分由222262k x k πππππ-≤+≤+得,36k x k ππππ-≤≤+又[,]63x ππ∈-,所以()f x 的单调递增区间是[,]66x ππ∈-; ………………10分∵[,]63x ππ∈-,∴52666x πππ-≤+≤…………………………12分 ∴1sin(2)126x π-≤+≤,()f x 的值域是[2,1]-. ………………14分19.(本小题满分14分,第1小题满分6分,第2小题满分8分) 某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:①3小时以内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值.....E (单位:exp )与游玩时间t (小时)满足关系式:22016E t t a =++;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验....值.不变); ③超过5小时为不健康时间,累积经验值.....开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.(1)当1a =时,写出累积经验值.....E 与游玩时间t 的函数关系式()E f t =,并求出游玩6小时的累积经验值.....; (2)该游戏厂商把累积经验值.....E 与游玩时间t 的比值称为“玩家愉悦指数”,记作()H t ;若0a >,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a的取值范围.解:(1)22016,03()85,3533550,5t t t E f t t t t ⎧++<≤⎪==<≤⎨⎪->⎩ (写对一段得1分,共3分)6t =时,(6)35E =    (6分)(2)03t <≤时,16()=20aH t t t++  (8分) 16()244≥⇒+≥aH t t t①0319[,]4164a ⎧<≤⎪⇒∈⎨⎪⎩     (10分) ②39(,)1616343a a⎧>⎪⇒∈+∞⎨+≥⎪⎩    (12分) 综上,1[,)4a ∈+∞        (14分)20.(本小题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)已知双曲线Γ: 22221(0,0)x y a b a b-=>>的左、右焦点分别是 1F 、2F ,左、右两顶点分别是 1A 、2A ,弦 AB 和CD 所在直线分别平行于x 轴与 y 轴,线段BA 的延长线与线段CD 相交于点 P (如图).(1)若(2,3)d =是Γ的一条渐近线的一个方向向量,试求Γ的两渐近线的夹角θ;(2)若1PA =,5PB = ,2PC =,4PD =,试求双曲线Γ的方程;(3)在(..1.)的条件下.....,且124A A =,点C 与双曲线的顶点不重合,直线1CA 和直线2CA 与直线:1l x =分别相交于点M 和N ,试问:以线段MN 为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.解:(1)双曲线22221x y a b-=的渐近线方程为:即0bx ay ±=,所以3b a =,…………2分 从而3tan2θ=22tan 2tan 431tan2θθθ==-, 所以arctan 3θ=………………………………………………..4分(2)设 (,)P P P x y ,则由条件知:11()()322P x PB PA PA PB PA =-+=+=,11()()122P y PC PD PC PD PC =+-=-=,即(3,1)P .…………6分所以(2,1)A ,(3,3)C ,………………………………………………………..…………7分代入双曲线方程知:2751,2781199114222222==⇒⎪⎩⎪⎨⎧=-=-b a ba b a ……9分 127527822=-y x ………………………………………………………………….. 10分 (3)因为124A A =,所以2a =,由(1)知,3b =Γ的方程为: 22143x y -=, 令00(,)C x y ,所以2200143x y -=,010:(2)2y CA y x x =++,令1x =,所以003(1,)2y M x +, 020:(2)2y CA y x x =--,令1x =,所以00(1,2y N x --, …………12分故以MN 为直径的圆的方程为:200003(1)()()022y y x y y x x --+--=+-, 即222000200033(1)()0224y y y x y y x x x -++--=-+-,即22000039(1)()0224y y x y y x x -++--=-+,…………………………………………….14分 若以MN 为直径的圆恒经过定点),(y x于是⎪⎩⎪⎨⎧=±=⇒⎪⎩⎪⎨⎧=-+-=0231049)1(022y x y x y 所以圆过x 轴上两个定点5(,0)2和1(,0)2-……………………………………………16分21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 已知平面直角坐标系xOy ,在x 轴的正半轴上,依次取点123,,,n A A A A (*n N ∈),并在第一象限内的抛物线232y x =上依次取点123,,,,n B B B B (*n N ∈),使得1k k kA B A -∆*()k N ∈都为等边三角形,其中0A 为坐标原点,设第n 个三角形的边长为()f n .(1)求(1),(2)f f ,并猜想()f n (不要求证明); (2)令9()8n a f n =-,记m t 为数列{}n a 中落在区间2(9,9)mm内的项的个数,设数列{}m t 的前m 项和为m S ,试问是否存在实数λ,使得2λ≤m S 对任意*m N ∈恒成立?若存在,求出λ的取值范围;若不存在,说明理由; (3)已知数列{}n b满足:11,2n b b +==数列{}n c 满足:111,n nc c +==求证:1()2n n n b f c π+<<.解:(1)(1)1f =,(2)2f =  (2分) 猜想()f n n =  (2分) (2)98n a n =-  (5分)由21218899899999m mm m n n --<-<⇒+<<+112191,92,,9---∴=++⋅⋅⋅⋅⋅⋅m m m n  (6分)21199m m m t --∴=-  (7分) 352211(91)(99)(99)(99)m m m S --∴=-+-+-+⋅⋅⋅+- 352121(9999)(1999)m m --=+++⋅⋅⋅+-+++⋅⋅⋅+22129(19)(19)91091191980m m m m +---⋅+=-=-- (9分) 2λ≤m S 对任意*m N ∈恒成立min 12()83λλ⇒≤==⇒≤m S S (10分).(3)1sin,4b π=记1sin ,4n n b πθθ==,则1sin sin 2n n θθ+== *1()2n n n N πθ+⇒=∈  (12分) 1tan ,4c π=记1tan ,4n n c πϕϕ==,则1sec 1tan tan tan 2n n n n ϕϕϕϕ+-==*1()2n n n N πϕ+⇒=∈  (14分) 11sin,tan ,22n n n n b c ππ++∴==当(0,)2x π∈时,sin tan x x x <<可知: 1111sin()tan ,2222n n n n n n b f c ππππ++++=<=<=  (18分)杨浦区2018学年度第一学期高三年级模拟质量调研数学学科试卷 2018.12.18一、填空题(本大题有12题,满分54分,第1——6题每题4分,第7—12题每题5分) 1、设全集{}1,2,3,4,5U =,若集合{}3,4,5A =,则____u=2、已知扇形的半径为6,圆心角为3π,则扇形的面积为_____ 3、已知双曲线221x y -=,则其两条渐近线的夹角为_____ 4、若()na b +展开式的二项式系数之和为8,则____n = 5、若实数,x y 满足221x y +=,则xy 的取值范围是_____6、若圆锥的母线长()5l cm =,高()4h cm =,则这个圆锥的体积等于_______7、在无穷等比数列{}n a 中,()121lim ,2n n a a a →+∞+++=则1a 的取值范围是____8、若函数()1ln 1xf x x+=-的定义域为集合A ,集合(),1B a a =+,且B A ⊆,则实数a 的取值范围__9、在行列式274434651xx--中,第3行第2列的元素的代数余子式记作()f x ,则()1y f x =+的零点是____10、已知复数())12cos 2,cos z x f x i z x x i =+=++,(,x R i ∈虚数单位)在复平面上,设复数12,z z 对应的点分别为12,Z Z ,若1290Z OZ ∠=,其中是坐标原点,则函数()f x 的最小正周期______ 11、当0x a <<时,不等式()22112x a x +≥-恒成立,则实数a 的最大值为______ 12、设d 为等差数列{}n a 的公差,数列{}n b 的前项和n T ,满足()()112nn n n T b n N *+=-∈, 且52d a b ==,若实数{}()23,3k k k m P x a x a k N k *-+∈=<<∈≥,则称m 具有性质k P ,若是n H 数列{}n T 的前n 项和,对任意的n N *∈,21n H -都具有性质k P ,则所有满足条件的k 的值为_____二、选题题(本题共有4题,满分20分,每题5分)13、下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( )(A )()arcsin f x x= (B )lg y x= (C )()f x x=-(D )()cos f x x =14、某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为 ( )(A )310 (B ) 35 (C ) 25 (D )2315、已知()sin log ,0,2f x x θπθ⎛⎫=∈ ⎪⎝⎭,设sin cos sin ,,2sin cos a f b f c f θθθθθ+⎛⎫⎛⎫===⎪⎪+⎝⎭⎝⎭,则,,a b c 的大小关系是 (A )a b c ≤≤ (B )b c a ≤≤ (C )c b a ≤≤(D )a b c ≤≤16、已知函数()22x f x m x nx =⋅++,记集合(){}0,A x f x x R ==∈,集合(){}0,B x f x x R ==∈,若A B =,且都不是空集,则m n +的取值范围是( ) ( A )[]0,4 (B )[]1,4- (C )[]3,5- (D )[]0,7三、解答题(本大题共有5题,满分76分) 17、(本题满分14分,第1题满分6分,第2小题满分8分)如图,,PA ABCD ⊥平面四边形ABCD 为矩形,1PA PB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动。

2018届上海市金山区高三第一学期(一模)期末质量监控数学试题(解析版)

2018届上海市金山区高三第一学期(一模)期末质量监控数学试题(解析版)

2018届上海市金山区高三第一学期(一模)期末质量监控数学试题一、单选题1.已知方程表示焦点在轴上的椭圆,则的取值范围是()A.或B.C.D.或【答案】D【解析】椭圆的焦点在x轴上∴m2>2+m,即m2﹣2﹣m>0解得m>2或m<﹣1又∵2+m>0∴m>﹣2∴m的取值范围:m>2或﹣2<m<﹣1故答案为:D。

2.给定空间中的直线l及平面 ,条件“直线l与平面α内的无数条直线都垂直”是“直线l与平面α垂直的().A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件【答案】B【解析】试题分析:直线与平面α内的无数条平行直线垂直,但该直线未必与平面α垂直;即“直线l与平面α内无数条直线都垂直”⇒“直线l与平面α垂直”为假命题;但直线l与平面α垂直时,l与平面α内的每一条直线都垂直,即“直线l与平面α垂直”⇒“直线l与平面α内无数条直线都垂直”为真命题;故“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的必要非充分条件;故选B【考点】空间中直线与平面之间的位置关系.3.欧拉公式(为虚数单位,,为自然底数)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】利用欧拉公式和诱导公式进行计算即可得出答案.【详解】e2018i=cos2018+i sin2018,∵2018=642π+(2018﹣642π),2018﹣642π∈,∴cos2018=cos(2018﹣642π)<0.sin2018=sin(2018﹣642π)>0,∴e2018i表示的复数在复平面中位于第二象限.故选:B.【点睛】本题考查了欧拉公式、诱导公式以及复数的有关概念,考查推理能力与计算能力,属于基础题.4.已知函数,则方程()的实数根个数不可能为()A.5个B.6个C.7个D.8个【答案】A【解析】以f(x)=1的特殊情形为突破口,解出x=1或3或或﹣4,将x+﹣2看作整体,利用换元的思想方法进一步讨论.【详解】∵函数,即f(x)=,因为当f(x)=1时,x=1或3或或﹣4,则当a=1时,x+﹣2=1或3或或﹣4,又因为x+﹣2≥0或x+﹣2≤﹣4,所以,当x+﹣2=﹣4时只有一个x=﹣2与之对应.其它情况都有2个x值与之对应,故此时所求的方程有7个根,当1<a<2时,y=f(x)与y=a有4个交点,故有8个根;当a=2时,y=f(x)与y=a有3个交点,故有6个根;综上:不可能有5个根,故选:A.【点睛】本题考查分段函数、函数的零点等知识,属于中档题.二、填空题5.已知集合,,则___【答案】【解析】对集合A和集合B取交集即可得到答案.【详解】,,则,故答案为:.【点睛】本题考查集合的交集运算.6.抛物线的准线方程是______【答案】【解析】试题分析:开口向右,所以它的准线方程为x=-1【考点】本题考查抛物线的标准方程点评:开口向右的抛物线方程为,准线方程为7.计算:______【答案】【解析】分子分母同时除以n,计算可得极限.【详解】==故答案为:.【点睛】本题考查型极限问题,解题的关键是合理地选取公式.8.不等式的解集为________【答案】【解析】根据绝对值的定义去绝对值符号,直接求出不等式的解集即可.【详解】由,得,解得故答案为.【点睛】本题考查绝对值不等式的解法,考查等价转化的数学思想和计算能力.9.若复数(为虚数单位),________【答案】【解析】利用复数的乘法运算将复数化简为a+bi的形式,然后利用复数模的公式计算即可得到答案.【详解】=7+i,则,故答案为:.【点睛】本题考查复数的模的概念和复数的四则运算,属于基础题.10.已知函数,则_______【答案】【解析】由反函数定义令f(x)=5,求出x的值即可.【详解】由反函数定义,令,得=4,则x=24=16,∴f﹣1(5)=16.故答案为:16.【点睛】本题考查反函数的性质与应用问题,是基础题.11.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______【答案】【解析】答案:解析:简单考察古典概型的概率计算,容易题。

04.2018年上海高三数学一模分类汇编:三角

04.2018年上海高三数学一模分类汇编:三角

2(2018黄浦一模). 已知角θ的顶点在坐标原点,始边与x 轴的正半轴重合,若角θ的终边落在第三象限内,且3cos()25πθ+=,则cos2θ=2(2018普陀一模). 若1sin 4θ=,则3cos()2πθ+=3(2018杨浦一模). 已知3cos 5θ=-,则sin()2πθ+= 若22()S a b c =--,则内角A = (结果用反三角函数值表示)3(2018长宁一模). 已知4sin 5α=,则cos()2πα+= 3(2018宝山一模). 函数22cos (3)1y x π=-的最小正周期为4(2018青浦一模). 函数2()cos cos f x x x x =+的最大值为4(2018奉贤一模). 已知tan 2θ=-,且(,)2πθπ∈,则cos θ=4(2018虹口一模). 在ABC ∆中,A ∠、B ∠、C ∠所对边分别是a 、b 、c ,若::2:3:4a b c =,则cos C =5(2018松江一模). 已知角α的终边与单位圆221x y +=交于点01(,)2P y ,则cos2α=6(2018普陀一模). 函数2()2cos 2xf x x =+的值域为 6(2018崇明一模). 若函数2sin()13y x πω=-+(0ω>)的最小正周期是π,则ω=7(2018松江一模). 函数sin 2y x =的图像与cos y x =的图像在区间[0,2]π,上交点的个数是8(20182018徐汇一模). 某船在海平面A 处测得灯塔B 在北偏东30°方向,与A 相距6.0海里,船由A 向正北方向航行8.1海里到达C 处,这时灯塔B 与船相距 海里(精确到0.1海里)8(20182018长宁一模). 在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若()()a b c a b c ac ++-+=,则B =8(2018宝山一模). 半径为4的圆内接三角形ABC 的面积是116,角A 、B 、C 所对应的边依次为a 、b 、c ,则abc 的值为9(2018虹口一模). 已知sin y x =和cos y x =的图像的连续的三个交点A 、B 、C 构成三角形ABC ∆,则ABC ∆的面积等于9(2018杨浦一模). 在ABC ∆中,若sin A 、sin B 、sin C 成等比数列,则角B 的最大值为10(2018黄浦一模). 已知ABC ∆的三个内角A 、B 、C 所对边长分别为a 、b 、c ,记ABC ∆的面积为S ,若22()S a b c =--,则内角A = (结果用反三角函数值表示)11(2018静安一模). 已知函数231()|sin cos()|22f x x x x π=--,若将函数()y f x =的图像向左平移a 个单位(0a π<<),所得图像关于y 轴对称,则实数a 的取值集合为13(2018长宁一模). 设角α的始边为x 轴正半轴,则“α的终边在第一、二象限”是“sin 0α>”的( )A. 充分非必要条件B. 必要非充分条件C. 充分必要条件D. 既非充分又非必要条件13(2018徐汇一模). 已知a 是ABC ∆的一个内角,则“sin 2α=”是“45α=︒”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要14(2018黄浦一模). 为了得到函数sin3cos3y x x =+(x R ∈)的图像,可以将函数y x =的图像( )A. 向右平移4π个单位 B. 向左平移4π个单位 C. 向右平移12π个单位 D. 向左平移12π个单位17(2018松江一模). 在ABC ∆中,6AB =,AC =18AB AC ⋅=-. (1)求BC 边的长; (2)求ABC ∆的面积.17(2018闵行一模). 已知函数3()sin 2f x x x ωω=+(其中0ω>). (1)若函数()f x 的最小正周期为3π,求ω的值,并求函数()f x 的单调递增区间;(2)若2ω=,0απ<<,且3()2f α=,求α的值.18(2018崇明一模). 已知2()cos 2cos 1f x x x x =+-.(1)求()f x 的最大值及该函数取得最大值时x 的值;(2)在ABC ∆中,a 、b 、c 分别是A 、B 、C 所对的边,若a =b =,且()2Af =求边c 的值.18(2018虹口一模). 已知函数()3cos()cos(2)2f x x x πωπω=-+-,其中x R ∈,0ω>,且此函数的最小正周期等于π.(1)求ω的值,并写出此函数的单调递增区间; (2)求此函数在[0,]2x π∈的最大值和最小值.18(2018金山一模). 已知函数()2cos 21f x x x =+-(x R ∈). (1)写出函数()f x 的最小正周期以及单调递增区间;(2)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若()0f B =,32BA BC ⋅=, 且4a c +=,求b 的值.18(2018浦东一模). 在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,已知(2,1)m =, (cos ,cos cos )n c C a B b A =+,且m n ⊥.(1)求C ;(2)若227c b =,且ABC S ∆=b 的值.18(2018徐汇一模). 如图是函数()sin()f x A x ωϕ=+(0A >,0ω>,02πϕ<<)图像的一部分,M 、N 是它与x 轴的两个交点,C 、D 分别为它的最高点和最低点,(0,1)E 是线段MC 的中点.(1)若点M 的坐标为(1,0)-,求点C 、点N 和点D 的坐标;(2)若点M 的坐标为(,0)m -(0m >),且2344MC MD π⋅=-,试确定函数()f x 解析式.19(2018青浦一模). 如图,某大型厂区有三个值班室A 、B 、C ,值班室A 在值班室B 的正北方向2千米处,值班室C 在值班室B 的正东方向23千米处.(1)保安甲沿CA 从值班室C 出发行至点P 处,此时1PC =,求PB 的距离;(2)保安甲沿CA 从值班室C 出发前往值班室A ,保安乙沿AB 从值班室A 出发前往值班室B ,甲乙同时出发,甲的速度为1千米/小时,乙的速度为2千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?19(2018长宁一模). 一根长为L 的铁棒AB 欲通过如图所示的直角走廊,已知走廊的宽2AC BD m ==.(1)设BOD θ∠=,试将L 表示为θ的函数; (2)求L 的最小值,并说明此最小值的实际意义.19(2018奉贤一模). 如图,某公园有三条观光大道AB 、BC 、AC 围成直角三角形,其中直角边200BC m =,斜边400AB m =.(1)若甲乙都以每分钟100m 的速度从点B 出发,甲沿BA 运动,乙沿BC 运动,乙比甲 迟2分钟出发,求乙出发后的第1分钟末甲乙之间的距离;(2)现有甲、乙、丙三位小朋友分别在点D 、E 、F ,设CEF θ∠=,乙丙之间的距离 EF 是甲乙之间距离DE 的2倍,且3DEF π∠=,请将甲乙之间的距离DE y =表示为θ的函数,并求甲乙之间的最小距离.19(2018普陀一模). 设函数()sin()f x x ωϕ=+(0ω>,||2πϕ<),已知角ϕ的终边经过点(1,,点11(,)M x y 、22(,)N x y 是函数()f x 图像上的任意两点,当12|()()|2f x f x -=时,12||x x -的 最小值是2π. (1)求函数()y f x =的解析式;(2)已知ABC ∆面积为C 所对的边c =,cos ()4C f π=,求ABC ∆的周长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金山区2017学年第一学期质量监控高三数学试卷(满分:150分,完卷时间:120分钟)(答题请写在答题纸上)一、填空题(本大题共有12题,满分54分,第1–6题每题4分,第7–12题每题5分) 考生应在答题纸相应编号的空格内直接填写结果.1.若全集U =R ,集合A ={x |x ≤0或x ≥2},则U A = . 2.不等式01<-xx 的解为 . 3.方程组⎩⎨⎧=+=-532123y x y x 的增广矩阵是 .4.若复数z =2–i (i 为虚数单位),则z z z +⋅= .5.已知F 1、F 2是椭圆192522=+y x 的两个焦点,P 是椭圆上的一个动点,则|PF 1|⨯|PF 2|的最大值是_______.6.已知x ,y 满足⎪⎩⎪⎨⎧≤≥-+≥+-20301x y x y x ,则目标函数k =2x +y 的最大值为 .7.从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得为黑桃”,则概率P (A ∪B )= (结果用最简分数表示).8.已知点A (2,3)、点B (–2,3),直线l 过点P (–1,0),若直线l 与线段AB 相交,则直线l 的倾斜角的取值范围是 .9. 数列{a n }的通项公式是a n =2n –1(n ∈N *),数列{b n }的通项公式是b n =3n (n ∈N *),令集合A ={a 1,a 2,…,a n ,…},B ={b 1,b 2,…,b n ,…},n ∈N *.将集合A ∪B 中的所有元素按从小到大的顺序排列,构成的数列记为{c n }.则数列{c n }的前28项的和S 28= .10.向量i 、j 是平面直角坐标系x 轴、y 轴的基本单位向量,且|a –i |+|a –2j |=5,则|2|i a +的取值范围为 .11.某地区原有森林木材存有量为a ,且每年增长率为25%,因生产建设的需要,每年年末要砍伐的木材量为101a ,设a n 为第n 年末后该地区森林木材存量,则a n = . 12.关于函数()1xf x x =-,给出以下四个命题:(1)当x >0时,y=f (x )单调递减且没有最值;(2)方程f (x )=kx+b (k ≠0)一定有实数解;(3)如果方程f (x )=m (m 为常数)有解,则解的个数一定是偶数;(4) y=f (x )是偶函数且有最小值.其中假命题的序号是 .二、选择题(本大题共4小题,满分20分,每小题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.若非空集合A 、B 、C 满足A ∪B =C ,且B 不是A 的子集,则( ).(A) “x ∈C ”是“x ∈A ”的充分条件但不是必要条件(B) “x ∈C ”是“x ∈A ”的必要条件但不是充分条件(C) “x ∈C ”是“x ∈A ”的充要条件(D) “x ∈C ”既不是“x ∈A ”的充分条件也不是“x ∈A ”的必要条件14.将如图所示的一个Rt △ABC (∠C =90°)绕斜边AB 旋转一周,所得到的几何体的主视图是下面四个图形中的( ).第14题图(A) (B) (C)(D) C B A15.二项式(3i –x )10(i 为虚数单位)的展开式中第8项是( ).(A) –135x 7 (B)135x 7 (C)3603i x 7 (D)–3603i x 716.给出下列四个命题:(1)函数y =arccos x (–1≤x ≤1)的反函数为y =cos x (x ∈R );(2)函数12-+=m m x y (m ∈N )为奇函数;(3)参数方程⎪⎪⎩⎪⎪⎨⎧+=+-=2221211t t y t t x (t ∈R )所表示的曲线是圆;(4)函数f (x )=sin 2x –21)32(+x ,当x >2017时,f (x )>21恒成立.其中真命题的个数为( ). (A) 4个 (B) 3个 (C) 2个 (D) 1个三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分,第1小题满分7分,第2小题满分7分)如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1、CD 的中点.(1) 求三棱锥F –AA 1E 的体积;(2) 求异面直线EF 与AB 所成角的大小(结果用反三角函数值表示).18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数f (x )=3sin2x+cos2x –1 (x ∈R ).(1) 写出函数f (x )的最小正周期以及单调递增区间;(2) 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若f (B )=0,23=⋅BC BA ,且a+c =4,求b 的值.B 1 B E19.(本题满分14分,第1小题满分6分,第2小题满分8分)设P (x , y )为函数f (x )=a x x -2(x ∈D ,D 为定义域)图像上的一个动点,O 为坐标原点,|OP |为点O 与点P 两点间的距离.(1) 若a =3,D =[3,4],求|OP |的最大值与最小值;(2) 若D =[1,2],是否存在实数a ,使得|OP |的最小值不小于2?若存在,请求出a 的取值范围;若不存在,则说明理由.20.(本题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分)给出定理:在圆锥曲线中, AB 是抛物线Γ:y 2=2px (p >0)的一条弦,C 是AB 的中点,过点C 且平行于x 轴的直线与抛物线的交点为D ,若A 、B 两点纵坐标之差的绝对值||B A y y -=a (a >0),则△ADB 的面积 S △ADB =pa 163.试运用上述定理求解以下各题: (1) 若p =2,AB 所在直线的方程为y =2x –4,C 是AB 的中点,过C 且平行于x 轴的直线与抛物线Γ的交点为D ,求S △ADB ;(2) 已知AB 是抛物线Γ:y 2=2px (p >0)的一条弦,C 是AB 的中点,过点C 且平行于x 轴的直线与抛物线的交点为D ,E 、F 分别为AD 和BD 的中点,过E 、F 且平行于x 轴的直线与抛物线Γ:y 2=2px (p >0)分别交于点M 、N ,若A 、B 两点纵坐标之差的绝对值||B A y y -=a (a >0),求S △AMD 和S △BND ;(3) 请你在上述问题的启发下,设计一种方法求抛物线:y 2=2px (p >0)与弦AB 围成的“弓形”的面积,并求出相应面积.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)若数列{a n }中存在三项,按一定次序排列构成等比数列,则称{a n }为“等比源数列”.(1) 已知数列{a n }中,a 1=2,a n +1=2a n –1.求数列{a n }的通项公式;(2) 在(1)的结论下,试判断数列{a n }是否为“等比源数列”,并证明你的结论;(3) 已知数列{a n }为等差数列,且a 1≠0,a n ∈Z (n ∈N *),求证:{a n }为“等比源数列”.金山区2017学年第一学期期末考试高三数学试卷评分参考答案(满分:150分,完卷时间:120分钟)一、填空题(本大题共有12题,满分54分,第1–6题每题4分,第7–12题每题5分)1.A ={x |0<x<2};2.0<x <1;3. ⎪⎪⎭⎫ ⎝⎛-513223;4.7–i ;5.25;6.7;7.726; 8 [4π,32π].;9.820;10.⎤⎥⎦;11. a a a n n 52)45(53+=;12.(1)、(3) 二、选择题(本大题共4小题,满分20分,每小题5分)13.B ; 14.B ; 15.C ; 16.D三、解答题(本大题共有5题,满分76分)17. 解:(1)因为△AA 1E 的面积为S =2,……………………………………………2分 点F 到平面ABB 1A 1的距离即h=2,……………………………………………………4分 所以E AA F V 1-=h S ⋅31=34;………………………………………………………………7分 (2)连结EC ,可知∠EFC 为异面直线EF 与AB 所成角,…………………………10分 在Rt △EFC 中,EC =5,FC =1,所以tan ∠EFC =5,…………………………13分 即∠EFC =arctan 5,故异面直线EF 与AB 所成角的大小为arctan 5.…………14分18.解:(1)f (x )=2sin(2x+6π)–1,………………………………………………………2分 所以,f (x )的最小正周期T = π,………………………………………………………4分f (x )的单调递增区间是[k π–3π,k π+6π],k ∈Z ;………………………………………6分 (2) f (B )=2sin(2B +6π)–1=0,故sin(2B +6π)=21,………………………………………8分 所以,2B +6π=2k π+6π或2B +6π=2k π+65π,k ∈Z , 因为B 是三角形内角,所以B =3π;…………………………………………………10分而BC BA ⋅=ac cos B =23,所以,ac =3,又a+c =4,所以a 2+c 2=10,………………12分 所以,b 2=a 2+c 2–2ac cos B =7,所以b=7.…………………………………………14分19.解:(1) 当a =3,D =[3,4],|OP |=]4,3[,3)1(363)3(2222∈--=-=-+x x x x x x x ,……………………4分 3||min =OP ,62||max =OP ; ………………………………………………………6分(2) ]2,1[,2||2∈-+=x a x x x OP ,因为|OP |的最小值不小于2,即x 2+2x |x –a |≥4对于x ∈[1,2]恒成立,……………………………………………………………………8分 当a ≥2时,a ≥)4(21x x +对于x ∈[1,2]恒成立,所以a ≥25,………………………10分 当1≤a <2时,取x=a 即可知,显然不成立,………………………………………11分当a <1时,a ≤)43(21x x -对于x ∈[1,2]恒成立,所以a ≤21-,……………………13分 综上知,a ≤21-或a ≥25………………………………………………………………14分 (2)或解:]2,1[,2||2∈-+=x a x x x OP ,…………………………………………7分 当a ≥2时, 222)(2||a a x ax x OP +--=+-=在[1,2]为增函数,12||min -=a OP ≥2,所以a ≥25,…………………………………………………9分 当1≤a <2时,取x=a ,|OP |=a 不可能大于或等于2,………………………………11分 当a <1时,22231)3(323||a ax ax x OP --=-=在[1,2]为增函数, a OP 23||min -=≥2 ,a ≤21-……………………………………………………13分 综上知,a ≤21-或a ≥25………………………………………………………………14分 20.解:(1) 联立直线与抛物线方程⎩⎨⎧=-=x y x y 4422,解得|y A –y B |=6,………………2分S △ADB =827;……………………………………………………………………………4分 (2)设点D 、M 、N 的纵坐标分别为y D 、y M 、y N ,易知AD 为抛物线Γ:y 2=2px (p >0)的一条弦,M 是AD 的中点,且A 、D 两点纵坐标之差为定值,|y A –y D |=2a (a >0),……6分 由已知的结论,得S △AMD =pa p a 168116)2(33⋅=,…………………………………………8分 同理可得S △BND =pa p a 168116)2(33⋅=;……………………………………………………9分 (3) 将(2)的结果看作是一次操作,操作继续下去,取每段新弦的中点作平行于x 轴的直线与抛物线得到交点,并与弦端点连接,计算得到新三角形面积。

相关文档
最新文档