受控源实验报告
受控源的研究实验报告(共8篇)

受控源的研究实验报告(共8篇)一、受控源实验报告1.实验目的:(1)了解受控源及其分类。
(2)掌握受控源的基本特性。
(3)熟悉受控源的应用,掌握对电路的控制和调节。
2.实验原理:(1)有源元件:由内部有源开关,将外部信号控制数值作用到元件内部,将外部电压和电流按照一定规律转换出所需要的电流或电压信号的元件。
(2)号源:一种利用内部控制变化而实现输出电流或者电压变化的元件。
(3)受控源:又称控制源,是指通过输入端的一个电压或者电流信号,从而在输出端产生一个文细变化的电压或者电流的元件。
3.实验内容:(1)使用电压控制型门级比例积分控制器控制直流电机。
4.实验步骤:(①)首先将电动机直接连接至电源,使其旋转。
(②)将直流电机的两端连接至多功能模拟器的输出端口上。
(③)给多功能模拟器添加电磁铁,在电压输入端加1V信号,在输出端得到0-10V 的输出信号,使得直流电机的转速可以随着输入信号的变化而产生变化。
(④)调节门电平、比例系数和积分时间常数进行控制测试,获得合适的反馈控制输出效果,调节输出以启动和停止直流电机。
(①)将恒温水槽连接至多功能模拟器的输出端口,将加热限制器和恒温电子元件加入电路之中。
(②)在恒温水槽的输出端口处添加一个电流传感器,在输入端口处添加一个电流信号,可以随着输出信号的变化对阻值进行改变,控制恒温状态的保持。
(③)调节比例系数,运用反馈控制来控制恒温水槽的温度,平衡电热输出与散热损失,保持温度恒定,测试温度误差及输出效果。
(①)连接一个热电偶传感器至比例温度控制器的输入端口,将输出端口连接至直流蒸汽弁中。
(②)使用比例温度控制器进行电压输入控制,通过调节锁定开关和门电平,实现温度的自动控制。
(③)根据设定的温度以及反馈信号的变化是否符合期望,对比输入电压变化和输出电压变化,校验温度控制的精度,更改控制样式并再次测试。
5.实验结果分析:(1)通过对直流电机进行控制测试,在门电平为5v,比例系数Kp=1.5、积分时间常数Ti=17s的条件下,获得了最佳的控制效果,可以使得机械运行速度真实反应于反馈电路参数呈正比的恒定控制反馈。
受控源的实验研究实验报告

受控源的实验研究实验报告一、实验目的受控源是一种具有特殊性质的电源,其输出电压或电流受到其他电路变量的控制。
本实验旨在深入研究受控源的特性,包括其伏安特性、转移特性以及在电路中的作用,通过实验加深对受控源概念的理解,掌握其使用方法,并提高电路分析和实验操作的能力。
二、实验原理1、受控源的分类电压控制电压源(VCVS):输出电压受输入电压控制,其转移电压比为常数。
电压控制电流源(VCCS):输出电流受输入电压控制,其转移电导为常数。
电流控制电压源(CCVS):输出电压受输入电流控制,其转移电阻为常数。
电流控制电流源(CCCS):输出电流受输入电流控制,其转移电流比为常数。
2、受控源的电路模型VCVS:用一个理想电压源和一个电阻串联表示。
VCCS:用一个理想电流源和一个电导并联表示。
CCVS:用一个理想电压源和一个电阻并联表示。
CCCS:用一个理想电流源和一个电阻串联表示。
3、受控源的伏安特性对于 VCVS,输出电压与输入电压成正比,即\(U_2 =\muU_1\),其中\(\mu\)为转移电压比。
对于 VCCS,输出电流与输入电压成正比,即\(I_2 = g U_1\),其中\(g\)为转移电导。
对于 CCVS,输出电压与输入电流成正比,即\(U_2 = r I_1\),其中\(r\)为转移电阻。
对于 CCCS,输出电流与输入电流成正比,即\(I_2 =\betaI_1\),其中\(\beta\)为转移电流比。
三、实验设备1、直流稳压电源2、直流数字电压表3、直流数字电流表4、电阻箱5、电位器6、实验电路板7、导线若干四、实验内容及步骤1、电压控制电压源(VCVS)特性的测试按图 1 连接电路,其中\(R_1\)为电位器,\(R_2\)为电阻箱。
调节\(R_1\),使输入电压\(U_1\)从 0 逐渐增加到 10V,每隔 1V 测量一次输出电压\(U_2\),记录数据。
根据测量数据绘制\(U_2 U_1\)特性曲线,计算转移电压比\(\mu\)。
受控源的实验研究实验报告

一、实验目的1. 理解受控源的基本概念和原理。
2. 掌握受控源的分类及其应用。
3. 通过实验,测试受控源的外特性及其转移参数。
4. 培养实验操作技能和数据处理能力。
二、实验原理受控源,又称非独立源,是指其电压或电流的量值受其他支路电压或电流控制的元件。
根据控制量的不同,受控源可分为以下四种类型:1. 电压控制电压源(VCVS):其输出电压U2受控制电压U1控制,关系式为U2 = kU1。
2. 电压控制电流源(VCCS):其输出电流I2受控制电压U1控制,关系式为I2 = kU1。
3. 电流控制电压源(CCVS):其输出电压U2受控制电流I1控制,关系式为U2 = kI1。
4. 电流控制电流源(CCCS):其输出电流I2受控制电流I1控制,关系式为I2 = kI1。
其中,k为转移参数,表示控制量与输出量之间的比例关系。
三、实验器材1. 电源:直流稳压电源2. 电阻:固定电阻、可变电阻3. 电压表、电流表4. 运算放大器5. 面包板6. 连接线四、实验步骤1. 搭建VCVS电路(1)将运算放大器连接成电压跟随器形式。
(2)将可变电阻R1接入控制支路,其两端分别连接到运算放大器的同相输入端和反相输入端。
(3)将固定电阻R2接入输出支路,其两端分别连接到运算放大器的输出端和地。
(4)调节R1的阻值,观察电压表和电流表的读数,记录数据。
2. 搭建VCCS电路(1)将运算放大器连接成电压跟随器形式。
(2)将可变电阻R1接入控制支路,其两端分别连接到运算放大器的同相输入端和反相输入端。
(3)将固定电阻R2接入输出支路,其两端分别连接到运算放大器的输出端和地。
(4)调节R1的阻值,观察电压表和电流表的读数,记录数据。
3. 搭建CCVS电路(1)将运算放大器连接成电压跟随器形式。
(2)将可变电阻R1接入控制支路,其两端分别连接到运算放大器的同相输入端和反相输入端。
(3)将固定电阻R2接入输出支路,其两端分别连接到运算放大器的输出端和地。
受控源特性实验报告

受控源特性实验报告受控源特性实验报告引言:受控源是电子电路中常见的元件之一,它能够产生稳定的电流或电压信号。
在本次实验中,我们将通过实验来探究受控源的特性及其应用。
通过实验数据的收集和分析,我们将深入了解受控源的工作原理和性能。
一、实验目的本次实验的主要目的是研究受控源的特性,并通过实验数据的收集和分析来验证理论知识。
具体的实验目标包括:1. 研究受控源的稳定性和精确性;2. 探究受控源的输出特性,如电流-电压关系、频率响应等;3. 分析受控源的应用场景,如信号发生器、电流源等。
二、实验原理受控源是一种能够控制电流或电压的电子元件。
它由一个控制端和一个输出端组成,通过控制端的输入信号来调整输出端的电流或电压。
受控源的工作原理基于反馈机制,通过反馈回路来保持输出信号的稳定性。
三、实验步骤1. 准备工作:检查实验设备和元件的连接,确保电路连接正确。
2. 测量电流-电压关系:通过改变输入端的电压信号,测量输出端的电流变化。
记录数据并绘制电流-电压曲线。
3. 测量频率响应:通过改变输入端的频率信号,测量输出端的响应情况。
记录数据并绘制频率响应曲线。
4. 分析实验数据:根据实验数据,分析受控源的特性和性能。
比较理论值和实际测量值之间的差异,并探究可能的原因。
5. 探究受控源的应用:根据实验结果,探究受控源在电子电路中的应用场景,如信号发生器、电流源等。
四、实验结果与分析通过实验数据的收集和分析,我们得到了受控源的电流-电压关系曲线和频率响应曲线。
与理论值进行比较后发现,实际测量值与理论值存在一定差异。
这可能是由于实验中的误差、仪器的精度等因素所致。
根据实验结果,我们可以得出以下结论:1. 受控源具有较好的稳定性和精确性,能够产生稳定的电流或电压信号。
2. 受控源的输出特性与输入信号有一定的关系,通过调整输入信号可以改变输出信号的幅值和频率。
3. 受控源在电子电路中具有广泛的应用场景,如信号发生器、电流源等。
受控电源实验报告结论

一、实验目的通过本实验,了解受控源的基本原理,掌握受控源的特性,并学会搭建受控源实验电路,通过实验验证受控源的特性。
二、实验原理受控源是一种非独立源,其电压或电流的量值受其他支路电压或电流的控制。
根据控制方式的不同,受控源分为电压控制电压源(VCVS)、电压控制电流源(VCCS)、电流控制电压源(CCVS)和电流控制电流源(CCCS)四种类型。
三、实验器材1. 电源:直流稳压电源2. 运算放大器:uA7413. 电阻:100Ω、1kΩ、10kΩ4. 电位器:10kΩ5. 导线若干6. 万用表:数字式万用表四、实验步骤1. 搭建VCVS实验电路,将运算放大器搭建为电压控制电压源,通过调节电位器改变输入电压,观察输出电压的变化。
2. 搭建VCCS实验电路,将运算放大器搭建为电压控制电流源,通过调节电位器改变输入电压,观察输出电流的变化。
3. 搭建CCVS实验电路,将运算放大器搭建为电流控制电压源,通过调节电位器改变输入电流,观察输出电压的变化。
4. 搭建CCCS实验电路,将运算放大器搭建为电流控制电流源,通过调节电位器改变输入电流,观察输出电流的变化。
5. 使用万用表测量实验电路中的电压和电流,记录数据。
五、实验结果与分析1. VCVS实验结果与分析当输入电压为0V时,输出电压也为0V;当输入电压逐渐增大时,输出电压随之增大,且输出电压与输入电压成正比。
实验结果表明,VCVS具有电压控制电压源的特性。
2. VCCS实验结果与分析当输入电压为0V时,输出电流也为0A;当输入电压逐渐增大时,输出电流随之增大,且输出电流与输入电压成正比。
实验结果表明,VCCS具有电压控制电流源的特性。
3. CCVS实验结果与分析当输入电流为0A时,输出电压也为0V;当输入电流逐渐增大时,输出电压随之增大,且输出电压与输入电流成正比。
实验结果表明,CCVS具有电流控制电压源的特性。
4. CCCS实验结果与分析当输入电流为0A时,输出电流也为0A;当输入电流逐渐增大时,输出电流随之增大,且输出电流与输入电流成正比。
受控源的实验研究实验报告

受控源的实验研究实验报告1. 引言在电子设备的设计和测试中,受控源是一种重要的测量和模拟工具。
它可以提供稳定、可靠和精确的电压或电流信号,用于研究和分析电路性能以及评估设备的可靠性。
本次实验旨在通过搭建一个受控源电路来探索受控源的基本原理和特性。
2. 实验目标本实验的目标是搭建一个受控源电路,并通过测量和分析其输出电压和电流的特性,深入理解受控源的工作原理。
3. 实验步骤3.1 实验器材和元件准备下表列出了本实验所需的器材和元件:器材和元件数量受控源电路板 1电源 1电阻箱若干万用表 1多道示波器 1连接线若干3.2 搭建受控源电路步骤如下:1.将受控源电路板连接到电源,并连接电源到交流插座。
2.使用连接线将电阻箱连接到受控源电路板的输入端。
3.使用连接线将示波器连接到受控源电路板的输出端。
3.3 测量输出特性步骤如下:1.根据实验要求,设置电阻箱的阻值。
2.使用万用表测量输入电阻,记录结果。
3.调整电源电压,测量输出电压和电流,并记录结果。
4.根据测量结果,绘制输出电压和电流的特性曲线。
3.4 分析实验结果根据实验结果,分析受控源电路的特性,并与理论预期进行比较。
4. 结果与讨论4.1 输入电阻特性根据测量结果,输入电阻为XXX。
4.2 输出特性曲线根据测量结果,绘制了受控源电路的输出特性曲线。
曲线显示了输出电压随输入电压变化的关系,并且表明了受控源的线性范围和饱和范围。
4.3 分析与讨论根据实验结果和曲线分析,受控源电路在理论预期范围内工作良好。
然而,在高负载下,输出电流出现了饱和现象,这可能是由于电源供电能力不足导致的。
进一步的研究和优化可以改善这个问题。
5. 结论通过本次实验,我们成功地搭建了一个受控源电路,并通过测量和分析了其输出特性。
实验结果表明受控源可以提供稳定、可靠和精确的电压或电流信号,并且其特性可以用曲线来描述。
然而,在高负载下可能会出现输出电流饱和的问题,需要进一步研究和优化。
受控源特性实验报告

一、实验目的1. 了解受控源的基本原理和分类。
2. 掌握受控源VCVS、VCCS、CCVS、CCCS的电路搭建方法。
3. 通过实验验证受控源的外特性及其转移参数。
4. 加深对受控源物理概念的理解,提高电路分析能力。
二、实验原理受控源是一种非独立源,其输出电压或电流受电路中其他部分的电压或电流控制。
根据控制量和被控制量的不同,受控源可以分为四种类型:电压控制电压源(VCVS)、电压控制电流源(VCCS)、电流控制电压源(CCVS)和电流控制电流源(CCCS)。
1. VCVS(电压控制电压源):其输出电压U0受输入电压U1控制,具有电压放大作用。
2. VCCS(电压控制电流源):其输出电流I0受输入电压U1控制,具有电流放大作用。
3. CCVS(电流控制电压源):其输出电压U0受输入电流I1控制,具有电压放大作用。
4. CCCS(电流控制电流源):其输出电流I0受输入电流I1控制,具有电流放大作用。
本实验采用运算放大器搭建VCVS和VCCS电路,通过测试电路的转移特性和负载特性,验证受控源的外特性。
三、实验器材1. 运算放大器芯片(uA741)1片2. 电源3个3. 导线若干4. 万用表1个5. 面包板1块6. 电位器1个7. 1000Ω电阻器2个四、实验步骤1. 搭建VCVS电路:(1)将运算放大器芯片接入面包板,将同相输入端接至电源正极,反相输入端接地。
(2)在反相输入端与地之间接入一个1000Ω电阻R1。
(3)在输出端接入一个电阻R2,用于测试负载特性。
2. 搭建VCCS电路:(1)将运算放大器芯片接入面包板,将同相输入端接地,反相输入端接至电源正极。
(2)在反相输入端与地之间接入一个1000Ω电阻R1。
(3)在输出端接入一个电阻R2,用于测试负载特性。
3. 测试VCVS电路:(1)调节电位器,改变输入电压U1,记录输出电压U0和对应的输入电压U1。
(2)根据实验数据绘制VCVS转移特性曲线。
受控源的实验研究实验报告

受控源的实验研究实验报告一、引言。
受控源是指在实验室条件下能够控制和调节的实验变量。
在科学研究中,受控源的使用对于实验结果的准确性和可靠性至关重要。
本实验旨在通过对受控源的实验研究,探讨其对实验结果的影响,并总结出一些实验操作上的经验和注意事项。
二、实验目的。
1. 探究受控源对实验结果的影响;2. 分析受控源的调节对实验结果的影响;3. 总结实验中受控源的使用经验和注意事项。
三、实验设计。
本实验采用了双盲对照实验设计,将实验对象随机分为实验组和对照组。
在实验过程中,对受控源进行了严格的控制和调节,以确保实验结果的可靠性和准确性。
实验组和对照组在其他条件下保持一致,仅在受控源上进行差异处理。
四、实验步骤。
1. 确定受控源的选择,根据实验要求,选择合适的受控源,并进行严格的筛选和鉴定。
2. 设定受控源的调节参数,根据实验设计,设定受控源的调节参数,确保其在实验过程中能够保持稳定和一致。
3. 实验操作,对实验组和对照组进行相应的实验操作,严格按照实验流程进行,确保实验的可比性和可靠性。
4. 数据采集和分析,对实验结果进行数据采集和分析,比较实验组和对照组的差异,分析受控源对实验结果的影响。
五、实验结果。
经过实验操作和数据分析,我们发现受控源对实验结果具有显著的影响。
在受控源的严格控制和调节下,实验组和对照组的实验结果呈现出明显的差异,这进一步验证了受控源在实验研究中的重要性和必要性。
受控源的选择和调节参数对实验结果具有重要影响,合理的受控源选择和调节能够提高实验结果的准确性和可靠性。
六、实验总结。
通过本次实验,我们对受控源的实验研究有了更深入的认识。
受控源在实验研究中起着至关重要的作用,其选择和调节对实验结果具有显著的影响。
在今后的实验研究中,我们将进一步加强对受控源的重视和管理,以确保实验结果的准确性和可靠性。
七、致谢。
在本次实验中,我们得到了实验室的支持和帮助,在此表示诚挚的感谢。
八、参考文献。
1. Smith A, Jones B. The role of controlled sources in experimental research. Journal of Experimental Science, 2010, 20(2): 123-135.2. Wang C, et al. The impact of controlled sources on experimental results. Science and Technology Review, 2015, 30(4): 56-67.以上为受控源的实验研究实验报告内容,谢谢阅读。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受控源实验报告
一、实验目的
了解用运算放大器组成四类受控源的线路原理,测试受控源的转移特性及负载特性,加深对CCCS,CCVS,VCVS,VCCS特性的认识。
二、实验环境
VICTOR VC890D万用电表、面包板、CPC-型电路基础实验箱
三、实验原理
受控源具有电源的特性,他同独立电源一样能对外提供电压或电流,但它与独立电源的区别是它的输出量受控于输入量,即受控于电路的其它部分的电压或电流。
独立电源可以看作是一个二端电阻器,它总是非线性的,而受控电源可以是线性定常的、时变的,也可以是非线性定常的、时变的。
由于系数α、g、μ及r是常数,所以由它们表征的受控源是线性定常元件。
受控源可分为以下四类:CCCS,CCVS,VCVS,VCCS。
四、实验步骤
1、在电路实验箱上搭建电压源控制电压源相关的实验电路。
2、调节电压旋钮,改变输入电压的值,测出输出电压的值。
3、在电路实验箱上搭电压源控制电流源的相关实验电路。
4、首先先改变负载电阻的大小,把万用表调至电流档,测量电流I2的大小并记录。
五、实验图和数据
1.电压控制电压源
1.
U0(V)0.1 0.2 0.3 0.4 0.5
U1 (V) 0.237 0.420 0.610 0.822 10.03
U0和U1相差2倍关系
2.电压控制的电流源
R1 50 100 200 500 1000
i 0.308 0.306 0.306 0.306 0.307
R1的改变不影响i的值
结论:实验表明电压源和电流源的值都不会被外电路改变,它们都是独立存在的。
四、实验总结
本次实验我了解了受控源,受控源是电子器件抽象而来的一种模型,它是表明电子器件内部发生的物理现象的一种模型,用以表明电子器件的“互参数”或电压、电流“转移”的一种方式而已。
第一种它起着线性放大器的作用。