受控源的研究实验报告
受控源的研究实验报告(共8篇)

受控源的研究实验报告(共8篇)一、受控源实验报告1.实验目的:(1)了解受控源及其分类。
(2)掌握受控源的基本特性。
(3)熟悉受控源的应用,掌握对电路的控制和调节。
2.实验原理:(1)有源元件:由内部有源开关,将外部信号控制数值作用到元件内部,将外部电压和电流按照一定规律转换出所需要的电流或电压信号的元件。
(2)号源:一种利用内部控制变化而实现输出电流或者电压变化的元件。
(3)受控源:又称控制源,是指通过输入端的一个电压或者电流信号,从而在输出端产生一个文细变化的电压或者电流的元件。
3.实验内容:(1)使用电压控制型门级比例积分控制器控制直流电机。
4.实验步骤:(①)首先将电动机直接连接至电源,使其旋转。
(②)将直流电机的两端连接至多功能模拟器的输出端口上。
(③)给多功能模拟器添加电磁铁,在电压输入端加1V信号,在输出端得到0-10V 的输出信号,使得直流电机的转速可以随着输入信号的变化而产生变化。
(④)调节门电平、比例系数和积分时间常数进行控制测试,获得合适的反馈控制输出效果,调节输出以启动和停止直流电机。
(①)将恒温水槽连接至多功能模拟器的输出端口,将加热限制器和恒温电子元件加入电路之中。
(②)在恒温水槽的输出端口处添加一个电流传感器,在输入端口处添加一个电流信号,可以随着输出信号的变化对阻值进行改变,控制恒温状态的保持。
(③)调节比例系数,运用反馈控制来控制恒温水槽的温度,平衡电热输出与散热损失,保持温度恒定,测试温度误差及输出效果。
(①)连接一个热电偶传感器至比例温度控制器的输入端口,将输出端口连接至直流蒸汽弁中。
(②)使用比例温度控制器进行电压输入控制,通过调节锁定开关和门电平,实现温度的自动控制。
(③)根据设定的温度以及反馈信号的变化是否符合期望,对比输入电压变化和输出电压变化,校验温度控制的精度,更改控制样式并再次测试。
5.实验结果分析:(1)通过对直流电机进行控制测试,在门电平为5v,比例系数Kp=1.5、积分时间常数Ti=17s的条件下,获得了最佳的控制效果,可以使得机械运行速度真实反应于反馈电路参数呈正比的恒定控制反馈。
受控源的实验研究实验报告

受控源的实验研究实验报告一、实验目的受控源是一种具有特殊性质的电源,其输出电压或电流受到其他电路变量的控制。
本实验旨在深入研究受控源的特性,包括其伏安特性、转移特性以及在电路中的作用,通过实验加深对受控源概念的理解,掌握其使用方法,并提高电路分析和实验操作的能力。
二、实验原理1、受控源的分类电压控制电压源(VCVS):输出电压受输入电压控制,其转移电压比为常数。
电压控制电流源(VCCS):输出电流受输入电压控制,其转移电导为常数。
电流控制电压源(CCVS):输出电压受输入电流控制,其转移电阻为常数。
电流控制电流源(CCCS):输出电流受输入电流控制,其转移电流比为常数。
2、受控源的电路模型VCVS:用一个理想电压源和一个电阻串联表示。
VCCS:用一个理想电流源和一个电导并联表示。
CCVS:用一个理想电压源和一个电阻并联表示。
CCCS:用一个理想电流源和一个电阻串联表示。
3、受控源的伏安特性对于 VCVS,输出电压与输入电压成正比,即\(U_2 =\muU_1\),其中\(\mu\)为转移电压比。
对于 VCCS,输出电流与输入电压成正比,即\(I_2 = g U_1\),其中\(g\)为转移电导。
对于 CCVS,输出电压与输入电流成正比,即\(U_2 = r I_1\),其中\(r\)为转移电阻。
对于 CCCS,输出电流与输入电流成正比,即\(I_2 =\betaI_1\),其中\(\beta\)为转移电流比。
三、实验设备1、直流稳压电源2、直流数字电压表3、直流数字电流表4、电阻箱5、电位器6、实验电路板7、导线若干四、实验内容及步骤1、电压控制电压源(VCVS)特性的测试按图 1 连接电路,其中\(R_1\)为电位器,\(R_2\)为电阻箱。
调节\(R_1\),使输入电压\(U_1\)从 0 逐渐增加到 10V,每隔 1V 测量一次输出电压\(U_2\),记录数据。
根据测量数据绘制\(U_2 U_1\)特性曲线,计算转移电压比\(\mu\)。
受控源的研究实验报告.docx

HUNAN UNIVERSITY课程实验报告题目:受控源的研究学生姓名:学生学号:专业班级:完成日期:一.实验内容1、受控源的种类;2、用运算放大器组成受控源,运算放大器芯片型号是uA741,有四种结构,在面包板上搭接电压控制电压源和电压控制电流源;3、测试电压控制电压源(VCVS)特性;4、测试电压控制电流源(VCCS)特性;二.实验原理受控源又称为非独立源。
一般来说,一条支路的电压或电流受本支路以外的其它因素控制时统称为受控源。
受控源由两条支路组成,其第一条支路是控制支路,呈开路或短路状态;第二条支路是受控支路,它是一个电压源或电流源,其电压或电流的量值受第一条支路电压或电流的控制。
三.实验目的1.了解受控源的基本原理以及受控源的分类;2.学会搭载VCVS电路和VCCS电路;3.学会如何证明某支路是电流源还是电压源;四.实验器材电源三个,运算放大器芯片一个,导线若干,万用表一个,面包板一个,电位器一个,1000?电阻器2个五.实验电路图VCVS无负载电路:VCVS有负载电路VCCS无负载(转移)电路VCCS负载电路六.实验数据1.VSCS转移特性:U i/V 2.50 2.20 2.00 1.60 1.40 1.00 0.50 0.20U0/V 4.9354 4.3875 3.9890 3.1909 2.7902 1.99422 0.99765 0.399172.VSCS负载特性U/V 4.9493 4.9292 4.9444 4.9150 4.9860 4.9494.985711.5976I/mA 0.54160 0.52315 0.81202 1.27001 0.77838 0.779823.VCCS转移特性U/V 0.10 0.20 0.30 0.40 0.50I/mA 0.11134 0.21029 0.30904 0.40977 0.520974.VCCS负载特性I/mA 0.14937 0.14925 0.14928 0.14923 0.14921七.数据分析与实验结论1. 电压控制电压源(VCVS)转移电压比:由运算放大器的特性可知,运算放大器输出电压U0与输入电压U1直接的关系满足:U0/U1=μ,其中μ=1+R2/R1;由实验数据可得出μ约等于2,所以实验结论与实验原理相符合,这也证明了电路是受控的;2.VCVS 中的数据表明当电路电流变化时,电压并不发生变化,所以该受控源为理想压控电压源;3.VCCS的转移电导,g=1/R1=0.0001,而实验数据中I/U基本约等于0.0001,所以使用数据与实验原理想符合;4.VCCS的理想性判断:当电路中电阻变化时,在实验允许误差范围内电流并不发生非常大的变化,所以该VCCS是理想VCCS.八.实验注意事项实验时输入电压不宜过高,否则可能损坏运放器,同时注意电源不能短路。
实验报告-受控源

实验报告-受控源
本次实验是关于受控源的实验,实验目的在于掌握受控源的基本原理及其特点,通过实验,进一步理解受控源的工作原理并掌握相关的测量方法和操作技能。
一、实验原理
受控源是电路工程中常见的基本电路元件之一,它是一种能够控制其输出电流和电压的电路元件,其原理是利用控制电压改变器件内部电阻,从而控制输出电流和电压。
常见的受控源包括晶体管受控源、场效应管受控源和运算放大器受控源等。
在本次实验中,我们将采用晶体管受控源并搭建一个简单的跨隔放大电路进行实验。
二、实验步骤
1.准备工作:将所需器材准备齐全,包括电源、万用表、晶体管、二极管等。
2.搭建电路:将电路按照预先设计的方案搭建出来,调整电路的参数直至满足电路要求,主要包括电压和电流的测量和调整。
3.测量电压和电流:通过万用表对电路中的电压和电流进行测量,包括输入电压、输出电压、电流等。
4.分析结果:对测量结果进行分析,根据实验要求对电路参数作进一步的调整。
5.记录实验数据并整理实验报告:记录实验数据并进行整理,撰写实验报告。
三、实验结果与分析
1.搭建跨隔放大电路后,通过万用表进行电压测量,结果如下:
输入电压:12V;输出电压:1.8V
输出电流:10mA
3.根据上述数据,利用公式计算得到电路中晶体管受控源的电流放大系数,其值为180。
电路实验六实验报告_受控源的研究

电路实验六实验报告_受控源的研究电路实验六实验报告实验题⽬:受控源的研究实验内容:1.受控源的种类;2.⽤运算放⼤器组成受控源,运算放⼤器芯⽚型号是µA741,有四种结构,在⾯包板上搭接电压控制电压源和电压控制电流源;3.测试电压控制电压源(VCVS)特性;4.测试电压控制电流源(VCCS)特性。
实验环境:数字万⽤表、学⽣实验箱、导线。
实验原理:受控源是⼀种⾮独⽴电源,它对外也可提供电压或电流,但它与独⽴源不同,这种电源的电压或电流受电路其它部分的电流或电压的控制。
根据控制量的不同,受控源可分为四类种:电压控制电压源VCVS;电压控制电流源VCCS;电流控制电压源CCVS;电流控制电流源CCCS。
当受控源的电压和电流(称为受控量)与控制⽀路的电压或电流(称为控制量)成正⽐变化时,受控源是线性的。
1.利⽤µA741芯⽚搭接电压控制电压源VCVS的电路图如下:Uo受控源转移电导为:1+R2/R1=2,输⼊输出电压关系为:U o=2U i。
2.利⽤µA741芯⽚搭接电压控制电流源VCCS的电路图如下:受控源转移电导为:1/R1=1/10000,R2的阻值变化不能引起输出电流i o的变化。
输⼊电压和输出电流的关系为i o=Ui/10000。
实验记录及结果分析:1.当电压控制电压源VCVS电路的输⼊电压U i在0-0.5V之间变化时,测得输出电压数据如数据分析:输出电压U o随着输⼊电压U i的变化⽽变化,且其电压值保持在输⼊电压的2倍左右,符合转移电导的值。
输出端是否有负载不会对输出电压的⼤⼩造成影响,符合受控源的性质。
电压控制电压源VCVS电路搭接成功。
2.当电压控制电流源VCCS电路的输⼊电压U i在0-0.5V之间变化时,测得输出电流数据如下:当输⼊电压保持在0.4V,电阻器R的阻值不断变化时,测得输出电流数据如下:o i(1/10000)左右,符合转移电导的值。
输出端的负载R2的变化不能改变输出电流的⼤⼩,符合受控源的性质。
受控源的实验研究实验报告

受控源的实验研究实验报告受控源的实验研究实验报告引言:在科学研究领域,实验是获取有关特定现象或理论验证的重要手段之一。
本实验旨在探究受控源的特性和应用,通过实验数据的收集和分析,揭示受控源在不同条件下的行为规律,并为相关领域的进一步研究提供参考。
实验设计:本实验采用了受控源的基本电路,包括电源、电阻、电容等元件。
通过改变电源电压、电阻阻值和电容容值等参数,观察受控源输出信号的变化情况。
实验过程中,我们使用了示波器和多用途测试仪等仪器设备,以确保实验数据的准确性和可靠性。
实验一:受控源的电流输出特性在实验一中,我们固定电源电压和电阻阻值,通过改变电容容值,观察受控源的电流输出特性。
实验结果显示,电容容值的增加导致电流输出的减小,反之亦然。
这表明受控源的电流输出与电容容值呈反比关系。
进一步分析发现,当电容容值较小时,电流输出的变化较为敏感,而当电容容值较大时,电流输出的变化相对较小。
实验二:受控源的电压输出特性在实验二中,我们固定电源电压和电容容值,通过改变电阻阻值,观察受控源的电压输出特性。
实验结果显示,电阻阻值的增加导致电压输出的增加,反之亦然。
这表明受控源的电压输出与电阻阻值呈正比关系。
进一步分析发现,当电阻阻值较小时,电压输出的变化较为敏感,而当电阻阻值较大时,电压输出的变化相对较小。
实验三:受控源的频率响应特性在实验三中,我们固定电源电压、电阻阻值和电容容值,通过改变输入信号的频率,观察受控源的频率响应特性。
实验结果显示,受控源的输出信号在不同频率下有不同的幅度和相位差。
随着频率的增加,输出信号的幅度逐渐减小,相位差也逐渐增大。
这表明受控源对于不同频率的输入信号有不同的响应能力。
实验四:受控源的应用实例在实验四中,我们将受控源应用于一个简单的电路中,以探究其在实际应用中的效果。
通过合理选择电源电压、电阻阻值和电容容值,我们成功实现了一个正弦波发生器。
实验结果显示,受控源能够稳定输出频率可调的正弦波信号,具有较好的波形质量和频率稳定性。
受控源特性的研究实验报告

受控源特性的研究实验报告摘要:本实验旨在深入研究受控源的特性,并通过实验验证相关理论。
我们实验室团队通过构建电路实验测试平台,成功地进行了一系列实验。
实验数据均符合预期,验证了受控源特性的理论真实性和可靠性。
1. 引言受控源是电路中使用最广泛的元器件之一,它具有无可比拟的功能特性和性能优势,广泛应用于各类电子设备中。
因此,对于受控源特性的深入研究和实验验证具有极重要的意义。
本实验将以常用的三种受控源(电压控制电压源、电流控制电压源、电流控制电流源)为研究对象,探究其内部结构和工作原理,并通过实验验证相关理论。
2. 实验原理2.1 受控源的内部结构受控源具有许多不同的内部结构,其中常用的是基于晶体管、场效应管等半导体元器件的结构。
以电流控制电流源为例,它的内部结构通常由一对相互耦合的晶体管构成,利用其集电极互反相连的特性实现电流控制,从而使得输出电流与输入电压成正比关系。
因此,其输出电流特性具有非常明显的线性特点,具有广泛的应用前景和潜力。
2.2 受控源的工作原理受控源的工作原理与其内部结构密切相关。
以电流控制电压源为例,其工作原理如下:通过控制电路给定的电流来确定输出电压,可利用实验平台给定电流的电流源引出该电流并输入到受控源中,通过调整受控源的电阻值来达到所需的输出电流。
同时,根据欧姆定律,输出电压与输出电流成正比关系,我们可以利用数据采集器记录输出电压和输出电流的关系,并绘制其变化曲线,得到输出电压与输入电流之间的关系,从而验证受控源的特性理论。
3. 实验方法3.1 设计实验电路图通过仿真分析,我们选取了三种常见的受控源并设计了相应的实验电路图。
其中,电压控制电压源采用晶体管结构;电流控制电压源采用单管双极接法;电流控制电流源采用单管共基极接法。
3.2 搭建实验测试平台我们利用Breadboard等工具搭建实验测试平台。
经过受控源、电阻、电流源等元器件的连接和调试,实验平台正常工作。
3.3 开始实验根据实验原理,我们先确定并设置实验参数,然后度量所需数据。
受控源的研究实验报告

竭诚为您提供优质文档/双击可除受控源的研究实验报告篇一:电路实验报告受控源的研究受控源的研究实验报告实验摘要1.实验内容1了解受控源的种类;○2用运算放大器组成受控源,运算放大器芯片型号是uA741,有○四种结构,在面包板上搭接电压控制电压源和电压控制电流源。
;3测试电压控制电压源(VcVs)特性;○4测试电压控制电流源(Vccs)特性。
○2.名词解释受控源受控源又称为非独立源。
一般来说,一条支路的电压或电流受本支路以外的其它因素控制时统称为受控源。
受控源由两条支路组成,其第一条支路是控制支路,呈开路或短路状态;第二条支路是受控支路,它是一个电压源或电流源,其电压或电流的量值受第一条支路电压或电流的控制。
受控源可以分成四种类型,分别是电压控制电压源、电压控制电流源、电流控制电压源和电流控制电流源,如右图所示。
实验目的1加深对受控源的认识和理解;○2熟悉由运算放大器组成受控源电路的分析方法,了解运算放大器○的应用;3掌握对受控源特性的测量方法。
○实验环境(仪器用品等)实验地点:实验时间:实验仪器与元器件:hbe硬件基础电路实验箱、直流电压源、数字万用表、导线若干等本次实验的原理电路图如下图所示:1电压控制电压源○2电压控制电流源○实验原理通过直流电压源接受控源,在用万用表测得输入电压、输出电压以及输出电流,记录之后进行比较,得到受控源的一般规律。
※实验步骤※1.准备工作:检查万用表是否显示正常;调节实验箱1检查万用表的使用状况,确定万用表的读数无误,量程正确;○2打开实验箱,选择直流电压档,调节旋钮,使输出端输出范围为○-0.5V至0.5V电压,并用万用表电压档测量是否准确。
2.按照电路图在实验箱上连接电路1根据实验箱上的运算放大器的位置和孔位,设计串并联电路,并○连接;2连线注意事项:①导线的连接注意美观;②连接好之后,先不用○连接直流电压源,而应仔细检查之后电路是否正确后方可接通。
3.测量电压控制电压源1电路准确无误,接上电源之后,可进行测量;○2先测量转移特性:○测得输入端的电压值后再测输出端与地端的电压,不断调节输入端的值,记录输出端的值;3之后测试有负载时的输出电压:使输入电压固定,调节滑动变阻○器的阻值,测量输出电压;4记录数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HUNAN UNIVERSITY 课程实验报告
题目:受控源的研究
学生姓名:
学生学号:
专业班级:
完成日期:
一.实验内容
1、受控源的种类;
2、用运算放大器组成受控源,运算放大器芯片型号就是uA741,有四种结构,在面包板上搭接电压控制电压源与电压控制电流源;
3、测试电压控制电压源(VCVS)特性;
4、测试电压控制电流源(VCCS)特性;
二.实验原理
受控源又称为非独立源。
一般来说,一条支路的电压或电流受本支路以外的其它因素控制时统称为受控源。
受控源由两条支路组成,其第一条支路就是控制支路,呈开路或短路状态;第二条支路就是受控支路,它就是一个电压源或电流源,其电压或电流的量值受第一条支路电压或电流的控制。
三.实验目的
1、了解受控源的基本原理以及受控源的分类;
2、学会搭载VCVS电路与VCCS电路;
3、学会如何证明某支路就是电流源还就是电压源;
四.实验器材
电源三个,运算放大器芯片一个,导线若干,万用表一个,面包板一个,电位器一个,1000Ω电阻器2个
五.实验电路图
VCVS无负载电路:
VCVS有负载电路
50% VCCS无负载(转移)电路
VCCS负载电路
50%
六.实验数据
1.VSCS转移特性:
2.VSCS负载特性
4.VCCS负载特性
七.数据分析与实验结论
1、电压控制电压源(VCVS)转移电压比:
由运算放大器的特性可知,运算放大器输出电压U0与输入电压U1直接的关系满足:U0/U1=μ,其中μ=1+R2/R1;由实验数据可得出μ约等于2,所以实验结论与实验原理相符合,这也证明了电路就是受控的;
2、VCVS 中的数据表明当电路电流变化时,电压并不发生变化,所以该受控源为理想压控电压源;
3、VCCS的转移电导,g=1/R1=0、0001,而实验数据中I/U基本约等于0、0001,所以使用数据与实验原理想符合;
4、VCCS的理想性判断:当电路中电阻变化时,在实验允许误差范围内电流并不发生非常大的变化,所以该VCCS就是理想VCCS、
八.实验注意事项
实验时输入电压不宜过高,否则可能损坏运放器,同时注意电源不能短路。