高中数学立体几何学科老师辅导讲义
立体几何专题讲义

立体几何专题讲义一、考点分析1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱★ 底面为矩形底面为正方形 侧棱与底面边长相等 2. 棱锥棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
3.球球的性质:①球心与截面圆心的连线垂直于截面;★②r =d 、球的半径为R 、截面的半径为r )★球与多面体的组合体:球与正四面体,球与长 方体,球与正方体等的内接与外切.注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2344,3S R V R ππ==球球(其中R 为球的半径)1.求异面直线所成的角(]0,90θ∈︒︒:解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移 另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。
常用中位线平移法 二证:证明所找(作)的角就是异面直线所成的角(或其补角)。
常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角[]0,90θ∈︒︒:关键找“两足”:垂足与斜足解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用); 二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。
3求二面角的平面角[]0,θπ∈解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证: 证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。
俯视图二、典型例题1._________________.第1题2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________.第2题 第3题3.一个几何体的三视图如图3所示,则这个几何体的体积为 .4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 .第4题 第5题5.如图5是一个几何体的三视图,若它的体积是 a侧(左)视图 正(主)视图 3 俯视图6.已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 .第6题 第7题7.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm 8.设某几何体的三视图如图8(尺寸的长度单位为m ),则该几何体的体积为_________m 3。
高中数学立体几何讲义

高中数学立体几何讲义(一)(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--平面与空间直线(Ⅰ)、平面的基本性质及其推论1、空间图形是由点、线、面组成的。
点、线、面的基本位置关系如下表所示:图形符号语言文字语言(读法) AaA a ∈ 点A 在直线a 上。
AaA a ∉点A 不在直线a 上。
AαA α∈点A 在平面α内。
AαA α∉点A 不在平面α内。
b a Aa b A =直线a 、b 交于A 点。
aαa α直线a 在平面α内。
aαa α=∅直线a 与平面α无公共点。
aAαa A α=直线a 与平面α交于点A 。
l αβ=平面α、β相交于直线l 。
α⊄a (平面α外的直线a )表示a α=∅或a A α=。
2、平面的基本性质公理1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A AB B ααα∈⎫⇒⎬∈⎭。
如图示:应用:是判定直线是否在平面内的依据,也是检验平面的方法。
BA α公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
推理模式:A l A ααββ∈⎫⇒=⎬∈⎭且A l ∈且l 唯一如图示:应用:①确定两相交平面的交线位置;②判定点在直线上。
例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线. 解:∵AB ∥CD ,∴AB ,CD 确定一个平面β.又∵AB α=E ,AB ⊂β,∴E ∈α,E ∈β, 即E 为平面α与β的一个公共点.同理可证F ,G ,H 均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线.说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论.例2.如图,已知平面α,β,且α β=l .设梯形ABCD 中,AD ∥BC ,且AB ⊂α,CD ⊂β,求证:AB ,CD ,l 共点(相交于一点).α D C B A EFHGA证明∵梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰.∴AB,CD必定相交于一点,设AB CD=M.又∵AB⊂α,CD⊂β,∴M∈α,且M∈β.∴M∈α β.又∵α β=l,∴M∈l,即AB,CD,l共点.说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的.公理3:经过不在同一条直线上的三点,有且只有一个平面。
(完整)高中数学第一二章立体几何复习讲义人教版必修二.doc(2)

一、立体几何知识点归纳 第一章空间几何体 (一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱 与棱的公共点叫做顶点。
旋转体一一把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其 中,这条定直线称为旋转体的轴。
(2 )柱,锥,台,球的结构特征1. 棱柱1.1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:斜棱柱①棱柱棱垂直于底面直棱柱底面是正多形正棱柱 夂 其他棱柱L长方体|底面为正方形.正四棱柱 1.3棱柱的性质:① 侧棱都相等,侧面是平行四边形;② 两个底面与平行于底面的截面是全等的多边形; ③ 过不相邻的两条侧棱的截面是平行四边形;④ 直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1.4长方体的性质:① 长方体一条对角线长的平方等于一个顶点上三条棱的 2 2 2 2平方和;【如图】AC 1 AB AD AA互相平行,由这些面所围成的几何体叫做棱柱。
②四棱柱 底面为平行四边形 平行六面体 ------ _ ------------------ > ------------侧棱垂直于底面 直平行六面体 底面为矩形棱所成的角分别是2 2COS cos2cos1,Sin 2.2sinsin 22③(了解)长方体的一条对角线AC 1与过顶点A 的相邻三个面所成的角分别是侧棱与底面边长相等.正方体底面②(了解)长方体的一条对角线AG与过顶点A的三条贝V cos2cos2cos22,sin2 sin2 sin21.1.5侧面展开图:正n 棱柱的侧面展开图是由 n 个全等矩形组成的以底面周长和侧棱长为邻 边的矩形.c h(其中c 为底面周长,hc h 2S底,V 棱柱S 底h为棱柱的高)2•圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱•2.2圆柱的性质:上、下底及平行于底面的截面都是 等圆;过轴的截面(轴截面)是全等的矩形2.3侧面展开图:圆柱的侧面展开图是以底面周长和 母线长为邻边的矩形. 2.4面积、体积公式② 正棱锥各侧棱相等,各侧面是全等的等腰三角形;1.6面积、体积公式:S 圆柱侧=2 rh ; S 圆柱全= 2 rh22 r , V 圆柱=S 底h=2r h (其中r 为底面半径,h 为圆柱高)3.棱锥 3.1棱锥一一有一个面是多边形, 其余各 面是有一个公共顶点的三角形,侧棱底面顶点侧面斜高轴母线轴截面侧面底面OVSOB,VSOH,VSBH,VOBH为直角三角形)1 1 1 ,3.4面积、体积公式:S正棱锥侧=ch ,S正棱锥全=ch S底,V棱锥=—S底h .(其中c为底面2 2 3周长,h侧面斜高,h棱锥的高)4.圆锥4.1圆锥一一以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
高一数学立体几何讲义

I. 基础知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将空间分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线——共面有且仅有一个公共点;平行直线——共面没有公共点;异面直线——不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[) 180,0∈θ) (直线与直线所成角(] 90,0∈θ)(斜线与平面成角() 90,0∈θ)(直线与平面所成角[] 90,0∈θ) 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) 12方向相同12方向不相同③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.P OA a P αβ推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.五、 棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形......②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥: [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高) 侧面积公式S 直棱柱侧=ch ( c -底面周长,h -高 )S 正棱锥侧=1/2 ch ( c -底面周长,h -斜高 )S 正棱台侧=1/2 (c +c')h (c ,c'-上、下底面周长,h -斜高)S 圆柱侧=cl =2πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆锥侧=1/2cl =πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆台侧=1/2(c +c')l =π(r +r')l(c ,c' -上、下底面周长,r ,r -上、下底面半径)体积公式V 柱体=Sh ( S -底面积,h -高 )V 椎体=1/3Sh ( S -底面积,h -高 )()h ss s s V '31'++=台体 (S ,S -上下底面积,h -高 ) 3R 34π=球V (R 为球的半径) 24R S π=球。
立体几何的体积和表面积辅导讲义

旋转体 (3)圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上、下底中点连
线所在直线旋转得到,也可由平行于底面的平面截圆锥得到.
(4)球可以由半圆或圆绕直径所在直线旋转得到.
2.三视图与直观图
三视图
画法规则:长对正,高平齐,宽相等
空间几何的直观图:常用斜二测画法来画.
基本步骤是:
(1)原图形中 x 轴、y 轴、z 轴两两垂直,直观
第 5 页(共 14 页)
综上可得,S1∶S2∶S3=1∶2∶3. 思维升华 (1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的 组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用 技巧如:割补法和等价转化法.
(2)把边长为 1 的正方形 ABCD 沿对角线 BD 折起,使得平面 ABD⊥平面 CBD,形成三棱锥 C-ABD 的正视 图与俯视图如图所示,则侧视图的面积为( )
空间几何体的表面积和体积
1.空间几何体的结构特征
(1)棱柱的侧棱都平行且相等,上、下底面是全等的多边形.
多面体 (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.
(3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形.
(1)圆柱可以由矩形绕其任一边所在直线旋转得到.
(2)圆锥可以由直角三角形绕其直角边所在直线旋转得到.
17
5
10
1
A.27
B.9
C.27
D.3
第 4 页(共 14 页)
(2)一个多面体的三视图如图所示,则该多面体的体积为( )
23
47
A. 3
B. 6
C.6
最新人教A版必修2高中数学 第一章《立体几何》复习讲义1

1 1
④ , // ,说法正确的序号是:_________________ E A 例2、如右图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点. (1)求证:EF∥平面CB1D1; 2 D F B C
(2)求证:B1D1⊥平面CAA1C1
练习: 如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到 A1 点,且 A1 在平面BCD上的射影O恰好在CD上. (1)求证: BC A1 D ; (2)求证:平面 A1 BC 平面
A1 BD ;
(3)求三棱锥 A1 BCD 的体积
(1)线线 平行
线面平行:
P
A
O
面面平行
(2)直线与平面所成的角(简称线面角)的范围: 3.垂直关系(包括线面垂直,面面垂直)
(1)线线垂直
线面垂直
1
面面垂直
(2)二面角:二面角的平面角的范围: 二.立体几何常见题型归 纳例讲 1、概念辨析题: (1)此题型一般出现在填空题,选择题中,解题方法可采用排除法,筛选法等。 (2)对于判断线线关系,线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理 和性质的前提下,利用长方体,正方体,实物等为模型来进行判断。你认为正确的命 题需要证明它,你认为错误的命题必须找出反例。 (3)相关例题:课本和报纸上出现很多这样的题型,举例说明如下: 2、证明 题:证明平行关系,垂直关系等方面的问题。 三、例题分析 例1、设m,n是两条不同的直线, , , 是三个不同的平面,给出下 列四个说法:① m , n // m n ;②
【精】高中数学:立体几何优质讲义.docx

高中数学:立体几何优质讲义姓名:指导:日期:立体几何证平行(一)甄蟻平有<■图丄E)--------------- K如果两条蛾切平行于第三条最,那么这两条蛾相互平行.2.如果一条蛛平行于另一个平面,那么这条蟻就平行于这这条地的平面与已知平而的交蟻. 图丄】3 .血果商个平面平行,那玄另一个平血虹诳两个平血的交妹互制平行.4如果两喪直蟻都制另一•个平而垂直.那么这两条直蟻平有.5一在同T面内,如果两条直或垂直于同一条直墟,那么这两条直慟'成.,程茜师中学亞建化L.如果平而外一条直絞平行于平面内的一条直銭,那衣宜城与平而干径 :!.如果两个平部平行,一个平薊内的任何一条直域平行于另一个平面. 3 .州果平血*了平而如一条如果干时垂直于另--条直邑, 4 一如果平面与平面外一条直理同时垂直于另一个平面,I. 如果一个平而内有两果闵全平f li 平有于另一个平而,丄如果两个平面揺平行于第三个平潮,那互这两个平面平有. 3.如果两个平面问畦垂直于同一条面雄,那么这两个平ffii 平行.证塔直大部分毎是通过隼直证垂直:下能ii 史旳时榛.平移到另i 一个位置证垂直. (一) 或蟻垂西如果一案直蛾垂直于一个平St 那佥谊条宜戒垂直于这个平ifi 内的任何一条直銭一 (二) 蜷海垂苴【一如果一条直蜷垂直于平而内两条招交的部,那么这条直坡就垂直于两条相交直域所在的平面. 丄如果睥个平而常有,在其中一个 平血內,垂森于公芯検的il 注垂立于yi-t-Tni!. t 三)而而垂直(■囲At )【.辻一个平而垂洼旳平而垂辻于巳辻平而. 土二部南为直请的两个平面垂直.〈理科)(四〉不能祝匿征垂直的情况L 把已知蟻成ffii 平秽到容駐证照垂直的位置 2.询和已知蟻或面平行的蟻凍海证垂直一那么场面平有. 图卩二.求相疔,求距离,成求体根〈一)求術》〈理我丄技线爾.絞血曲•和二而跆歩L建系,崖可能il.薮将计算的点落在抽我和軸而L坐株系可以任意拆向*凡是角度渉成的面都要至少已如(SU出)3个点,肅度演及的絞都要至少巳知《成求出)£个点.歩,标期段坐标,不能表廚的可以持定字毋系数,当盧坐岳中只舍有一个未知字毋时可以直接代入下一歩求解:当点坐标中含有£个以上未知字毋盹需要握据以下三点列式求字母取住.①前量垂成a ijj =>^15 +y L k'i + -^i = u囲向量其蟻,"Jj2n W =虹2.乂 =加.=切崖向0模,何|=巧了「了歩丄表航向量,终点跋起点歩4:朮法曲丽1也(歩I上(如丄"I'""(歩3丄不姉妨X."中一一个字辱为。
高三数学立体几何专题复习讲义资料

1平行关系例题讲解:例1:已知四面体ABCD 中:M 、N 分别是△ABC 和△ACD 的重心:求证:(1)MN ∥平面ABD : (2)BD ∥平面CMN 。
答案与提示:连CM 、CN 分别交AB 、AD 于E 、F :连EF :易证 MN ∥EF ∥BD例2.已知边长为10的等边三角形ABC 的顶点A 在平面α内:顶点B 、C 在平面α的上方:BD 为AC 边上的中线:B 、C 到平面α的距离BB 1=2:CC 1=4. (1)求证:BB 1∥平面ACC 1 (2)求证:BD ⊥平面ACC 1 (3)求四棱锥A -BCC 1B 1的体积 答案与提示:(3)307例3.已知P A ⊥平面ABCD :四边形ABCD 是矩形:M 、N 分别是AB 、PC 的中点.(1) 求证:MN ∥平面P AD : (2) 求证:MN ⊥CD :(3) 若平面PCD 与平面ABCD 所成二面角为θ:问能否确定θ的值:使得MN 是异面直线AB 与PC 的公垂线.答案与提示:(3)45°备用题如图,在三棱锥P -ABC 中:P A ⊥面ABC :△ABC 为正三角形: D 、E 分别为BC 、AC 的中点:设AB =2P A =2:(1)如何在BC 上找一点F :使AD ∥平面PEF ?说明理由: (2)对于(1)中的点F :求二面角P -EF -A 的大小: 答案与提示:(1)F 为CD 中点(2)arctan2作业D CB M AN P在正四棱柱ABCD -A 1B 1C 1D 1中:AA 1=12 AB :点E 、M 分别为A 1B 、C 1C 的中点:过A 1:B :M 三点的平面交C 1D 1于点N 。
(1)求证:EM ∥平面ABCD : (2)求二面角B -A 1N -B 1的正切值。
答案与提示:(2)arctan542垂直关系例题讲解:例1:如图,在三棱锥P -ABC 中:AB =BC =CA :P A ⊥底面ABC :D 为AB 的中点.(1)求证:CD ⊥PB :(2)设二面角A -PB -C 的平面角为α:且tan α=7:若底面边长为1:求三棱锥P -ABC 的体积. 答案与提示:(2)18例2:已知ABCD —A 1B 1C 1D 1是棱长为a 的正方体:E 、F 分别是棱AA 1和CC 1的中点:G 是A 1C 1的中点.(1)求证平面BFD 1E ⊥平面BGD 1: (2)求点G 到平面BFD 1E 的距离: (3)求四棱锥A 1-BFD 1E 的体积.答案与提示:(2)66a (3) 16a 3例3:四边形ABCD 中.AD ∥BC :AD =AB :∠BCD =45°:∠BAD =90°:将△ABD 沿对角线BD 折起:记折起点A 的位置为P :且使平面PBD ⊥平面BCD . (1)求证:CD ⊥平面PBD :(2)求证:平面PBC ⊥平面PDC : (3)求二面角P —BC —D 的大小.答案与提示:(2)先证PB ⊥面PCD (3)arctan 2备用题在三棱锥S -ABC 中:已知SA =4:AB =AC :BC =3 6 ,∠SAB =∠SAC =45°,SA 与底面ABC 所的角为30°.BA PD CE(1)求证:SA ⊥BC :(2)求二面角S —BC —A 的大小: (3)求三棱锥S —ABC 的体积. 答案与提示:(2)arctan 23 3 (3)9 2作业1.在四棱锥P -ABCD 中:已知PD ⊥底面ABCD :底面ABCD 为等腰梯形,且∠DAB =60°:AB =2CD :∠DCP =45°:设CD =a .(1)求四棱锥P -ABCD 的体积. (2)求证:AD ⊥PB . 答案与提示:(1)34a 32.如图:正三角形ABC 与直角三角形BCD 成直二面角:且∠BCD =90°:∠CBD =30°.(1)求证:AB ⊥CD :(2)求二面角D —AB —C 的大小: 答案与提示:(2)arctan 233 空间角例1、如图1:设ABC -A 1B 1C 1是直三棱柱:F 是A 1B 1的中点:且SC CBAAAB(1)求证:AF ⊥A 1C : (2)求二面角C -AF -B 的大小.解:(1)如图2:设E 是AB 的中点:连接CE :EA 1.由ABC -A 1B 1C 1是直三棱柱:知AA 1⊥平面ABC :而CE 平面ABC :所以CE ⊥AA 1:∵AB =2AA 1=2a :∴AA 1=a :AA 1⊥AE :知AA 1FE 是正方形:从而AF ⊥A 1E .而A 1E 是A 1C 在平面AA 1FE 上的射影:故AF ⊥A 1C :(2)设G 是AB 1与A 1E 的中点:连接CG .因为CE ⊥平面AA 1B 1B :AF ⊥A 1E :由三垂线定理:CG ⊥AF :所以∠CGE 就是二面角C -AF -B 的平面角.∵AA 1FE 是正方形:AA 1=a :∴11222EG EA a ==: ∴2216222CG a a =-=: ∴tan ∠CGE =6232CG EG a ===:∠CGE =60:从而二面角C -AF -B 的大小为60。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北辰教育学科老师辅导讲义
V
πr 2
h(即πr 2
l)
31πr 2
h 31πh(r 21+r 1r 2+r 2
2) 3
4πR 3
表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。
四.题型解析:
题型1:柱体的体积和表面积
例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长.
点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。
我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。
例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=
3。
(1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。
图1 图2
题型2:柱体的表面积、体积综合问题
例3.一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A .2
3
B .3
2
C .6
D .
6
图
图
图图
题型8:球的体积、表面积
例15.已知过球面上,,A B C 三点的截面和球心的距离为球半径的一半,且2AB BC CA ===,求球的表面积。
点评: 正确应用球的表面积公式,建立平面圆与球的半径之间的关系。
例16.如图所示,球面上有四个点P 、A 、B 、C ,如果PA ,PB ,PC 两两互相垂直,且PA=PB=PC=a ,求这个球的表面积。
点评:本题也可用补形法求解。
将P —ABC 补成一个正方体,由对称性可知,正方体内接于球,则球的直径就是正方体的对角线,易得球半径R=
2
3
a ,下略。
,底面半径为r,则
P-PA ABCD。