活性炭改性研究进展
活性炭改性方法及其在水处理中的应用

活性炭改性方法及其在水处理中的应用一、本文概述活性炭,作为一种广泛应用的吸附剂,因其高比表面积、优良的吸附性能和化学稳定性,在水处理领域扮演着重要角色。
然而,原始的活性炭在某些特定应用场合下可能表现出吸附容量有限、选择性不高等不足,这就需要对活性炭进行改性,以提高其在水处理中的性能。
本文旨在探讨活性炭的改性方法,并分析改性活性炭在水处理中的应用及其效果。
我们将详细介绍活性炭的改性方法,包括物理改性、化学改性和生物改性等多种方法,并阐述其改性原理和效果。
接着,我们将通过案例分析,探讨改性活性炭在水处理中的实际应用,如去除重金属离子、有机物和色度等。
我们将对改性活性炭在水处理中的应用前景进行展望,以期为推动活性炭在水处理领域的应用和发展提供参考。
二、活性炭基础知识活性炭,作为一种多孔性的炭质材料,因其独特的物理和化学性质,被广泛应用于各种领域,尤其是水处理领域。
其基础知识的掌握对于理解活性炭的改性方法以及在水处理中的应用至关重要。
活性炭主要由碳、氢、氧、氮、硫和灰分组成,其中碳元素含量一般在80%以上。
活性炭的多孔结构赋予了其巨大的比表面积和优异的吸附性能。
活性炭的孔结构包括大孔、中孔和微孔,这些孔的存在使得活性炭能够吸附分子大小不同的各种物质。
活性炭的吸附性能主要取决于其表面化学性质和孔结构。
表面化学性质包括表面官能团的种类和数量,这些官能团可以影响活性炭与吸附质之间的相互作用力,从而影响吸附效果。
孔结构则决定了活性炭的吸附容量和吸附速率。
活性炭的制备方法多种多样,包括物理活化法、化学活化法和化学物理联合活化法等。
不同的制备方法可以得到不同性质的活性炭,从而满足不同应用场景的需求。
在水处理领域,活性炭主要用于去除水中的有机物、重金属离子、色度、异味等污染物。
其吸附过程包括物理吸附和化学吸附,通过这两种吸附方式的共同作用,活性炭可以有效地净化水质,提高水的饮用安全性。
活性炭的基础知识包括其组成、结构、性质、制备方法和应用等方面。
改性活性炭的制备及其对金吸附性能的研究

2014年 7月 July2014岩 矿 测 试 ROCKANDMINERALANALYSIS文章编号:0254 5357(2014)04 0528 07Vol.33,No.4 528~534改性活性炭的制备及其对金吸附性能的研究郭林中,韦瑞杰,王海潮,魏建录(河南省地质矿产勘查开发局第三地质矿产调查院,河南 信阳 464000)摘要:活性炭因具有良好的吸附性能而得到广泛应用,但其吸附能力有限。
本文采用氟化氢铵和不同浓度硝酸(0~80%硝酸)对活性炭进行表面改性处理,利用扫描电镜(SEM)、傅里叶变换红外光谱法(FT-IR)、BET氮吸附法、Boehm滴定法对改性前后活性炭进行了表征分析,并比较了改性前后的活性炭对 Au(Ⅲ)的吸附效果。
结果表明:随着硝酸浓度的增加,改性活性炭的灰分、平均比表面积、孔隙容量、吸附孔径均有不同程度的降低,发达的微孔结构受到影响,表面性能降低不利于增加其吸附容量;但表面含氧官能团羟基、羧基数量均明显增加,活性炭的极性、亲水性、催化性能、表面电荷和骨架电子密度发生改变,对金属离子的吸附选择性和吸附能力有所提高。
20%硝酸改性活性炭的平均比表面积、孔径容量、吸附孔径减小程度较低,酚羟基含量和含氧官能团总量分别却增加了 168.3%、109.1%;用于吸附 Au(Ⅲ)的回收率可达99.1%,较未改性的活性炭提高最大,金测定值的精密度好(相对标准偏差为 0.6% ~1.4%),准确度高。
表征分析表明,改性活性炭对金的吸附是表面物理吸附和官能团化学吸附并存的过程,而且官能团化学吸附起主要作用。
关键词:活性炭;改性;金;吸附性能中图分类号:O614.123文献标识码:A随着工业的迅速发展,黄金的需求量越来越大, 而金矿石的特性决定着在应用吸附工艺回收时,必 须使用吸附容量大和选择性好的吸附剂提高金的回 收率[1]。
分析 近 年 来 金 的 富 集 分 离 方 法 的 进 展 情 况可以看出,新 的 富 集 分 离 方 法 (如 泡 沫 塑 料 富 集 分离法、离子 交 换 纤 维 素 富 集 分 离 法 )虽 然 经 近 年 的开发和研究,在生产中得到了一定范围的应用,但 是由于传统的富集分离方法,尤其是活性炭提金方 法具有工艺流程简单、金回收率高、投资省、成本低 和占地面积小等优点,仍然在目前黄金分析测定中 发挥着重要作用 。
脱硫脱硝用活性炭研究进展

脱 硫 脱 硝 用 活 性 炭 研 究进 展
谢新苹 , 蒋剑 , 康 , 辛成 孙 卢
( 中国林业科 学研 究院 林产化 学工业研 究所 ; 生物质化 学利用国 家工程 实验 室; 家林业局 林产化 学工程 国
重点开放性 实验 室; 苏省 生物质 能源与材料 重点 实验 室,江 苏 南京 20 4 ) 江 10 2 摘
性炭具有很强的吸附性 , 同时既可作载体制得高分散 的催化剂 , 又可作还原剂参与反应 , 降低反应温
收 稿 日期 :0 l 8—2 2 1 —O 5
基金项 目: 十一五” “ 国家科技 支撑计 划资助(0 9 A B B 3) 国家林 业局林 业公 益性行 业专项 ( 00 4 5 ) 20 B D 1 0 ; 2 10 0 1 作者简介 : 谢新苹( 9 7一) 女 , 18 , 山东滨州人 , 硕士生 , 主要从事活性炭制备与应用方 面的研究 ; malxeipn -0 @1 3 cm E- l:ixnig0 0 6 .o } 通讯作者 : 蒋剑春( 9 5 , , 15 一) 男 研究 员 , 士 , 博 博士 生导 师 , 主要 从事 生物质 能源 和炭 材料 的研 究开 发工作 ; - a :i ee y Em i b — r @ l ong
才能进行化学吸附 , 物理 吸附量 的减少会导致反应介 质减 少 , 从而 限制化学反应速 率 。张鹏宇[ 2 研 0
究 发 现 , s 和 N 同时存 在 时 ,O 和 N 当 O O S O相 互 竞 争 吸 附 位 。根 据 吸 附 理 论 ,O S 的分 子 直 径 、 沸
点、 偶极矩等都大于 N O的 ,O 要优先吸附 , s: 影响 了 N O向 N : O 的转变 , 并且在吸附 的 s O 和形成的
(整理)活性炭的表面改性及其研究

活性炭的表面改性及其研究摘要:活性炭表面的不饱和电子云和炭结构中存在的杂原子影响了其应用范围,为了满足应用要求,必须对其表面进行改性;介绍了活性炭表面改性的方法,包括对活性炭外观、形状的改变,采用碳沉积技术对孔结构的改变,针对不同应用条件对活性炭表面极性的改性等。
关键词:活性炭;表面改性;改形;极性基团Abstract: unsaturated electron cloud on the surface of the activated carbon and structure of the carbon hetero-atom affected its application scope, in order to meet the application requirements, must be on the surface modification; The method of the surface modification of activated carbon are introduced, including the appearance, the shape of the activated carbon change, using carbon deposition technology to the change of pore structure, according to different application conditions on the surface polarity of the modified activated carbon, etc.Key words: activated carbon; The surface modification; Change shape; Polar groups前言1【活性炭应用领域扩大对其性能提出了更新、更高的要求,在“高吸附、多功能、高强度”的总要求下,(减低活性炭的使用成本,扩大使用范围,提高利用效率的有效突进)【4,6】。
活性炭的再生及改性进展研究

活性炭的再生及改性进展研究一、活性炭再生的意义活性炭再生的目的是为了恢复其吸附性能,延长使用寿命,减少生产成本,节约资源。
活性炭再生不仅可以减少对环境的污染,还可以实现资源的再利用,具有重要的经济和环境效益。
研究活性炭再生技术对于实现清洁生产和循环利用具有重要的现实意义。
二、活性炭再生的方法活性炭再生的方法主要包括物理法、化学法和生物法。
物理法是指采用高温脱附、压力变化等物理手段进行再生;化学法是指采用化学试剂对活性炭进行处理;生物法是指利用微生物对活性炭进行再生。
物理法和化学法是目前应用较为广泛的再生方法。
1. 物理法物理法的再生方法包括高温脱附、换热再生和压力变化等。
高温脱附是指将饱和吸附剂在高温下进行加热,通过升高温度来驱除吸附在活性炭孔隙中的物质,达到再生目的。
换热再生是指利用其他热载体通过热交换的方式来对活性炭进行再生。
而压力变化则是通过改变活性炭所处环境的压力来实现对活性炭的再生。
2. 化学法化学法的再生方法主要包括氧化法、还原法和酸碱法等。
氧化法是指将活性炭暴露在氧化剂中,使其与被吸附的物质发生氧化反应,从而达到再生的目的。
还原法则是指将氧化的活性炭暴露在还原剂中,还原被氧化的活性炭。
酸碱法是指利用酸碱溶液对活性炭进行处理,使活性炭脱附被吸附的物质。
三、活性炭改性的意义活性炭改性的目的是为了提高其吸附性能,扩大其应用领域,增加其使用寿命。
通过对活性炭进行改性处理,可以使其在医药、食品、环保等领域发挥更大的作用。
研究活性炭改性技术对于提高活性炭的使用性能具有重要的意义。
四、活性炭改性的方法活性炭改性的方法主要包括物理改性、化学改性和复合改性。
物理改性是指通过改变活性炭的外部形貌和孔结构来提高其吸附性能。
化学改性是指利用化学方法改变活性炭的表面性质和化学成分,以提高其吸附性能。
复合改性则是指通过将活性炭与其他吸附材料或催化剂进行复合,以提高其吸附性能。
2. 化学改性化学改性的方法主要包括氧化改性、硫化改性和氮掺杂改性等。
活性炭的再生及改性进展研究

活性炭的再生及改性进展研究活性炭是一种具有丰富表面积和孔隙结构的多孔性材料,具有很强的吸附性能,因此在各种领域得到了广泛的应用,如环境保护、水处理、医药和食品工业等。
活性炭在使用过程中会受到污染和饱和,导致吸附性能下降,因此需要进行再生或改性以保持其吸附性能。
本文将针对活性炭的再生及改性进展进行研究综述,以期为相关领域的研究和应用提供参考。
一、活性炭的再生方法活性炭的再生主要是指将已被使用过的活性炭通过一系列物理或化学方法进行处理,使其重新获得较好的吸附性能,延长其使用寿命。
目前常用的再生方法主要包括热再生、气相再生、溶剂再生和微生物再生等。
1. 热再生热再生是指将已饱和吸附物的活性炭放置在高温下,通过热解或氧化的方式将吸附在活性炭表面的物质热解或氧化脱附出来,从而实现活性炭的再生。
热再生的温度、时间和气氛条件对再生效果起着决定性的作用。
研究表明,热再生可以有效地去除活性炭上的有机物,但对于一些无机物质的再生效果不佳。
气相再生是指通过将已饱和吸附物的活性炭暴露在气体流中,利用气相传质的方式来将吸附在活性炭表面的物质逐渐脱附出来,从而实现再生。
气相再生常用的气体有空气、蒸汽、氮气等。
气相再生的优点是操作简便、无二次污染,但对于一些难挥发物质的再生效果较差。
溶剂再生是指将已饱和吸附物的活性炭放置在适当的溶剂中进行浸泡或洗涤,以溶解固定在活性炭表面的污染物质,实现再生。
溶剂再生通常采用的溶剂有醇类、酮类、醚类等。
溶剂再生的优点是能够有效去除一些难以在热处理或气相传质条件下脱附的污染物质,但对于一些高温不稳定的污染物质不适用。
4. 微生物再生微生物再生是指将已饱和吸附物的活性炭暴露在一定的微生物作用条件下,利用微生物对吸附物质进行降解或转化,从而实现再生。
微生物再生的优点是操作简单、无二次污染,但对于一些难以降解的有机物或无机物质效果不佳。
活性炭的改性是指通过物理或化学手段对活性炭进行处理,改变其表面性质和孔隙结构,以增强其吸附性能或赋予其特定的功能。
活性炭的表面改性研究及进展

活性炭的表面改性研究及进展
李鹏 神华宁煤 集团太西炭基工业有 限公司 7 5 3 0 0 0
【 摘要l 活性 炭是经过 高温高压 加工处理 , 形成 的一种无定形碳素 第二 活性炭 表面还 原改性
材料。 这种碳素材料 为多孔 固体 , 孔隙结构发达 , 其表 面积每克约有5 0 0 — 表面还 原改性是 通过 还原剂 ( 一般 选择 氢气或 氮气等惰性 气体 ) 在 1 5 0 0 m 。 。 活性 炭对 于溶液、 气体中的无机 或有机 物质以及胶体颗 粒 , 都有 适 当温 度下对 活性 炭进行 表面还 原处理 , 以 提高活 性炭 表面的 碱基官 很好 的吸 附性 。 随着科技的不断进 步 , 对 活性炭进行表 面改性 , 使活性炭 能 团的数量 , 增强对非极性 物质的吸附能 力。 更加功 能化 已经成 为了 一个必 然的发展 趋势。 近 几年来 , 国内外 的研 究学 活性炭表面的还原改性, 主要 是 针 对 含 有S O, 、 C O, 、 C O以 及 者在活 性炭材 料踟 陛方面有 了 进一步的发展 , 在此 基础之上 , 他们还 提 出 A U3 + 这些 非极性 物质, 这些 物质具 有一定 的疏 7 k ' l  ̄, 通过 还原 改性 增
第二 活性 炭的表面化学性质 业大 学博士 学位论 文, 1 9 9 6 . 影 响活 性炭 吸 附性 的不只是活 性炭 本 身的孔 隙结 构, 其 表面 的化 【 2 ] 孟庆 函 , 李开 喜 , 凌立成 . 碳 基双 电层 电容 器的结构 机理 及研 究 学 性质在 一定程 度 上也决 定了活性 炭本 身的吸 附 能力大 小 。 活 性炭 表 进 展[ J 】 . 化 学通报 , 2 0 】 J ( 1 1 ) . 【 3 】 朱瑶 , 赵振 国. 界 面化学基础【 M 】 . 北京 : 化 学工业 出版 , 1 9 9 6 . 面 的化 学性 质主要 是 由活 性炭 表面 官能 团的种 类 与数 量、 表面杂 原子 [ 4 】 黄彪 , 吴新 华 , 卓 方银 , 周 茂福 , 王正 旺. 枉状活 性 炭表 面涂层 技 和化 合物来确 定的 。 不同的官 能团、 杂原子、 及化合物 , 他们 的吸附系也
生物炭吸附有机污染物的研究进展

生物炭吸附有机污染物的研究进展一、本文概述随着工业化和城市化的快速发展,有机污染物的排放问题日益严重,给生态环境和人类健康带来了巨大威胁。
生物炭作为一种具有多孔性、高比表面积和良好吸附性能的材料,近年来在有机污染物吸附领域受到了广泛关注。
本文旨在全面综述生物炭吸附有机污染物的最新研究进展,分析生物炭的制备方法、改性技术及其在吸附有机污染物方面的应用效果,探讨生物炭吸附有机污染物的机理和影响因素,以期为生物炭在环境污染治理中的实际应用提供理论支持和技术指导。
本文首先介绍了生物炭的基本概念、制备方法和改性技术,包括热解、气化、水热碳化等制备方法以及物理、化学和生物改性技术。
随后,重点综述了生物炭在吸附有机污染物方面的应用效果,包括吸附容量、吸附速率、吸附选择性等方面的研究进展。
本文还深入探讨了生物炭吸附有机污染物的机理,包括吸附平衡、吸附动力学、吸附热力学等方面,分析了影响生物炭吸附性能的因素,如生物炭的性质、有机污染物的性质、环境条件等。
本文总结了生物炭吸附有机污染物的优势和局限性,展望了生物炭在环境污染治理领域的发展前景,提出了未来研究的方向和建议。
通过本文的综述,旨在为相关领域的研究人员和技术人员提供有价值的参考和借鉴,推动生物炭在有机污染物吸附领域的研究和应用。
二、生物炭的制备方法与表征生物炭的制备方法多种多样,主要包括热解、气化、水热炭化等。
其中,热解法因其操作简单、炭化效率高等优点而被广泛应用。
热解过程中,生物质在缺氧或无氧环境下经过加热,发生一系列复杂的物理化学变化,如挥发分的释放、焦油的生成和聚合、以及炭的缩聚等,最终生成生物炭。
生物质来源的多样性导致了生物炭性质的差异,因此,选择合适的生物质原料对生物炭的性能至关重要。
生物炭的表征主要包括物理性质、化学性质和表面结构等方面。
物理性质如比表面积、孔结构、粒径分布等,这些性质直接影响生物炭的吸附性能。
化学性质如元素组成、表面官能团、灰分含量等,这些性质决定了生物炭的化学稳定性和反应活性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活性炭改性研究进展韩严和 全 燮 薛大明 赵雅之 陈 硕(大连理工大学环境科学与工程学院,大连116023)摘 要 本文从表面结构特性、表面化学性质和电化学性质3个方面叙述了国内外在活性炭改性方面的研究进展。
表面结构特性改性主要是从增大比表面积和控制孔径分布两方面展开,从而增大吸附量;表面化学性质改性主要是通过氧化还原改变表面含氧酸性、碱性基团的相对含量以及负载金属改性,从而改变对极性、极性较弱或非极性物质的吸附能力;电化学性质改性主要是通过加微电场改变活性炭表面的带电性和由此而产生的化学性质的变化,从而改变吸附性能。
最后,本文还从活性炭的吸附性质方面,客观地提出了今后发展方向。
关键词 表面结构性质 表面化学性质 电化学性质 活性炭 改性Advance of research on modified activated carbonHan Yanhe Quan Xie Xue Daming Zhao Yazhi Chen Shuo(School of Environmental Science and Tech nology ,Dalian University of Technology ,Dal ian 116023)A bstract The paper depicts the advance of research on modified active carbon at home and abroad fromsurface structure properties ,chemical characterization and electrochemical characterization .The modification of surface structure properties is m ainly done by enlarging specific surface area and co ntrol porosity ,according -ly enlarging adsorption capacity .The modification of surface chemical characterization is done by redox to modify relative content of o xygen containing acid g roup and base g roup and loading of metal compound ,ac -co rdingly modify the adso rption capacity of dipoles ,w eak dipoles and non -dipoles molecules .The modifica -tion of electrochemical characterization is m ainly done by exposing activated carbon under w eak electric field to modify the charge of the surface and chemical character change ,accordingly modify the adso rption capacity .In the end ,advance of research is proposed in the future from adsorption capacity of activated carbon .Key words surface structure properties ;surface chemical character ;electrochemical character ;activ ated carbon ;modification 收稿日期:2002-10-13作者简介:韩严和(1976~),男,安徽安庆人,硕士,主要研究方向为环境工程(主要是水处理),现研究课题为活性炭电改性处理染料废水。
活性炭是一种优良的吸附剂,它能吸附各种有机物和无机物。
活性炭具有多孔结构,吸附容量大、速度快,能有效地吸附气体、胶态物质及有机色素等,因此广泛用于食品工业、化学工业和环境保护等各个领域。
它还有一个最大的特点就是饱和后可以再生。
活性炭具有很大的吸附性能主要是由其特殊的表面结构特性和表面化学特性所决定,同时,活性炭的电化学性质对吸附性能也有很大的作用。
活性炭的表面化学性质和表面结构特性决定其吸附性能。
对活性炭进行氧化改性处理可使两者性质同时发生改变,缓和的氧化使表面含氧基团增多,结构的微孔变化不大,吸附性能变化也不很大。
强氧化改性则使其微孔系结构遭破坏,过渡孔系增多,吸附性能明显降低。
1 表面物理结构特性的改性结构特性决定了活性炭的物理性吸附。
结构特性主要是指微孔体积、比表面积和微孔结构等,普通活性炭存在灰分高、孔容小、微孔分布过宽、比表面积小和吸附性能差等特点。
因此,有必要对其结构进行改性。
活性炭的比表面积、孔径分布等物理性质对其吸附能力有很大的影响。
活性炭的孔径分布是影响吸附容量的主要因素,这是因为分子筛的作用,当尺寸较大的吸附质分子不能进入孔直径比其小的孔内,孔径与吸附质分子的关系及吸附性能如下[1]:第4卷第1期环境污染治理技术与设备Vol .4,No .12003年1月Techniques and Equipment for Environmental Pollution Control Jan .2003(1)吸附质分子大于孔直径时,会因为分子筛的作用,分子将无法进入孔内,起不到吸附的作用;(2)吸附质分子约等于孔直径时,即孔直径与分子直径相当,活性炭的捕捉能力非常强,但它仅适用于极低浓度下的吸附,因此工业应用前景不大;(3)吸附质分子小于孔直径时,在孔内会发生毛细凝聚作用,吸附量大;(4)吸附质分子远小于孔直径时,吸附质分子虽然易发生吸附,但也较容易发生脱附,脱附速度很快,而且低浓度下的吸附量小。
图1 吸附质分子和孔径关系模型图表面结构特性的改性方法有3种:物理法、化学法和物理化学联合法,而后两种方法较常用。
1.1 物理法物理改性法通常包括两个步骤:首先是对原料进行炭化处理以除去其中的可挥发成分,使之生成富碳的固体热解物,然后用合适的氧化性气体(如水蒸气、二氧化碳、氧气或空气)对炭化物进行活化处理,通过开孔、扩孔和创造新孔,形成发达的孔隙结构。
一般活化过程中发生如下反应:C +H 2O H 2+CO (ΔH =+117kJ /mol )C +CO 22CO (ΔH =+159kJ /mol )通过上述两反应去除碳材料内部的碳原子,从而创造出丰富的微孔。
影响物理活化的因素有很多,活性炭的孔隙率除了与制备活性炭的原材料性质有关外,还与炭化、活化条件(诸如炭化温度、炭化时间、活化温度、活化时间、活化剂种类、活载比(活化气与载气之比))等有着密切的关系。
当利用物理活化法制备超级活性炭时往往添加催化剂进行催化活化。
如日本专利采用第Ⅷ族金属元素作催化剂,不仅减少了反应时间,而且获得比表面积达到2000—2500m 2/g 的超级活性炭。
有代表性的过渡金属化合物有Fe (NO 3)3、Fe (OH )3、FePO 4、FeBr 3、Fe 2(SO 4)3和Fe 2O 3等。
1.2 化学法化学改性法主要是利用化学物质使活性炭进一步炭化和活化,从而创造出更加丰富的微孔。
常用的活化剂有碱金属、碱土金属的氢氧化物、无机盐类以及一些酸类,目前应用较多、较成熟的化学活化剂有KOH 、NaOH 、ZnCl 2、CaCl 2和H 3PO 4等[2],其中以KOH 作为活化剂制得的超级活性炭性能最优异。
KOH 活化时,一方面通过KOH 与碳反应生成K 2CO 3而发展孔隙,同时K 2CO 3分解产生的K 2O 和CO 2也能够帮助发展微孔;另一方面K 2CO 3、K 2O 和碳反应生成金属钾,当活化温度超过金属钾沸点(762℃)时,钾金属会扩散入碳层影响孔结构的发展,但对不同碳料的影响效果不同。
在KOH 活化过程中,主要发生以下反应[2]:4KOH +C K 2CO 3+K 2O +3H 2K 2O +C 2K +CO K 2CO 3+2C2K +3CO张丽丹等[3]采用酸、碱交替改性方法处理普通活性炭,提高了活性炭的苯吸附量、增大比表面积。
通过对活性炭进行酸、碱改性处理,溶去活性炭中的酸、碱可溶性物质,同时不破坏活性炭的骨架结构,而达到大大提高活性炭比表面积及对苯系物的吸附量。
詹亮等[4]采用氢氧化钾对普通的煤焦活性炭进行改性,制得了比表面积高达3886m 2/g 的超级活性炭,从而大大提高了活性炭的吸附能力。
邢伟等[5]将碱性复合活化剂和活化助剂,按一定的比例加入到普通的活性炭中,在氮气气氛中程序升温活化,然后在氮气气氛中冷却,改性得到了比表面异常发达、微孔分布集中的超级活性炭。
试验发现,采用碱熔活化法合成出具有超高比表面的超级活性炭。
K 2O 、O -K +以及CO -2K +是径向活化为主的中温活化段的活化剂活性组分,而处于熔融状态的K +O -、K +则是横向活化为主的高温活化段的催化活性组分。
并发现径向活化是超级活性炭形成发达微孔分布的主要途径,也是控制超级活性炭微孔分布的主要手段,而高温横向活化机理则是导致超级活性炭形成大孔的主要途径。
1.3 物理化学联合法物理化学联合改性法是将物理活化及化学活化两种方法结合起来所采用的改性方法。
一般来说,采用先进行化学活化再进行物理活化可成功地获得微孔非常丰富的活性炭。
Caturla 等[6]采用ZnCl 2化学活化后,用二氧化碳进行物理活化核桃活性炭,进一步开孔和拓孔,用34环境污染治理技术与设备4卷此法改性的活性炭比表面积最高可达3000m2/g。
M olina-Sabio等[7]用H3PO4和CO2混合活化木质纤维素活性炭,即先用质量分数为68%—85%的H3PO4在85℃下浸泡木质纤维素2h,然后将浸泡样在450℃下炭化4h,再将H3PO4活化样用蒸馏水清洗后,用二氧化碳在825℃下部分气化,结果获得了比表面积达3700m2/g、总孔容达2m L/g的超级活性炭。
通过对改性过后的活性炭进行孔径控制、表面化学性能修饰及负载金属,可使活性炭的吸附性能大大提高。
由于活性炭的吸附性能与孔径和吸附质分子直径的比值有很大的关系,当孔径和吸附质分子直径的比值为2—10时[8],活性炭的吸附性能最佳。
因此,今后活性炭结构性能方面的改性将朝着这方面发展,制造出比表面积很大、且孔径集中在某一值范围内的超大级活性炭。