恒流源式的差分放大电路及输入信号uI1
恒流源式差分放大电路multisim仿真

题目一恒流源式差分放大电路Multisim仿真在Multisim中构建恒流源式差分放点电路,如图1.1.1所示,其中三极管的β1=β2=β3 =50,r bb’1= r bb’2 =r bb’3=300Ω,调零电位器Rw的滑动端调在中点。
图1.1.1恒流源式差分放大仿真电路1.1利用Multisim的直流工作点分析功能测量电路的静态工作点,结果如下:图1.2 恒流源式差分放大电路的静态分析可得:U CQ1=U CQ2=4.29661V (对地)U BQ1=U BQ2= -15.40674 Mv (对地)则I CQ1=I CQ2=(Vcc-U CQ1)/R C1=(12-4.29661)/100 mA=0.077 mA =77μ A1.2加上正弦输入电压,由虚拟示波器可以看到U C1与u1同相。
1.3计算分析当Ui=10mV时,利用虚拟仪器表可测得U0=1.549V,Ii=154.496 nA,图1.4 恒流源式差分放大电路虚拟仪器表则A d=-U0/Ui=-1.549/10*10-3=-154.9Ri=Ui/Ii=10/154.496*103kΩ=64.73 kΩ在两个三极管的集电极之间接上一个负载电阻R L=100 kΩ,此时可测得U0=516.382mV。
前面已测得当负载电阻开路时U0’=1.549V,则R0=(U’0/U0-1)R L=(1549/516.384-1)*100 kΩ=199.97 kΩ1.4 实验结论:在三级管输出特性的恒流区,当集电极电压有一个较大的变化量ΔU CE时,集电极电流i c基本不变。
此时三级管c、e之间的等效电阻r ce=Δu CE/Δi c的值很大。
用恒流源三级管充当一个阻值很大的长尾电阻Re,既可在不用大电阻的条件下有效的抑制零漂,又适合集成电路制造供工艺代替大电阻的特点,因此,这种方法在集成运放中被广泛采用。
题目二电子灭鼠器的设计2.1设计电路:利用Protel 99SE设计一个红外线灭鼠器的电路。
差分放大电路

实验十差分放大电路一、实验目的1、掌握差动放大电路原理与主要技术指标的测试方法。
2、掌握差动放大电路与具有镜像恒流源的差分放大电路的性能差别,明确提高性能的措施。
二、预习要求1.复习差分放大器工作原理及性能分析方法。
2.阅读实验原理,熟悉试验内容及步骤。
3.估算电路图的静态工作点,设各三极管β=30,rbe=1kΩ。
三、实验原理与参考电路1、差分放大电路的特点差分放大电路时模拟电路基本单元电路之一,是直接耦合放大电路的最佳电路形式,具有放差模信号、抑制共模干扰信号和零点漂移的功能。
图4.10.1所示电路,当开关S置于位置“1”时为典型差分放大电路;当开关S置于位置“2”时为镜像恒流源的差分放大电路。
图中三极管T3的;交流等效电阻rce3'远远大于Re,所以,恒流源差分放大电路对共模信号的抑制能力得到大大提高,故具有更高的共模抑制比KCMR。
实验电路采用5G921S型集成双差分对管。
由于制作差分对管的材料、工艺和使用环境相同、所以四只管子技术参数一直很好。
其外引线排列如图4.10.2所以。
1、8脚应接到电路的零电位上。
即使采用在同一基片上制造出阿里的差分对管也不能保证绝对的对称,因此,电路中还没有调零电位器RP1可使三极管T1、T2的集电极静态电流相等。
当放大其输入信号为零时,输出电压也为零。
R1、R2为均值电阻。
当采用平衡输入时,因 R1=R2,且两电阻中间接地,故输入信号能平均分配到T1、T2管发射结上,从而获得差模输入信号。
Re为T1、T2管发射极公共电阻,对其共模干扰信号具有很强的见交流负反馈作用,且Re越大,共模抑制比KCMR越高;Re对差模信号无负反馈作用,不影响差模放大倍数,但具有很强的直流负反馈作用,可稳定T1、T2两管的静态工作点并抑制输出端零点漂移。
电位器为Rp2为静态工作点调整电位器,调节Rp2可改变基准电流IREF,因为VBE3=VBE4、R5=R6,所以T1、T2的工作电流之和为ICQ1+ICQ2=2ICQ1=ICQ3=IREF。
差分放大电路

差模电压放大倍数Aud为: Aud=uod/uid=2uo1/2ui1=Aud1=-βRL//rbe,(RL/=RC//(RL/2) (2)输入电阻Rid为: (3)输出电阻Ro为: Rid=2rbe, Ro=2RC
(4) 共模电压放大倍数 差分放大电路共模输入时电路如图3-4所示 Avc定义为:
vi1 vi 2 vi vic 2 2
vid1 vid 2 vi1 vi 2 vi 2 2
变换后的电路如图3-6b) 所示。进行这样的变换后, 图3-6 单端输入双端输出差分放大电路 电路便可以用双端输入的方 式进行分析。
5.共模抑制比 差分放大电路很难做到电路完全对称,并且Re不可能无穷 大,故Auc不为0。因此,零点漂移不能完全被克服,但将受到 很大的抑制。 在实际应用中,为了衡量差放抑制共模信号的能力(抑 制零漂的能力),制定了一项技术指标,称为共模抑制比 (KCMR)。
3. 电压放大倍数
差模电压增益
共模电压增益
uo Aud = u id uo Auc = u ic
其中
uo
——差模信号产生的输出
——共模信号产生的输出 uo
总输出电压
【例3-2】设有一个理想差 动放大器,已知:ui1=25mV, ui2=10mV,Aud=100,Auc=0。 求差模输入电压uid;共模输 入电压uic;输出电压uo。 解; uid=ui1-ui2=15mV uic=(ui1+ui2)/2=35/2=17.5m V uo=Auduid+Aucuic =100×15+0×17.5 =1500mV
I C3 I E3 VR 2 (VBE3 VBE3 (VR 2 VBE3 ) VBE3 R3 R3
带电流源(恒流源)的放大电路

-
差模信号和共模信号。 2 差模信号和共模信号。
(2) 输出端: 如 果 输 出 信 号 : u o1, u o2
1 u0 d 1 = u0 d 2 u0 d = u01 u02 1 u0 d 2 = u0 d 2 1 u0 C = (u01 + u02 ) 2
uo1 uo2
EC
1 u 01 = 2 u 0 d + u 0 C 1 u 02 = u 0 d + u 0 C 2
(
当 ui↑↑→T1 饱合→uCE1=UCE1(sat) → 饱合→
∴ u =Ec-U -E e+U ∴uomaxomin≈ CE1(sat) CE2(sat)
uCE2↓→T2 饱合
IQ + u0 RL
返回 休息1 休息2
传输特性方程 : 3 uimax=Ec-UCE1(sat)+UBE1
uo = ui UBE1 = ui UT ln
1 ) = uid 2 1 ) = uid 2
EC
1 uid 1 = 2 ( ui 1 ui 2 1 uid 2 = ( ui 1 ui 2 2
uo1
uo2
+
ui1
1 2
+
uid1 Iee Ee - 1 uid2
2
ui2
uid = uid 1 uid 2
休息1 休息2 返回
uic
-
3
ui1
Rem=ro3 Ee
ui2
差放输入与输出连接方式 双端输入 单端输入 双端输出 单端输出
休息1 休息2 返回 继续
-Ee 返回
3.3.1差放的偏置, 3.3.1差放的偏置,输入和输出信号及连接方式 差放的偏置
3.3差分放大电路(二)

例3.3.3 下图中, = 100,试求 (1) Q ;(2) Aud,Rid,Ro
解:(1) 求Q 点
I REF
6 0.7 VEE U BE4 mA 6.2 0.1 R1 R2
RC 7.5 k +VCC +6 V
uo
100 IC3
RC 7.5 k
V2
I 0 I REF
原理电路
采用 V3 管代替 R
当 V1、V2 几何尺寸相同时: I0 = IREF=(VDD+VSS-UGS)/R 当 V1、V2 几何尺寸不同时: I0 IREF
二、具有电流源的差分放大电路
二、具有电流源的差分放大电路 续
MOS管差分放大电路
例3.3.3 下图中, = 100,试求 (1) Q ;(2) Aud,Rid,Ro
3.3.3 差分放大电路的输入、输出方式
一、四种输入输出方式
单端输入是双端输入的特例而言 即 ui1 = ui , ui2 = 0 故单端输入时的分析方法与双端输入时一样
休 息
例3.3.4
下图中,已知 =120,UBEQ=0.7V,rbb′=200 , VCC=VEE =12V ,求:(1)V1、V2的静态工作点ICQ1、 UCQ1和ICQ2、UCQ2 ;(2)求单端输出的Aud1 、Rid 、Ro、 Auc1 、KCMR 。
讨论小结
1. 差分放大电路的结构和性能有何特点? 答: 电路结构左右对称,具有两个输入端,可以双 端输出。 对差模输入电压具有放大作用,对共模信
号和零点漂移具有很强的抑制作用。
返回
2. 差分放大电路中,公共发射极电阻RE对共模信号有何影响,为什么?对差
模信号有何影响,为什么?为何要用恒流源代替公共发射极电阻RE ?
带恒流源的差分放大电路

--
+
e
-
- 恒流源
+
+
-
带恒流源的差 分放大电路
D
模拟电子技术
4. 集成运算放大器 恒流源的作用:
1. 恒流源相当于阻值很大的电阻。 2. 恒流源不影响差模放大倍数。 3. 恒流源影响共模放大倍数,使共模放大倍数 减小,从而增加共模抑制比,理想的恒流源相 当于阻值为无穷的电阻,所以共模抑制比是无穷。
模拟电子技术
4. 集成运算放大器
集成运算放大器典型结构
输入
输入级
中间级 输出级
输出
1)输入级
偏置电路
具有与输出同相和反相的两个输入端,较高的
输入电阻和抑制干扰及零漂的能力。
2)偏置电路 为各级电路提供直流偏置电流,并使整个运放的
静态工作点稳定且功耗较小。
模拟电子技术
4. 集成运算放大器 差分电路 输入级 中间级
+
+-
++
--
-
恒流源
模拟电子技术
+
-
4. 集成运算放大器
+
+
1
iC
–
–
rce = uCE
晶体管恒流源构成原理:
1) 当晶体管工作在放大区时,iC 基本上与 uCE 无关,只取决于iB。 2) 当 iB 恒定,则 iC 恒定,晶体管相当于一个电流源。
模拟电子技术
4. 集成运算放大器
选择R1和R2使IBQ3+恒定-, 则IC3恒定。
输出级
+ -
-
恒流源
+
+
模拟电子技术
模电(李国立)10章习题答案

10 模拟集成电路自我检测题一.选择和填空1.试比较图选择题1中三个电流源电路的性能,填空:I0更接近于I REF的电路是a ;I0受温度影响最小的电路是b ;I0受电源电压变化影响最大的电路是a 。
0I0R R( a )( b )图选择题12.差分放大电路是为了C 而设置的〔A.提高放大倍数,B.提高输入电阻,C.抑制温漂〕,它主要通过 F 来实现。
〔D.增加一级放大电路,E.采用两个输入端,F .利用参数对称的对管〕。
3.在长尾式的差分放大电路中,R e的主要作用是B 。
〔A.提高差模电压放大倍数,B.抑制零漂,C.增大差模输入电阻〕4.在长尾式的差分放大电路中,R e对B 有负反馈作用。
〔A.差模信号,B.共模信号,C.任意信号〕5.差分放大电路利用恒流源代替R e是为了C 。
〔A.提高差模电压放大倍数,B.提高共模电压放大倍数,C.提高共模抑制比〕6.具有理想电流源的差分放大电路,无论何种组态,其共模抑制比A 。
〔A.均为无穷大,B.均为无穷小,C.不相同〕7.输入失调电压V IO是C 。
(A.两个输入端电压之差,B.两个输入端电压均为零时的输出电压,C.输出电压为零时,两个输入端之间的等效补偿电压)8.V IO越大,说明运放B 。
〔A.开环差模电压放大倍数越小,B.输入差放级V BE 或〔V GS〕的失配越严重,C.输入差放级β的失配越严重〕9.输入失调电流I IO是C 。
〔A.两个输入端信号电流之差,B.两个输入端信号电流均为零时的输出电流,C.两个输入端静态电流之差〕10.I IO越大,说明运放B 。
〔A.差模输入电阻越小,B.输入差放级β的失配越严重,C.输入差放级V BE 或〔V GS〕的失配越严重〕二.判断题〔正确的在括号内画√,错误的画×〕1.一个理想对称的差分放大电路,只能放大差模输入信号,不能放大共模输入信号。
〔√ 〕2.共模信号都是直流信号,差模信号都是交流信号。
模电课设单入双出恒流源式差分放大电路的设计

目录1 课程设计的目的与作用 (1)1.1设计目的及设计思想 (1)1.2设计的作用 (1)1.3 设计的任务 (1)2 所用multisim软件环境介绍 (1)3 电路模型的建立 (3)4 理论分析及计算 (4)4.1理论分析 (4)4..1.1静态分析 (4)4.1.2动态分析 (5)4.2计算 (5)5 仿真结果分析 (6)6 设计总结和体会 (9)6.1设计总结 (9)6.2心得体会 (9)7参考文献 (10)1 课程设计的目的与作用1.1设计目的及设计思想根据设计要求完成对单入双出恒流源式差分放大电路的设计,加强对模拟电子技术的理解,进一步巩固课堂上学到的理论知识。
了解恒流源式差分放大电路的工作原理,掌握外围电路设计与主要性能参数的测试方法。
1.2设计作用通过multisim软件仿真电路可以使我们对恒流源式差分放大电路有更深的理解,同时可以与长尾式放大电路加以比较,看到恒流源式差分放大电路的优越性。
1.3设计任务1.设计一个单入双出恒流源是差分放大电路,在实验中通过调试电路,能够真正理解和掌握电路的工作原理。
2.正确理解所设计的电路中各元件对放大倍数的影响,特别是三极管的参数。
3.正确处理理论计算数据,并非仿真数据进行比较在比较中加深理解。
2 所用multisim软件环境介绍multisim软件环境介绍Multisim是加拿大IIT公司(Interrative Image Technologies Ltd)推出的基于Windows的电路仿真软件,由于采用交互式的界面,比较直观、操作方便,具有丰富的元器件库和品种繁多的虚拟仪器,以及强大的分析功能等特点,因而得到了广泛的引用。
针对不同的用户,提供了多种版本,例如学生版、教育版、个人版、专业版和超级专业版。
其中教育版适合高校的教学使用。
Multisim 7主界面。
启动Multisim,就会看到其主界面,主要是由菜单栏、系统工具栏、设计工具栏、元件工具栏、仪器工具栏使用中元件列表、仿真开关、状态栏以及电路图编辑窗口等组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
恒流源式的差分放大电路及输入信号u I1(t)、u I2(t)波形如图所示。
各晶体管参数均相同,β=60,r bb’=300Ω,U BE=0.7V,V CC=12V,V EE=6V,R c1=10 kΩ,R c2=10kΩ,R b1=R b2=R b =2kΩ,R1=1kΩ,R2=R3=4.3kΩ,R W=200Ω,且其滑动端位于中点,负载电阻R L=10kΩ。
试画出u o(t)的波形并标出相应的幅值。
[答案]
故画出的u O波形如图示:
[题目]
恒流源式差分放大电路如图所示。
设晶体管VT1、VT2 VT3特性相同,U BE=0.7V。
试估算该电路允许的共模输入电压U ICM。
[答案]
故正向允许的共模输入电压为7V
故负向允许的共模输入电压为-3.3V
电流源式差分放大电路如图所示。
设各晶体管参数均相同,且β=100,U BE=0.7V,V CC=V EE=6V,R b1=R b2=R b=51Ω,R c1=R c2=R c=20kΩ,R1=R3=2.4kΩ,R2=510Ω,R L=180kΩ,R w=100Ω,且其滑动端位于中点,若在静态时电路分别出现以下三处故障,试判断VT1、VT2、VT3相应的工作状态(截止、放大、饱和)。
1.VT1发射极与R W的连接处开路;
2.V CC与R c2的连接处开路;
3.VT3发射极与R3的连接处开路。
[答案]
1.VT1截止
故VT2工作在饱和状态,而VT3仍工作在放大状态;
2.I C2可由V CC经R c1、R L提供,若按计,则R c1上将产生7.74V 的压降,故VT1、VT2均已工作在饱和状态,而VT3仍工作在放大状态;
3.VT3截止,故VT1、VT2也都截止。
由理想集成运放A1、A2组成的两个反馈放大电路如图所示。
1.计算图(a)电路的闭环电压放大倍数
2.欲使图(b)电路的闭环电压放大倍数,电阻R7应选多大?
[答案]
1.
2.故
[题目]
由集成运放组成的反馈放大电路如图所示,设A1、A2均为理想运放。
试写出电路的下列性能指标表达式:
1.闭环放大倍数(该指标,对电压负反馈则用,对电流负反馈,则用);2.输入电阻R if和输出电阻R of。
[答案]
1.图(a):
图(b):
2.图(a):,
图(b):,
个反馈放大电路如图所示。
设A为理想集成运放。
试分别写出闭环电压放大倍数,输入电阻R if和输出电阻R of的表达式。
[答案]
1.图(a):
2.图(b):
由集成运放A1、A2组成的反馈放大电路如图所示,设A1、A2均为理想运放,试写出下列两种情况时的和R if,R of的表达式,并计算出其数值。
1.R3开路;
2.R4短路。
[答案]
1.开路
2.短路。