4.2复随机过程

合集下载

第4章 随机过程通过线性系统分析

第4章 随机过程通过线性系统分析
证明:由于
上述积分可用极限形式表示:
、 固定时, 为确定的常用,上式是正态变量 的线性组合,而正态的线性组合还是正态分布。
2.高斯过程的均值与方差近似计算
对于高斯过程,只要均值与方差确定,则整个分布函数便确定。
由于
取定一个合适的 ,利用
可求出求出 均值与方差的近似值。
作业:P1515.1,5.2,5.7,5.8,5.9,5.11,5.14,5.15,5.26,5.28。
等效原则:理想系统与实际系统的输出平均功率相等。
例:设理想输出为 ,理想系统是矩形传输函数
为等效带宽。
如何确定 ?
依等效原则,理想系统的平均功率为 ,而
所以
称 为等效噪声带宽。
3.白噪声通过理想低通线性系统
在实际应用中,设
白噪声的谱密度为:
输出 的功率谱密度为
输出 的相关函数为:
输出 的平均功率为
输出 的自相关系统为
但求输入的概率分布不是一件容易的事为使问题得到简化一般我们假设高斯随机过程通过线性系统定理
第4章随机过程通过线性系统分析
引言:信号与系统的传统理论方法的基础是卷积运算。如图,
图1:系统的物理示意图
是系统的输入, 是系统的输出, 是系统的冲激响应函数
其中 ,为冲激函数。
对于线性系统,系统的数学运算为:
相关时间为
4.白噪声通过理想带通线性系统
理想带通线性系统具有理想矩形频率特性
白噪声的谱密度为:
输出 的功率谱密度为
输出 的相关函数为:
可写成
称为相关函数的包络。
输出 的平均功率为
输出 的自相关系统为
相关时间为
5.白噪声通过具有高斯频率特性的线性系统

随机过程知识点汇总

随机过程知识点汇总

随机过程知识点汇总随机过程是指一组随机变量{X(t)},其中t属于某个集合T,每个随机变量X(t)都与一个时刻t相关联。

2.随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。

离散时间随机过程是指在离散的时间点上取值的随机过程,例如随机游走。

连续时间随机过程是指在连续的时间区间上取值的随机过程,例如XXX运动。

3.随机过程的数字特征随机过程的数字特征包括均值函数和自相关函数。

均值函数E[X(t)]描述了随机过程在不同时刻的平均取值。

自相关函数R(t1,t2)描述了随机过程在不同时刻的相关程度。

4.平稳随机过程平稳随机过程是指其均值函数和自相关函数都不随时间变化而变化的随机过程。

弱平稳随机过程的自相关函数只与时间差有关,而不依赖于具体的时间点。

强平稳随机过程的概率分布在时间上是不变的。

5.高斯随机过程高斯随机过程是指其任意有限个随机变量的线性组合都服从正态分布的随机过程。

高斯随机过程的均值函数和自相关函数可以唯一确定该过程。

6.马尔可夫随机过程马尔可夫随机过程是指其在给定当前状态下,未来状态的条件概率分布只依赖于当前状态,而与过去状态无关的随机过程。

马尔可夫性质可以用转移概率矩阵描述,并且可以用马尔可夫链来建模。

7.泊松过程泊松过程是指在一个时间段内随机事件发生的次数服从泊松分布的随机过程。

泊松过程的重要性质是独立增量和平稳增量。

8.随机过程的应用随机过程在金融学、信号处理、通信工程、控制理论等领域有广泛的应用。

例如,布朗运动被广泛应用于金融学中的期权定价,马尔可夫链被应用于自然语言处理中的语言模型。

t)|^2]协方差函数BZs,t)E[(ZsmZs))(ZtmZt))],其中Zs和Zt是Z在时刻s和t的取值。

复随机过程是由实部和虚部构成的随机过程,其均值和方差函数分别由实部和虚部的均值和方差函数计算得到。

协方差函数和相关函数也可以类似地计算得到。

复随机过程在通信系统中有广泛的应用,例如调制解调、信道编解码等。

随机过程及其应用-清华大学解析

随机过程及其应用-清华大学解析

4.1(等待时间的和)设诚恳按照参数λ的Poisson 过程来到公交站,公交车于时刻t 发出,那么在],0[t 时间段内到达的乘客等待时间总和的期望应该如何计算那?对于某一个乘客而言,假设其到达时间为k t ,那么他等待时间就是k t t -所以乘客总的等待时间为∑=-=)(0)()(t N k k t t t S使用条件期望来处理平均等待))(|)(())((n t N t E E t S E ==对于某已成了而言,其到达时刻k t 随机],0[t 内均匀分布的随机变量。

但在车站上,乘客是先后到达次序排队,所以在n t N =)(的条件下,n t t t ,...,,21形成了独立均匀分布的顺序统计量。

不过就他们的和nt t ++...1而言,可以那他们看着顺序统计量,也可以把他们看着不排顺序的n 各独立的],0[t 内均匀分布的随机变量,所以2))((2)2)(())((22)())(|)((20t t N E t t t N E t E E nt nt nt t E nt n t N t E E nk k λ====-=-==∑=从而有4.2(数值记录)设},{N n X n ∈是一独立同分布的非负期望随机变量序列。

定义风险率)(t λ如下)(1)()(t F t f t -=λ 这里)()(t F t f 和分别是k X 的概率密度分布和分布函数。

定义随机过程)(t N 如下}),,..,m ax (:{#)(01t X X X X n t N n n n ≤>=-这里A #表示集合A 中的元素个数。

如果把)(t N 中的时间t 看做时间,那么)(t N 是一个非齐次Poisson 过程。

事实上,由于k X 彼此独立,所以)(t N 具有独立增量性。

很明显0)0(=N ,于是只需要检查一个时间微元内)(t N 的状态。

假定t ∆充分小,在0,...,X X n 中只有n X 在],(t t t ∆+上,因此111-11-11111))())(()((),...,(]),((),...,],,(()),...,max(],,(()),...,max(],,(()1)()((--∞=-∆+∆=≤≤∆+∈=≤≤∆+∈=>∆+∈>∆+∈==-∆+∑n n n n n n n n n n n n t F t o t t f t X t X P t t X P t X t X t t X P X X X t t X P X X X t t X P t N t t N P所以)()()(1)()())(())()(()1)()((21t o t t t F t o t t f x F t o t t f t N t t N P n n ∆+∆=-∆+∆=∆+∆==-∆+∑∞=-λ另一方面,可以证明)()2)()((t o t N t t N P ∆=≥-∆+ 所以)(t N 是非齐次的Poisson 过程,强度)(t λ。

随机过程二

随机过程二
条件概率 P{X n1 j X n i} ,一般与 n 有关, 若它与 n 无关,记为 pij ,并记 P [ pij ],称 为MC的一步转移概率矩阵,而此时MC称为 时间齐次的,简称时齐的。显然,有
pij 0,
p
j
ij
1, i 。
满足这个条件的矩阵一般称为随机矩阵或 Markov矩阵。 例3.1 直线上的随机游动。公平赌博问题。 赌徒输光问题。
设MC具有有限状态空间 {0,1, , k} , (n) 如果存在 n ,使得 P 0 ,则称MC是正则 的。对有限状态空间的正则MC,极限 (n) lim Pij
n
总存在,且与 i 无关,记为 j 。并称
( 0 ,1, , k )
为MC的平稳分布,且有 0 , e 1 。
(0) (0) P 1 P 这里,约定 ii , ij 0(i j )。
转移矩阵的性质
(1) Pij 0 且 Pij 1
n n
j
P P ,即对任 (2)对任意 m 0, n 0 ,P 意 i, j ,有Kolmogorov-Chapman方程
m n
i 0
P X n j P X n j X n1 i P X n1 i i Pij j
i 0

表明对所有 n , X n , n 1, 2, 具有相同分布。由 Markov性可知,对任何k 0 , X n , X n1, X nk 的联 合分布不依赖于 n ,故 X n , n 1, 2, 是平稳随机 过程, 称为平稳分布。
k (k ) 步转移概率。若记 P( k ) [ P 为MC的 k 步转 ij ] 移概率矩阵,则可以证明 P( k ) Pk 。

随机过程-第四章 更新过程

随机过程-第四章 更新过程

P 1 因 此 存 在 a 0 , 使 得 P Xn a 0 , 从 而 由 于 F( 0 ) X n 0 , P X n a 1 。而 F (a) P X n a P X n a P X n a
为 避 免 因 可 能 的
TN (t ) N (t )
N (t ) 时,
TN (t ) N (t )
。但由于 t 时 N (t ) ,所以当 t 时,
TN (t ) N (t )


TN (t )1 N (t )

TN (t )1 N (t ) 1 。 ,类似地可推得当 t 时, N (t ) 1 N (t ) N (t ) TN (t ) 1
且因为随机变量 X n , n 1, 2, 服从独立同分布且分布函数为 F ( x) ,记 Fn 为 Tn 的分 布函数,则 Fn 是 F 自身的 n 次卷积。因此可得
P N (t ) n Fn (t ) Fn1 (t )
令 M (t ) E[ N (t )] ,称 M (t ) 为更新函数。
t
N (t ) 的情况。 t
为考虑 N (t ) 的发散速度,我们先考虑到达时刻 TN (t ) ( TN (t ) 表示在时刻 t 或时刻 t 之前 最后一次更新发生的时刻,以此类推,则 TN (t )1 表示在时刻 t 之后第一次更新发生的时刻) 。 利用 TN (t ) 和 TN (t )1 ,我们提出并证明以下命题。
命题 4.3 当 t 时,以概率 1 保证
证明:因为 TN (t ) t TN (t ) 1 ,于是有
N (t ) 1 , ( EX n ) 。 t

随机过程课程第二章 随机过程的基本概念

随机过程课程第二章 随机过程的基本概念
第二章 随机过程的基本概念
第一节 随机过程的定义及其分类 第二节 随机过程的分布及其数字特征 第三节 复随机过程 第四节 几种重要的随机过程简介
第一节 随机过程的定义及其分类
一、直观背景及例
例1 电话站在时刻t时以前接到的呼叫次数 一般情况下它是一个随机变数X ,并且依赖 时间t,即随机变数X(t),t[0,24]。
首页
(4)平稳随机过程
平稳过程的统计特性与马氏过程不同,它不 随时间的推移而变化,过程的“过去”可以对 “未来”有不可忽视的影响。
首页
返回
第二节 随机过程的分布及其数字特征
一、随机过程的分布函数
设{ X (t) ,t T }是一个随机过程,
一维
分布 对于固定的t1 T ,X (t1) 是一个随机变量,
F (t1,t2;x1, x2 ) =
x1
x2
f (t1, t2;y1, y2 )dy1dy2
则称 f (t1,t2;x1, x2 ) 为 X (t) 的二维概率密度
n维
n 维随机向量(X (t1 ) ,X (t2 ) ,…, X (tn ) )
分布 函数
联合分布函数
F (t1,t2 , ,tn;x1, x2 , , xn )
分布函数
FXY (t1, ,tn ;t1, ,tm ;x1, , xn ; y1, , ym )
P{X (t1) x1, , X (tn ) xn;Y(t1) y1, ,Y(tm ) ym }
称为随机过程和的n + m维联合分布函数
首页
相互 设 X (t) 和Y (t) ,t1,t2 , ,tn ,t1,t2 , ,tm T
首页
2.方差函数
随机过程{ X (t) ,t T }的二阶中心矩

第二章 随机过程与随机序列-精品文档

第二章 随机过程与随机序列-精品文档

R ( t , t ) m ( t ) m ( t ) XY 1 2 X 1 Y 2
当X(t)和Y(t)互相独立时, X(t)与Y(t) 之间一定不相关;反之则不成立。
研究随机过程有两条途经:
侧重于研究概率结构
侧重于统计平均性质的研究
4.2.3 随机过程的特征函数 对于某一固定时刻t,随机变量X(t)的 特征函数就定义为随机过程的一维特 征函数
R ( t , t ) E [ X ( t ) X ( t )] X 1 2 1 2 x f ( x ,x ; t , t ) dx dx 1 2 X 1 2 1 2 1 2 x

设X(t1)和X(t2)是随机过程X(t)在t1和t2 二个任意时刻的状态,称X(t1)和X(t2) 的二阶联合中心矩为X(t)的自协方差函 数
( , ; t ,t ) E [ e X 1 2 1 2


j X ( t ) j X ( t ) 1 1 2 2
]
e
j x j x 1 1 2 2
f ( x ,x ; t ,t ) dx dx X 1 2 1 2 1 2
定义为随机过程X(t)的二维特征函数。
n X1 2
为随机过程X(t)的n维概率密度。
随机过程X(t)和Y(t)的四维联合概率密度
fXY(x ,x ,y ,t2,t ',t2') 1 2, y 1 2;t 1 1 F (x ,x ,y ,t2,t ',t2') XY 1 2, y 1 2;t 1 1 x x y y 1 2 1 2
x m ( t )][ y m ( t )] f ( x , y ; t , t ) dx X 1 Y 2 XY 1 2 [

随机过程的历史(2024)

随机过程的历史(2024)

随机过程的历史
引言概述:
随机过程是数学中研究随机事件随时间变化的数学模型。

其历史可以追溯到18世纪康托尔的研究,但随机过程的概念和理论在20世纪得到了进一步的发展和应用。

本文将详细介绍随机过程的历史,并探讨其在不同学科领域的应用。

正文内容:
1.随机过程的起源
1.1康托尔的随机序列理论
1.2卜朗运动
2.随机过程理论的发展
2.1庞加莱和布劳威尔的贡献
2.2毛勒和博雷尔的理论发展
3.随机过程在统计学中的应用
3.1随机过程的统计性质
3.2随机过程的极限定理
3.3随机过程的推断方法
4.随机过程在物理学中的应用
4.1热力学中的随机过程
4.2量子力学中的随机过程
5.随机过程在工程学中的应用
5.1通信中的随机过程
5.2控制系统中的随机过程
5.3金融工程中的随机过程
总结:
随机过程作为一种数学模型,具有广泛的应用领域。

在统计学中,随机过程被用于描述随机现象的时间演变规律;在物理学中,随机过程帮助我们理解热力学和量子力学的现象;在工程学中,随机过程提供了描述通信、控制和金融等系统的方法。

随机过程的历史源远流长,随着时间的推移,它不断发展和完善,并成为了现代学科中不可或缺的一部分。

通过研究和应用随机过程,我们能够更好地理解和处理不确定性和随机性的问题,为各个学科的发展和进步做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档