随机过程_汪荣鑫第二版_第四章和第二节标准答案课后答案

合集下载

随机过程习题答案及知识点

随机过程习题答案及知识点

协方差矩阵及n 维正态分布1、设n 维随机变量)(n X X ,,,X 21⋯的二阶混合中心距:[][];,,2,1,},)()({),(,n j i j X E j X X E X E X X Cov c i i j i j i ⋯=--==都存在,则称矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=∑nn c c c c c c c c c n2n12n 22211n 1211为n 维随机变量)(n X X ,,,X 21⋯的协方差矩阵,它是一对称矩阵。

2、n 维正态分布定义:若n 维随机变量)(n X X ,,,X 21⋯的概率密度可以表示成以下的形式:⎭⎬⎫⎩⎨⎧-∑--∑==⋯-)()(21ex p )(det )2(1)(),,,(f 12/12/21U X U X X f x x x T n n π其中,Tn T T n X E X E X E U x x x X ))(,),(),((),,,(,),,,(21n 2121⋯=⋯=⋯=μμμ∑是)(n X X ,,,X 21⋯的协方差矩阵,则称n 维随机变量)(n X X ,,,X 21⋯为n 维正态随机变量,记为),(~),,,X (21∑⋯=μN X X X n ,),,,(f 21n x x x ⋯为n 维正态概率密度函数。

N 维正态随机变量的性质(1) n 维正态随机变量)(n X X ,,,X 21⋯的每一个分量都是正态变量;反之,若nX X ,,,X 21⋯都是正态随机变量,且相互独立,则)(n X X ,,,X 21⋯是n 维正态随机变量。

(2) n 维随机变量)(n X X ,,,X 21⋯服从n 维正态分布的充要条件是n X X ,,,X 21⋯的任意的线性组合n n X l X l X l +⋯++2211服从一维正态分布;(3) 若)(n X X ,,,X 21⋯服从n 维正态分布,设n Y Y ,,,Y 21⋯是),,3,2,1(X n j j ⋯=的线性函数,则n Y Y ,,,Y 21⋯也服从正态分布。

随机过程第四版参考答案

随机过程第四版参考答案

随机过程第四版参考答案随机过程第四版参考答案随机过程是概率论中的一个重要概念,研究的是随机事件在时间上的演化过程。

它在现代科学和工程领域中有着广泛的应用,例如通信系统、金融市场和生物学等。

随机过程第四版是一本经典的教材,为学习者提供了理论和实践的结合,帮助读者更好地理解和应用随机过程。

在随机过程第四版中,作者首先介绍了随机过程的基本概念和性质。

随机过程可以分为离散时间和连续时间两种类型,而在每个时间点上的随机变量可以是离散型或连续型的。

通过对这些基本概念的介绍,读者可以建立起对随机过程的初步认识,并为后续的学习打下坚实的基础。

接下来,随机过程第四版详细讨论了不同类型的随机过程。

其中,最常见的两种类型是马尔可夫过程和泊松过程。

马尔可夫过程是一种具有马尔可夫性质的随机过程,即未来状态的概率只依赖于当前状态,而与过去的状态无关。

泊松过程则是一种连续时间的随机过程,其具有独立增量和平稳增量的特点。

通过对这些经典模型的介绍,读者可以更深入地了解随机过程的特性和应用。

随机过程第四版还涉及了随机过程的数学建模和分析方法。

在实际问题中,我们常常需要通过建立数学模型来描述随机过程的行为。

这些模型可以是基于统计数据的参数估计,也可以是基于物理规律的微分方程。

通过对这些数学方法的学习,读者可以了解如何将实际问题转化为数学模型,并通过数学分析来解决问题。

除了理论部分,随机过程第四版还包含了大量的例题和习题。

这些例题和习题涵盖了不同类型的随机过程和应用场景,帮助读者巩固所学知识,并提供了实践的机会。

通过解答这些例题和习题,读者可以更深入地理解随机过程的概念和性质,并培养解决实际问题的能力。

总的来说,随机过程第四版是一本权威且实用的教材,为学习者提供了理论和实践相结合的学习方式。

通过对随机过程的介绍、不同类型的讨论、数学建模和分析方法的学习,以及大量的例题和习题的解答,读者可以全面地了解和掌握随机过程的基本概念、性质和应用。

随机过程习题及答案

随机过程习题及答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t et t t X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Utt Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

4030(30)((1)40)!kk P N ek -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

随机过程复习题答案

随机过程复习题答案

随机过程复习题答案
1. 随机过程的定义是什么?
答:随机过程是一组随机变量的集合,这些随机变量是时间或空间的函数,用来描述系统随时间或空间的演变。

2. 什么是马尔可夫链?
答:马尔可夫链是一种随机过程,其中未来状态的概率分布仅依赖于当前状态,而与之前的状态无关。

3. 描述随机游走的特点。

答:随机游走是一种马尔可夫过程,其中每一步移动到相邻状态的概率是固定的,并且每一步都是独立的。

4. 什么是平稳过程?
答:平稳过程是指其统计特性不随时间变化的过程,即过程的均值、方差和自相关函数不随时间变化。

5. 如何定义一个过程的遍历性质?
答:一个过程的遍历性质是指该过程的样本函数的统计特性与该过程的总体统计特性相一致。

6. 什么是鞅?
答:鞅是一种随机过程,其中给定当前和过去信息,未来某个时间点的期望值等于当前的值。

7. 描述泊松过程的基本性质。

答:泊松过程是一种计数过程,具有独立增量、平稳增量和泊松分布的到达时间间隔等基本性质。

8. 什么是布朗运动?
答:布朗运动是一种连续时间随机过程,其增量服从正态分布,且具有独立性和平稳性。

9. 如何确定一个过程是否是高斯过程?
答:如果一个过程的所有有限维分布都是多元正态分布,则该过程是高斯过程。

10. 什么是随机过程的谱分析?
答:随机过程的谱分析是研究过程功率谱密度的方法,它描述了过程在不同频率上的功率分布。

教学大纲_随机过程

教学大纲_随机过程

《随机过程》教学大纲课程编号:121213A课程类型:□通识教育必修课□通识教育选修课□√专业必修课□专业选修课□学科基础课总学时:48 讲课学时:32实验(上机)学时:16学分:3适用对象:数学与应用数学(金融数学)、统计学先修课程:数学分析、高等代数、概率论毕业要求:1.掌握数学、统计及计算机的基本理论和方法;2.建立数学、统计等模型解决金融实际问题;3.具备国际视野,并且能够与同行及社会公众进行有效沟通和交流。

一、教学目标随机过程是对随时间和空间变化的随机现象进行建模和分析的学科,在物理、生物、工程、心理学、计算机科学、经济和管理等方面都有广泛的应用。

本课程介绍随机过程的基本理论和几类重要随机过程模型与应用背景,通过本课程的学习,使学生获得随机过程的基本知识和基本运算技能,同时使学生在运用数学方法分析和解决问题的能力得到进一步的培养和训练,为学习有关专业课程提供必要的数学基础。

二、教学内容及其与毕业要求的对应关系(一)教学内容随机过程的基本概念(有限维分布、数字特征,复值随机过程,特征函数),几种重要随机过程(独立过程,独立增量过程,伯努利过程,正态过程,维纳过程),泊松过程(定义(计数过程)与例子,泊松过程的叠加与分解,时间间隔与等待时间的分布,复合泊松过程,非齐次泊松过程),更新过程介绍,马尔科夫过程(离散时间的马尔科夫过程定义及转移概率,C-K方程,马氏链的分布,遍历性与平稳分布,状态分类与分解,马氏链的应用,连续时间的马尔可夫链的定义与基本性质,鞅论初步),平稳随机过程(平稳过程及相关函数,随机微积分,各态历经,谱密度)。

(二)教学方法和手段教师课上讲授理论知识内容及相关基本例题,学生课下练习及教师答疑、辅导相结合。

(三)考核方式实行过程考核和期末考试相结合的方式,期末闭卷考试为主(70%),平时过程考核为辅(30%)。

学期期末闭卷考试一次,采用统一的考题和统一的评分标准。

考试分数为百分制。

随机过程习题及答案

随机过程习题及答案

随机过程习题及答案第二章随机过程分析1.1学习指导1.1.1要点随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。

1.随机过程的概念随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。

可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。

2.随机过程的分布函数和概率密度函数如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。

ξ(t 1)小于或等于某一数值x 1的概率为P [ξ(t 1)≤x 1],随机过程ξ(t )的一维分布函数为F 1(x 1,t 1)=P [ξ(t 1)≤x 1](2-1)如果F 1(x 1,t 1)的偏导数存在,则ξ(t )的一维概率密度函数为对于任意时刻t 1和t 2,把ξ(t 1)≤x 1和ξ(t 2)≤x 2同时成立的概率称为随机过程?(t )的二维分布函数。

如果存在,则称f 2(x 1,x 2;t 1,t 2)为随机过程?(t )的二维概率密度函数。

对于任意时刻t 1,t 2,…,t n ,把{}n 12n 12n 1122n n ()(),(),,() (2 - 5)=≤≤≤L L L F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程?(t )的n 维分布函数。

如果存在,则称f n (x 1,x 2,…,x n ;t 1,t 2,…,t n )为随机过程?(t )的n 维概率密度函数。

3.随机过程的数字特征随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。

随机过程?(t )在任意给定时刻t 的取值?(t )是一个随机变量,其均值为其中,f 1(x ,t )为?(t )的概率密度函数。

随机过程?(t )的均值是时间的确定函数,记作a (t ),它表示随机过程?(t )的n 个样本函数曲线的摆动中心。

《随机过程》第4章离散部分习题及参考答案

《随机过程》第4章离散部分习题及参考答案

湖南大学本科课程《随机过程》第4章习题及参考答案主讲教师:何松华 教授30.设X(n)为均值为0、方差为σ2的离散白噪声,通过一个单位脉冲响应为h(n)的线性时不变离散时间线性系统,Y(n)为其输出,试证:2[()()](0)E X n Y n h σ=,2220()Y n h n σσ∞==∑证:根据离散白噪声性质,220()[()()]()0X m R m E X n m X n m m σσδ⎧==+==⎨≠⎩()()()()()m Y n X n h n X n m h m ∞==⊗=-∑220[()()]{()()()][()()]()()()()()(0)m m X m m E X n Y n E X n X n m h m E X n X n m h m R m h m m h m h σδσ∞∞==∞∞===-=-===∑∑∑∑12121222112202121221210000[()]{()()()()][()()]()()[()()]()Y m m m m m m E Y n E X n m h m X n m h m E X n m X n m h m h m m m h m h m σσδ∞∞==∞∞∞∞======--=--=-∑∑∑∑∑∑(对于求和区间内的每个m 1,在m 2的区间内存在唯一的m 2=m 1,使得21()0m m δ-≠)1222110()()()m n h m h m h n σσ∞∞====∑∑(求和变量置换) 31.均值为0、方差为σ2的离散白噪声X(n)通过单位脉冲响应分别为h 1(n)=a n u(n)以及h 2(n)=b n u(n)的级联系统(|a|<1,|b|<1),输出为W(n),求σW 2。

解:该级联系统的单位脉冲响应为121211100()()()()()()()1(/)()1/n m m m m mn n n nnn m m n nm m h n h n h n h n m h m a u n m b u m b b a aba b a a u n a b a a b∞∞-=-∞=-∞+++-===⊗=-=---⎛⎫====⎪--⎝⎭∑∑∑∑参照题30的结果可以得到21122222211212000222222222()[()2()()]()2(1)[]()111(1)(1)(1)n n n n n W n n n a b h n a ab b a b a b a ab b ab a b a ab b a b ab σσσσσσ++∞∞∞+++===⎡⎤-===-+⎢⎥--⎣⎦+=-+=-------∑∑∑32.设离散系统的单位脉冲响应为()() (1)n h n na u n a -=>,输入为自相关函数为2()()X X R m m σδ=的白噪声,求系统输出Y(n)的自相关函数和功率谱密度。

《随机过程答案》第四章习题

《随机过程答案》第四章习题

第四章 二阶矩过程、平稳过程和随机分析 习题完整答案,请搜淘宝1、 设∑=-=N k k k k n U n X 1)cos(2ασ,其中k σ和k α为正常数,)2,0(~πU U k ,且相互独立,N k ,,2,1 =,试计算},1,0,{ ±=n X n 的均值函数和相关函数,并说明其是否是平稳过程。

2、 设有随机过程))(cos()(t t A t X πηω+=,其中0>ω为常数,}0),({≥t t η是泊松过程,A 是与)(t η独立的随机变量,且2/1}1{}1{===-=A P A P 。

(1) 试画出此过程的样本函数,并问样本函数是否连续?(2) 试求此过程的相关函数,并问该过程是否均方连续?3、 设}0),({≥t t X 是一实的零初值正交增量过程,且),(~)(2t N t X σμ。

令1)(2)(-=t X t Y ,0≥t 。

试求过程}0),({≥t t Y 的相关函数),(t s R Y 。

4、 设有随机过程)sin(2)(Θ+=t Z t X ,+∞<<∞-t ,其中Z 、Θ是相互独立的随机变量,)1,0(~N Z ,2/1)4/()4/(=-=Θ==ΘππP P 。

问过程)(t X 是否均方可积过程?说明理由。

5、 设随机过程t Y t X t 2sin 2cos )(+=ξ,+∞<<∞-t ,其中随机变量X 和Y 独立同分布。

(1) 如果)1,0(~U X ,问过程)(t ξ是否平稳过程?说明理由;(2) 如果)1,0(~N X ,问过程)(t ξ是否均方可微?说明理由。

6、 设随机过程});({+∞<<∞-t t X 是一实正交增量过程,并且0)}({=t X E ,及满足:{}+∞<<∞--=-t s s t s X t X E ,,)]()([2;令:+∞<<∞---=t t X t X t Y ),1()()(,试证明)(t Y 是平稳过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档