数学必修1—9.函数与方程

合集下载

函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)

函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)

专题02函数的应用(知识梳理)第一节 函数与方程1.函数的零点 (1)函数零点的定义对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系Δ>0Δ=0Δ<0图象与x 轴的交点 (x 1,0),(x 2,0)(x 1,0) 无交点 零点个数 21[小题体验]1.函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案:B2.(教材习题改编)函数f (x )=ln x +2x -6的零点个数是______. 答案:13.函数f (x )=kx +1在[1,2]上有零点,则k 的取值范围是________. 答案:⎣⎡⎦⎤-1,-121.函数f (x )的零点是一个实数,是方程f (x )=0的根,也是函数y =f (x )的图象与x 轴交点的横坐标.2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象.[小题纠偏]1.(2018·诸暨模拟)函数f(x)按照下述方法定义:当x≤2时,f(x)=-x2+2x;当x>2时,f(x)=12(x-2)2,则方程f(x)=12的所有实数根之和是()A.2 B.3 C.5 D.8解析:选C画出函数f(x)的图象,如图所示:结合图象x<2时,两根之和是2,x>2时,由12(x-2)2=12,解得x=3,故方程f(x)=12的所有实数根之和是5,故选C.2.给出下列命题:①函数f(x)=x2-1的零点是(-1,0)和(1,0);②函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则一定有f(a)·f(b)<0;③二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点;④若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.其中正确的是________(填序号).答案:③④考点一函数零点所在区间的判定基础送分型考点——自主练透[题组练透]1.已知实数a>1,0<b<1,则函数f(x)=a x+x-b的零点所在的区间是()A.(-2,-1)B.(-1,0)C.(0,1) D.(1,2)解析:选B∵a>1,0<b<1,f(x)=a x+x-b,∴f(-1)=1a-1-b<0,f(0)=1-b>0,由零点存在性定理可知f(x)在区间(-1,0)上存在零点.2.设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)解析:选B函数f(x)的零点所在的区间转化为函数g(x)=ln x,h(x)=-x +2图象交点的横坐标所在的范围.作出两函数大致图象如图所示,可知f(x)的零点所在的区间为(1,2).故选B.3.函数f(x)=x2-3x-18在区间[1,8]上______(填“存在”或“不存在”)零点.解析:法一:∵f(1)=12-3×1-18=-20<0,f(8)=82-3×8-18=22>0,∴f(1)·f(8)<0,又f(x)=x2-3x-18在区间[1,8]的图象是连续的,故f(x)=x2-3x-18在区间[1,8]上存在零点.法二:令f(x)=0,得x2-3x-18=0,∴(x-6)(x+3)=0.∵x=6∈[1,8],x=-3∉[1,8],∴f(x)=x2-3x-18在区间[1,8]上存在零点.答案:存在[谨记通法]确定函数f(x)的零点所在区间的2种常用方法(1)定义法:使用零点存在性定理,函数y=f(x)必须在区间[a,b]上是连续的,当f(a)·f(b)<0时,函数在区间(a,b)内至少有一个零点,如“题组练透”第1题.(2)图象法:若一个函数(或方程)由两个初等函数的和(或差)构成,则可考虑用图象法求解,如f(x)=g(x)-h(x),作出y=g(x)和y=h(x)的图象,其交点的横坐标即为函数f(x)的零点,如“题组练透”第2题.考点二判断函数零点个数重点保分型考点——师生共研[典例引领]1.函数f(x)=|x-2|-ln x在定义域内的零点的个数为()A.0B.1C.2 D.3解析:选C 由题意可知f (x )的定义域为(0,+∞).在同一直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象,如图所示:由图可知函数f (x )在定义域内的零点个数为2.2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点的个数是( )A .4B .3C .2D .1解析:选A 由f (f (x ))+1=0得f (f (x ))=-1, 由f (-2)=f ⎝⎛⎭⎫12=-1 得f (x )=-2或f (x )=12.若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x = 2.综上可得函数y =f (f (x ))+1的零点的个数是4,故选A.[由题悟法]判断函数零点个数的3种方法(1)方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则函数y =f (x )+x -4的零点个数为( )A .1B .2C .3D .4解析:选B 函数y =f (x )+x -4的零点,即函数y =-x +4与y =f (x )的交点的横坐标.如图所示,函数y =-x +4与y =f (x )的图象有两个交点,故函数y =f (x )+x -4的零点有2个.故选B.2.(2018·杭州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,则函数g (x )=f (f (x ))-2在区间(-1,3]上的零点个数是( )A .1B .2C .3D .4解析:选C ∵函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,∴当-1<x ≤1时,12<f (x )≤2,当1<x ≤3时,-1<x -2≤1,f (x )=f (x -2)+1=2x -2+1∈⎝⎛⎦⎤32,3; 设h (x )=f (f (x )),①当-1<x ≤0时,h (x )=22x ,2<h (x )≤2, ∴g (x )=h (x )-2有一个零点x =0; ②当0<x ≤1时,h (x )=22x -2+1,32<h (x )≤2,∴g (x )=h (x )-2有一个零点x =1; ③当1<x ≤3时,h (x )=22x -2+1-2+1, 22+1<h (x )≤3,g (x )有一个零点; 综上,函数g (x )在区间(-1,3]上有3个零点,故选C. 考点三 函数零点的应用重点保分型考点——师生共研[典例引领]已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=a |x -2|-a ,其中a >0,且为常数.若函数y =f (f (x ))有10个零点,则a 的取值范围是________.解析:当x ≥0时,令f (x )=0,得|x -2|=1, 即x =1或x =3.因为f (x )是定义在R 上的偶函数, 所以f (x )的零点为x =±1或x =±3. 令f (f (x ))=0, 则f (x )=±1或f (x )=±3.因为函数y =f (f (x ))有10个零点,所以函数y =f (x )的图象与直线y =±1和y =±3共有10个交点.由图可知1<a <3.答案:(1,3)[由题悟法]已知函数有零点(方程有根)求参数取值范围常用3方法 直接法 直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围 分离参数法 先将参数分离,转化成求函数值域问题加以解决数形结合法 先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解[即时应用]1.若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________. 解析:∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, ∴方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =⎝⎛⎭⎫2x -122-14, ∵x ∈[-1,1],∴2x ∈⎣⎡⎦⎤12,2, ∴⎝⎛⎭⎫2x -122-14∈⎣⎡⎦⎤-14,2. ∴实数a 的取值范围是⎣⎡⎦⎤-14,2. 答案:⎣⎡⎦⎤-14,2 2.(2018·浙江名校高考研究联盟联考)方程x 2+3x -2=0的解可视为函数y =x +3的图象与函数y =2x的图象交点的横坐标.若方程x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i (i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是________. 解析:由题意知,方程x 4+ax -4=0的实根是曲线y =x 3+a 与曲线y =4x 的交点的横坐标,而曲线y =x 3+a 是由函数y =x 3的图象向上或向下平移|a |个单位长度得到的.若方程x 4+ax -4=0的各个实数根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i(i =1,2,…,k )均在直线y =x 的同侧,如图,结合图象可得⎩⎪⎨⎪⎧ a >0,-23+a >-2或⎩⎪⎨⎪⎧a <0,23+a <2,解得a <-6或a >6,所以实数a 的取值范围是(-∞,-6)∪(6,+∞).答案:(-∞,-6)∪(6,+∞)第二节 函数模型及其应用1.几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函 数模型 f (x )=kx +b (k ,b 为常数且k ≠0) 二次函数模型f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0) 指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型 f (x )=ax n +b (a ,b 为常数,a ≠0)函数 性质 y =a x (a >1) y =log a x (a >1) y =x n (n >0) 在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化随x 的增大 逐渐表现为 随x 的增大 逐渐表现为随n 值变化 而各有不同与y轴平行与x轴平行值的比较存在一个x0,当x>x0时,有log a x<x n<a x3.解函数应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的函数模型;(3)解模:求解函数模型,得出数学结论;(4)还原:将数学结论还原为实际意义的问题.以上过程用框图表示如下:[小题体验]1.(教材习题改编)一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的()答案:B2.已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到________只.答案:2001.函数模型应用不当,是常见的解题错误.所以要正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[小题纠偏]1.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点答案:D2.据调查,某自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是__________.答案:y=-0.1x+1 200(0≤x≤4 000)考点一二次函数模型重点保分型考点——师生共研[典例引领]某跳水运动员在一次跳水训练时的跳水曲线为如图所示抛物线的一段.已知跳水板AB长为2 m,跳水板距水面CD的高BC为3 m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距h m(h≥1)时达到距水面最大高度4 m,规定:以CD为横轴,BC为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.解:由题意,最高点为(2+h,4),(h≥1).设抛物线方程为y=a[x-(2+h)]2+4.(1)当h=1时,最高点为(3,4),方程为y=a(x-3)2+4.(*)将点A(2,3)代入(*)式得a=-1.即所求抛物线的方程为y=-x2+6x-5.(2)将点A(2,3)代入y=a[x-(2+h)]2+4,得ah2=-1.由题意,方程a[x-(2+h)]2+4=0在区间[5,6]内有一解.令f (x )=a [x -(2+h )]2+4=-1h2[x -(2+h )]2+4,则⎩⎨⎧f 5=-1h 23-h 2+4≥0,f6=-1h24-h2+4≤0.解得1≤h ≤43.故达到比较好的训练效果时的h 的取值范围是⎣⎡⎦⎤1,43. [由题悟法]二次函数模型问题的3个注意点(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题.[即时应用]A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 解:(1)由题意知x 的取值范围为[10,90]. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝⎛⎭⎫x -10032+50 0003, 所以当x =1003时,y min =50 0003. 故核电站建在距A 城1003 km 处,能使供电总费用y 最少.考点二 函数y =x +ax模型的应用重点保分型考点——师生共研[典例引领]为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.解:(1)由已知条件得C (0)=8,则k =40,因此f (x )=6x +20C (x )=6x +8003x +5(0≤x ≤10). (2)f (x )=6x +10+8003x +5-10≥2 6x +10·f(8003x +5)-10=70(万元), 当且仅当6x +10=8003x +5, 即x =5时等号成立.所以当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元.[由题悟法]应用函数y =x +a x模型的关键点 (1)明确对勾函数是正比例函数f (x )=ax 与反比例函数f (x )=b x叠加而成的. (2)解决实际问题时一般可以直接建立f (x )=ax +b x的模型,有时可以将所列函数关系式转化为f (x )=ax +b x的形式. (3)利用模型f (x )=ax +b x求解最值时,要注意自变量的取值范围,及取得最值时等号成立的条件. [即时应用]“水资源与永恒发展”是2015年联合国世界水资源日主题,近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费C (单位:万元)与安装的这种净水设备的占地面积x (单位:平方米)之间的函数关系是C (x )=k 50x +250(x ≥0,k 为常数).记y 为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.(1)试解释C (0)的实际意义,并建立y 关于x 的函数关系式并化简;(2)当x 为多少平方米时,y 取得最小值,最小值是多少万元?解:(1)C (0)表示不安装设备时每年缴纳的水费为4万元,∵C (0)=k 250=4, ∴k =1 000,∴y=0.2x+1 00050x+250×4=0.2x+80x+5(x≥0).(2)y=0.2(x+5)+80x+5-1≥20.2×80-1=7,当x+5=20,即x=15时,y min=7,∴当x为15平方米时,y取得最小值7万元.考点三指数函数与对数函数模型重点保分型考点——师生共研[典例引领](2016·四川高考)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg 1.12≈0.05,lg 1.3≈0.11, lg 2≈0.30)A.2018年B.2019年C.2020年D.2021年解析:选B法一:设2015年后的第n年,该公司全年投入的研发资金开始超过200万元,由130(1+12%)n>200,得 1.12n>2013,两边取常用对数,得n>lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n≥4,∴从2019年开始,该公司全年投入的研发资金开始超过200万元.法二:根据题意,知每年投入的研发资金增长的百分率相同,所以从2015年起,每年投入的研发资金组成一个等比数列{a n},其中,首项a1=130,公比q=1+12%=1.12,所以a n=130×1.12n-1.由130×1.12n-1>200,两边同时取常用对数,得n-1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.3-0.110.05=3.8,则n>4.8,即a5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B.[由题悟法]指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.[即时应用]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.解:(1)由题图,设y =⎩⎪⎨⎪⎧ kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1, 当t =1时,由y =4得k =4,由⎝⎛⎭⎫121-a =4得a =3.所以y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1. (2)由y ≥0.25得⎩⎪⎨⎪⎧ 0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧ t >1,⎝⎛⎭⎫12t -3≥0.25,解得116≤t ≤5. 因此服药一次后治疗疾病有效的时间是5-116=7916(小时).。

高中数学课本全套pdf

高中数学课本全套pdf

高中数学课本全套pdf篇一:人教版必修1高一数学全套打包,150页)人教版高中数学必修1精品教案(整套)课题:集合的含义与表示(1)课型:新授课教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的“属于”和“不属于”关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生,在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而1不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程x2?1?0的解;(5) 某校2007级新生;(6) 血压很高的人;(7) 著名的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生。

2对学生的解答予以讨论、点评,进而讲解下面的问题。

4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:给定一个集合与集合里面元素的顺序无关。

新教材苏教版高中数学必修一 知识点09 函数的表示方法

新教材苏教版高中数学必修一 知识点09 函数的表示方法

高一数学同步精品课堂讲、例、测(苏教版2019必修第一册)知识点9函数的表示方法教材知识梳理函数的表示法-------理解函数表示法的三个关注点(1)列表法、图象法、解析法均是函数的表示法,无论是哪种方式表示函数,都必须满足函数的概念.(2)列表法更直观形象,图象法从形的角度描述函数,解析法从数的角度描述函数.(3)函数的三种表示法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.函数三种表示法的优缺点比较:求函数解析式的四种常用方法(1)换元法:设t=g(x),解出x,代入f(g(x)),求f(t)的解析式即可.(2)配凑法:对f(g(x))的解析式进行配凑变形,使它能用g(x)表示出来,再用x代替两边所有的“g(x)”即可.(3)待定系数法:若已知f(x)的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.(4)方程组法(或消元法):当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解.提醒:应用换元法求函数解析式时,务必保证函数在换元前后的等价性.分段函数图象的画法(1)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.(2)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.分段函数的实际应用(1)当目标在不同区间有不同的计算表达方式时,往往需要用分段函数模型来表示两变量间的对应关系,而分段函数图象也需要分段画.(2)分段函数模型应用的关键是确定分段的各分界点,即明确自变量的取值区间,对每一个区间进行分类讨论,从而写出相应的函数解析式.例题研究一、求函数的解析式题型探究例题1已知函数()f x 的定义域为R ,且对任意x ∈R 均满足:2()()31f x f x x --=+,则函数()f x 的解析式为( ) A .()1f x x =+ B .()1f x x C .()1f x x =-+ D .()1f x x =--【答案】A【分析】利用构造方程组的方法,解出()f x 的解析式. 【详解】由2()()31f x f x x --=+,可得2()()31f x f x x --=-+ ①又4()2()62f x f x x --=+①,+①②得:()333f x x =+,解得()1f x x =+故选:A【点睛】考查函数解析式的求法,考查学生计算能力,属于基础题. 例题2如图中的图象所表示的函数的解析式为( )A .31(02)2y x x =-≤≤B .331(02)22y x x =--≤≤ C .31(02)2y x x =--≤≤ D .11(02)y x x =--≤≤【答案】B【分析】分段求解:分别把0≤x≤1及1≤x≤2时的解析式求出即可. 【详解】当0≤x≤1时,设f (x )=kx ,由图象过点(1,32),得k=32,所以此时f (x )=32x ; 当1≤x≤2时,设f (x )=mx+n ,由图象过点(1,32),(2,0),得3202m n m n ⎧=+⎪⎨⎪=+⎩,解得3m 23n ⎧=-⎪⎨⎪=⎩ 所以此时f (x )=3-x 32+.函数表达式可转化为:y =32 32-|x -1|(0≤x≤2) 故答案为B【点睛】考查函数解析式的求解问题,本题根据图象可知该函数为分段函数,分两段用待定系数法求得.跟踪训练训练1已知()f x 是一次函数,且(1)35f x x -=-,则()f x 的解析式为( ) A .()32f x x =+ B .()32f x x =-C .()23f x x =+D .()23f x x =-【答案】B【分析】设()f x kx b =+,(0k ≠),利用()135f x x -=-两边恒等求出k 即可得结果. 【详解】设()f x kx b =+,(0k ≠)①()()1135f x k x b x -=-+=-, 即35kx k b x -+=-,所以35k b k =⎧⎨-=-⎩,解得3k =,2b =-,①()32f x x =-,故选B .【点睛】考查函数解析式的求法,属于中档题.求函数的解析式常见题型有以下几种:(1)根据实际应用求函数解析式;(2)换元法求函数解析式,利用换元法一定要注意,换元后参数的范围;(3)待定系数法求函数解析式,这种方法适合求已知函数名称的函数解析式;(4)消元法求函数解析式,这种方法求适合自变量互为倒数或相反数的函数解析式. 训练2设函数()f x 的定义域为R ,满足(2)2()f x f x -=,且当[)2,0x ∈-时,()2(2)f x x x =-+.若对任意[),x m ∈+∞,都有3()4f x ≤,则m 的取值范围是( ) A .2,3⎡⎫+∞⎪⎢⎣⎭B .3,4⎡⎫+∞⎪⎢⎣⎭C .1,2⎡⎫+∞⎪⎢⎣⎭D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】D【分析】根据题设条件可得当)12,2k k x +⎡∈⎣时,()10,2k f x ⎡⎤∈⎢⎥⎣⎦,其中*k N ∈,结合函数在[)0,2上的解析式和函数在[)2,-+∞的图象可求m 的取值范围. 【详解】当[)2,0x ∈-时,()2()212f x x =-++,故()[]2()2120,2f x x =-++∈,因为(2)2()f x f x -=,故当[)0,2x ∈时,[)22,0x -∈-,()()()[]1220,12f x f x x x =-=--∈,同理,当[)2,4x ∈时,()()1120,22f x f x ⎡⎤=-∈⎢⎥⎣⎦, 依次类推,可得当)12,2k k x +⎡∈⎣时,()10,2k f x ⎡⎤∈⎢⎥⎣⎦,其中*k N ∈. 所以当2x ≥时,必有3()4f x ≤. 如图所示,因为当[)0,2x ∈时,()f x 的取值范围为[]0,1, 故若对任意[),x m ∈+∞,都有3()4f x ≤,则0m ≥, 令232402x x x ⎧-+≤⎪⎨⎪≤<⎩,322x ≤<或102x ≤≤,结合函数的图象可得32m ≥, 故选:D.【点睛】思路点睛:此类问题考虑函数的“类周期性”,注意根据已知区间上函数的性质推证函数在其他区间上的性质,必要时应根据性质绘制函数的图象,借助形来寻找临界点.二、分段函数的实际应用题型探究例题1已知21,[1,0)()1,[0,1]x x f x x x +∈-⎧=⎨+∈⎩,则函数()y f x =-的图象是( ) A . B .C .D .【答案】A【分析】先画函数()f x 的图象,再根据函数()f x 的图象与()f x -的图象关于y 轴对称,即可选出正确选项.【详解】先画函数21,[1,0)()1,[0,1]x x f x x x +∈-⎧=⎨+∈⎩的图象,如下图:因为函数()f x 的图象与()f x -的图象关于y 轴对称,只有A 选项的图象符合.故选:A.【点睛】考查分段函数的画法,同时考查函数有关对称性的知识,解题的关键是把原函数的图象画出,那么对称函数的图象随之可得.例题2函数22,01()2,123,2x x f x x x ⎧≤≤⎪=<<⎨⎪≥⎩的值域是( )A .RB .[0,+∞)C .[0,3]D .{x |0≤x ≤2或x =3}【答案】D【分析】分段函数的值域等于每一段函数的值域的并集. 【详解】解:当01x ≤≤时,2()2f x x =,其值域为[0,2], 所以()f x 值域为[0,2]①{3,2}={x |0≤x ≤2或x =3}. 故选:D【点睛】考查求分段函数的值域,分段函数的值域等于每一段函数的值域的并集,属于基础题.跟踪训练训练1设{},()max ,,,()a ab a b b a b ≥⎧=⎨<⎩则函数22()max{,1}=--f x x x x 的单调增区间为( )A .1[1,0],[,)2-+∞B .1(,1],[0,]2-∞-C .1(,],[0,1]2-∞- D .1[,0],[1,)2-+∞ 【答案】D【分析】由221x x x -=-,解出x 的值,作出两个函数的图像,当1≥x 或12x ≤-时,{}222()max ,1f x x x x x x =--=-据此可得此时函数的递增区间,当{}22211,(),112x f x max x x x x -<<=--=-,据此可得此时函数的递增区间,综合即可得到结论. 【详解】由221x x x -=-得2210x x --=,解得1x =或12x =-,当1≥x 或12x ≤-时,{}222()max ,1f x x x x x x =--=-此时函数的递增区间为[1,)+∞, 当{}22211,(),112x f x max x x x x -<<=--=-,此时函数的递增区间为1,02⎡⎤-⎢⎥⎣⎦, 综上所述函数的递增区间为1[,0],[1,)2-+∞. 故选:D【点睛】考查函数单调区间,解题的关键是掌握函数单调性及单调区间的求法,属于中档题. 训练2设定义在R 上的函数()y f x =,对于任一给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p ⎧≤⎪=⎨>⎪⎩,则称函数()p f x 为()f x 的“p 界函数”.关于函数()221f x x x =--的2界函数,结论不成立的是( )A .()()()()22 00f f f f = B .()()()()22 11f f f f = C .()()()()2222f f f f = D .()()()()2233f f f f = 【答案】B【分析】先求得函数()f x 的“2界函数”,然后对四个选项逐一进行排除,由此得到正确选项. 【详解】令2212x x --=,解得1x =-或3x =,根据“p 界函数”的定义,有()222,321,132,1x f x x x x x >⎧⎪=---≤≤⎨⎪<-⎩,所以()()()22012f f f =-=,()()()2012ff f =-=,故A 选项成立;()()()22122f f f =-=,()()()2127f f f =-=,故B 选项不成立;()[]22212f f f ⎡⎤=-=⎣⎦,()()()2212f f f =-=,故C 选项成立; ()()()22231f f f ==-,()()()2321f f f ==-,故D 选项成立.故选:B.【点睛】考查新定义函数的概念及应用,考查分段函数求值,考查分析问题和解决问题的能力.属于中档题.解题的突破口在于理解新定义的函数:新定义的函数关键是函数值大于p ,或者函数值小于或等于p ,也就是先要求得函数值等于p 时对应x 的值,由此写出分段函数“p 界函数”.三、函数三种表示法题型探究例题1某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )A .B .C .D .【答案】D【分析】根据学生的走法情况,先跑步(快速),再步行(慢速),从离校的距离与出发时间的函数图象来看,先陡后平缓,且y 随着x 的增大而减小,由此可作出判断. 【详解】由题意可知,一开始速度较快,后来速度变慢,所以开始曲线比较陡峭, 后来曲线比较平缓,又纵轴表示离校的距离,所以开始时距离最大, 最后距离为0,故符合要求的图象为D 选项中的图象. 故选:D.【点睛】考查实际问题中函数图象的识别,属于基础题. 例题2已知函数()y f x =,用列表法表示如下:则(2)[(2)]f f f -+-=( ) A .4- B .0C .2D .3【答案】D【分析】根据表格中自变量x 和函数值y 的对应关系,代入数据,即可得答案.【详解】由表格可得:(2)1f -=,所以[(2)](1)2f f f -==,所以(2)(2)3f f +-=故选:D跟踪训练训练1已知函数()f x 满足()()1120f f x x x x x⎛⎫+-=≠⎪⎝⎭,则()2f -= A .72-B .92C .72D .92-【答案】C【分析】令1x x=-,代入解析式,通过解方程组即可求得()f x -的解析式,进而求得()2f -的值. 【详解】由()()112?1f f x x x x ⎛⎫+-=⎪⎝⎭, 可得()12? f x xf x x ⎛⎫--=- ⎪⎝⎭(2), 将(1)x ⨯+(2)得:()2222f x x x-=-⇒()21,f x x x -=-()722f ∴-=, 故选C .【点睛】考查了函数解析式的求法,方程组法在解析式求法中的应用,属于中档题. 训练2如图,矩形AOBC 的面积为4,反比例函数(0)ky k x=≠的图像的一支经过矩形对角线的交点P ,则该反比例函数的解析式是( )A .1y x =-B .1y x=C .2y x=- D .2y x=【答案】A【分析】本题首先可设矩形的长为a 、宽为4a,然后结合图像得出点P 的坐标为2,2a a,最后根据点P 在反比例函数(0)ky k x=≠上即可得出结果. 【详解】设矩形的长为a ,则矩形的宽为4a,结合图形可知,点P 的坐标为2,2a a, 因为点P 在反比例函数(0)ky k x=≠上, 所以22a a k=-,解得1k =-,1y x =-,故选:A.【点睛】考查反比例函数解析式的求法,能否根据图像和矩形面积确定点P 坐标是解决本题的关键,考查数形结合思想,考查计算能力,是简单题.综合式测试一、单选题1.已知函数2221,0()log ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,若()()()()1234f x f x f x f x ===,且1234x x x x <<<,则下列判断正确的个数为( ) ①122x x +=-; ①341x x =;①212≤-x x ;①431≤-x x . A .1 B .2C .3D .4【答案】C【分析】先画出()f x 的图象如图所示,令()()()()1234f x f x f x f x t ====,由图可知当1t =时,21x x -和43x x -都取得最大值,从而可求得最值,12,x x 关于二次函数221y xx =++的对称轴1x =-对称,可得122x x +=-,由34()()f x f x =可得2324log log x x -=,化简可得341x x =【详解】解:令()()()()1234f x f x f x f x t ====,即函数()f x 的图象与直线y t =有4个不同的交点,()f x 的图象如图所示,由图可知(0,1]t ∈,12,x x 关于二次函数221y x x =++的对称轴1x =-对称,则122x x +=-,所以①正确;当1t =时,21x x -取得最大值,且此时212x x -=,故212≤-x x ,所以①正确; 因为34()()f x f x =,所以2324log log x x -=,即2324log log 0x x +=,234log ()0x x =,所以341x x =,所以①正确;因为当1t =时,43x x -取得最大值,此时2324log log 1x x -==,解得341,22x x ==,所以此时43132122x x -=-=>,所以①错误, 所以正确的有①①①,共3个, 故选:C【点睛】考查函数和方程的应用,解题的关键是正确画出函数图象,利用数形结合的思想求解,属于中档题2.定义在R 上的函数()f x 满足()()22f x f x +=,且当(]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,若任给[]12,0x =-,存在[]22,1x ∈-,使得()()21g x f x =,则实数a 的取值范围为( ). A .11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B .11,00,48⎡⎫⎛⎤-⎪⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】D【分析】求出()f x 在[2,4]上的值域,利用()f x 的性质得出()f x 在[2-,0]上的值域,再求出()g x 在[2-,1]上的值域,根据题意得出两值域的包含关系,从而解出a 的范围【详解】解:当[2,4]x ∈时,224,23()2,34x x x f x x x x⎧-+⎪=⎨+<≤⎪⎩,可得()f x 在[2,3]上单调递减,在(3,4]上单调递增,()f x ∴在[2,3]上的值域为[3,4],在(3,4]上的值域为11(3,9]2,()f x ∴在[2,4]上的值域为[3,9]2,(2)2()f x f x +=,11()(2)(4)24f x f x f x ∴=+=+, ()f x ∴在[2,0]-上的值域为3[4,9]8,当0a >时,()g x 为增函数,()1g x ax =+在[2-,1]上的值域为[21a -+,1]a +,∴3214918a a ⎧≥-+⎪⎪⎨⎪+⎪⎩,解得18a ;当0a <时,()g x 为减函数,()g x 在[2-,1]上的值域为[1a +,21]a -+,∴3149218a a ⎧+⎪⎪⎨⎪-+⎪⎩,解得14a -;当0a =时,()g x 为常数函数,值域为{1},不符合题意;综上,a 的范围是18a 或14a -. 故选:D .【点睛】考查了分段函数的值域计算,集合的包含关系,对于不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .3.已知函数()22log (1),142,1x x f x x x x ⎧-<=⎨-+-≥⎩,则方程121f x x ⎛⎫+-= ⎪⎝⎭的实根的个数为( )A .5B .6C .7D .8【答案】B【分析】由()1f x =可得13,1,1,2x x x x ===-=,而由121f x x ⎛⎫+-= ⎪⎝⎭,可得121x x +-=-,或1122x x +-=,或121x x +-=,或123x x+-=,然后分别解这四个方程,可得答案 【详解】解:当1x <时,令()1f x =,则2log (1)1x -=,解得1x =-或12x =, 当1≥x 时,令()1f x =,则2421x x -+-=,解得1x =或3x =,因为121f x x ⎛⎫+-= ⎪⎝⎭, 所以121x x +-=-,或1122x x +-=,或121x x +-=,或123x x+-=, 由121x x+-=-,得210x x -+=,此时2(1)40∆=--<,方程无解; 由1122x x +-=,得22520x x -+=,此时2(5)42290∆=--⨯⨯=>,所以方程有两个不相等的实根,分别2x =或12x =;由121x x+-=,得2310x x -+=,此时2(3)41150∆=--⨯⨯=>,所以方程有两个不相等的实根,即为x =由123x x+-=,得2510x x -+=,此时2(5)411210∆=--⨯⨯=>,所以方程有两个不相等的实根,即为52x =, 所以方程121f x x ⎛⎫+-= ⎪⎝⎭的实根的个数为6, 故选:B【点睛】考查函数与方程的应用,解题的关键是由()1f x =可得13,1,1,2x x x x ===-=,从而可得121x x +-=-,或1122x x +-=,或121x x +-=,或123x x+-=,然后解方程可得答案,考查数学转化思想和计算能力,属于中档题4.已知函数()1212,02log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,且()0f m =,则不等式()f x m >的解集为( )A .10,2⎛⎫ ⎪⎝⎭B .()0,1C .11,2⎛⎫- ⎪⎝⎭D .()1,-+∞【答案】C【分析】分0m ≤和0m >解方程()0f m =,求出m 的值,然后分0x ≤和0x >解不等式()f x m >,即可得出结果. 【详解】当0m ≤时,()1202mf m =+>,方程()0f m =无解; 当0m >时,令()12log 0f m m ==,解得1m =,合乎题意.下面解不等式()1f x >.当0x ≤时,令()1212xf x =+>,得出122x >,解得1x >-,此时,10-<≤x ;当0x >时,令()11221log 1log 2f x x =>=,解得12x <,此时,102x <<. 因此,不等式()f x m >的解集为11,2⎛⎫- ⎪⎝⎭.故选:C.【点睛】考查分段函数方程与分段函数不等式的求解,在解题时要注意对自变量的取值进行分类讨论,选择合适的解析式进行计算,考查分类讨论思想的应用与运算求解能力,属于中等题.5.已知2(),()32,()2()()g x f x x g x x x F x f x ⎧=-=-=⎨⎩, ()()()()f x g x f x g x ≥<,则()F x 的最值是( )A .最大值为3,最小值-1 B.最大值为 C .最大值为3,无最小值 D .既无最大值,又无最小值【答案】B【分析】根据函数表达式画出各自图象,()F x 其实表示的是(),()f x g x 较小的值.【详解】如图,在同一坐标系中画出(),()f x g x 图象,又()F x 表示两者较小值,所以很清楚发现()F x 在A 处取得最大值23+222=3+2A A A x x x x y x =-⇒= B.【点睛】取两函数较大值(较小值)构成的新函数问题,有效的手段就是构建图象,数形结合.6.已知函数f (x )=2,02,0x x a x x -⎧⋅≥⎨<⎩(a ①R),若f [f (-1)]=1,则a =( )A .14B .12C .1D .2【答案】A【分析】由题意,函数()f x 的解析式,可得()12f -=,进而求解()(1)f f -的值,列出方程,即可求解. 【详解】由题意,函数()2,02,0x x a x f x x -⎧⋅≥=⎨<⎩,则()(1)122f ---==, 则()2(1)(2)241f f f a a -==⋅==,所以14a =,故选A. 【点睛】考查了分段函数的应用问题,其中解答中根据分段函数的分段条件,合理选择相应的对应法则求解是解答的关键.7.已知f (x )=21102(1)0x x x x ⎧+≤⎪⎨⎪-->⎩,,使f (x )≥–1成立的x 的取值范围是A .[–4,2)B .[–4,2]C .(0,2]D .(–4,2]【答案】B 【解析】①f (x )≥–1,①01112x x ≤⎧⎪⎨+≥-⎪⎩或()2011x x >⎧⎪⎨--≥-⎪⎩,①–4≤x ≤0或0<x ≤2,即–4≤x ≤2.故选B . 8.已知函数()()()()()()()()()2,32,2,,,g x f x g x f x x g x x x F x f x g x f x ⎧≥⎪=-=-=⎨≥⎪⎩则( ) A .()F x 的最大值为3,最小值为1B .()F x的最大值为2C .()F x 的最大值为7-,无最小值D .()F x 的最大值为3,最小值为1-【答案】C【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值,所以由232||2x x x -=-得2x =2x =结合函数图象可知当2x =()F x 有最大值7- 故选:C .【点睛】考查了函数的图象,以及函数求最值,同时考查了分析问题的能力和作图的能力. 二、填空题9.设函数()f x 对于所有的正实数x ,均有(3)3()f x f x =,且()12(13)f x x x =--≤≤,则使得()(2014)f x f =的最小的正实数x 的值为____.【答案】416【分析】由题可得(2014)173f =,根据13,233()333,123n n nn n n x x x f x f x x +⎧-≤≤⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪-≤<⎪⎩分情况讨论可求解.【详解】对于所有的正实数x ,均有(3)3()f x f x =,()33x f x f ⎛⎫∴=⎪⎝⎭, 22201420142014(2014)333333n n f f f f ⎛⎫⎛⎫⎛⎫∴==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当6n =时,[]620141,33∈, 662014(2014)3121733f ⎛⎫∴=-+= ⎪⎝⎭,13,233()333,123n n n n n n x x x f x f x x +⎧-≤≤⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪-≤<⎪⎩,当13173233n n x x +⎧-=⎪⎨≤≤⎪⎩时,113173233n n n x x ++⎧=-⎨⨯≤≤⎩,当6n =时,x 取得最小正值为556; 当3173123n n x x ⎧-=⎪⎨≤<⎪⎩时,3173323n n nx x ⎧=+⎨≤<⨯⎩,当5n =时,x 取得最小正值为416, 综上,使得()(2014)f x f =的最小的正实数x 的值为416.故答案为:416.【点睛】考查分段函数的应用,考查函数性质等基础知识,解题的关键是由已知得出13,233()333,123n n n n n n x x x f x f x x +⎧-≤≤⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪-≤<⎪⎩.10.已知函数2223,2()log ,2x x x f x a x x ⎧-+≤=⎨+>⎩有最小值,则1f a ⎛⎫⎪⎝⎭的取值范围为__________. 【答案】[2,3) 【分析】函数()f x 有最小值,所以求出1a ≥,则有101a<≤,代入()f x 求出()f x 的取值范围. 【详解】当2x ≤时,2()(1)2f x x =-+的最小值为2.当x 2>时,要使()f x 存在最小值,必有2log 22a +≥,解得1a ≥.101a∴<≤,21112[2,3)fa a ⎛⎫⎛⎫∴=-+∈ ⎪ ⎪⎝⎭⎝⎭. 故答案为:[2,3).【点睛】考查分段函数求函数值的范围,属于中档题. 易错点睛:(1)分段函数是一个函数,只有一个最值; (2)分段函数已知函数值求自变量的取值,要分段讨论.11.已知函数211,0,22()13,,12x x f x x x ⎧⎡⎫+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩,若存在12x x <,使得()()12f x f x =,则()12x f x ⋅的取值范围为_____________.【答案】,162⎪⎢⎣⎭【分析】根据条件作出函数图象求解出1x 的范围,利用()()12f x f x =和换元法将()12x f x ⋅变形为二次函数的形式,从而求解出其取值范围. 【详解】由解析式得()f x 大致图象如下图所示:由图可知:当12x x <时且()()12f x f x =,则令211322x ⎛⎫+=⋅ ⎪⎝⎭,解得:14x =, 111,42x ⎡⎫∴∈⎪⎢⎣⎭,又()()12f x f x =,221221333,124x x x ⎛⎫⎡⎫∴+=∈⎪ ⎪⎢⎣⎭⎝⎭,()2222121332x f x x x ⎛⎫∴⋅=⋅- ⎪⎝⎭,令2233,14x t ⎡⎫=∈⎪⎢⎣⎭,则()()2211113,124164x f x g t t t t t ⎛⎫⎛⎫⎛⎫⎡⎫⋅==-=--∈ ⎪ ⎪⎪ ⎪⎢⎝⎭⎝⎭⎣⎭⎝⎭, ()31,162g t ⎡⎫∴∈⎪⎢⎣⎭,即()2131,162x f x ⎡⋅⎫∈⎪⎢⎣⎭.故答案为:,162⎪⎢⎣⎭【点睛】思路点睛:根据分段函数的函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误. 12.定义在R 上函数()f x 满足()()112f x f x +=,且当[)0,1x ∈时,()121f x x =--.若当x ①[),m +∞时,()116f x ≤,则m 的最小值等于________. 【答案】154. 【分析】转化条件为在区间[)(),1n n n Z +∈上,()()11122122n n f x x n ⎡⎤=--+≤⎣⎦,作出函数的图象,数形结合即可得解. 【详解】 由题意,当[)1,2x ∈时,故()()()11112322f x f x x =-=--, 当[)2,3x ∈时,故()()()11112524f x f x x =-=--⋅⋅⋅, 可得在区间[)(),1n n n Z +∈上,()()11122122n n f x x n ⎡⎤=--+≤⎣⎦, 所以当4n ≥时,()116f x ≤, 作函数()y f x =的图象,如图所示,当7,42x ⎡⎫∈⎪⎢⎣⎭时,由()()11127816f x x =--=得154x =, 由图象可知当154x ≥时,()116f x ≤,所以m 的最小值为154. 故答案为:154. 【点睛】考查了分段函数解析式的求解及图象的应用,考查了运算求解能力与数形结合思想,属于中档题. 三、解答题13.根据下列条件,求函数()f x 的解析式;(1)已知()f x 是一次函数,且满足()()3121217f x f x x +--=+;(2)已知3311f x x x x ⎛⎫+=+ ⎪⎝⎭; (3)已知等式()()()21f x y f x y x y -=--+对一切实数x 、y 都成立,且()01f =;(4)知函数()f x 满足条件()123f x f x x ⎛⎫+= ⎪⎝⎭对任意不为零的实数x 恒成立 【答案】(1)()27f x x =+;(2)3()3(2f x x x x =-≥或2)x ≤-;(3)()21f x x x =++;(4)1()2(0)f x x x x=-≠.【分析】(1)设函数()f x kx b =+,结合等式()()3121217f x f x x +--=+,利用一次项系数和常数项分别相等列出方程组解出k b 、的值,即可得出函数()f x 的解析式;(2)用配凑法根据232321111113x x x x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=++-=++-⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,然后换元1t x x =+可得出函数()y f t =的解析式,利用双勾函数求出1t x x=+的取值范围,即为函数()y f x =的定义域; (3)由已知令x y =,则有()()()021f f x x x x =--+且()01f =,化简即可求得结果;(4)将1x代入等式()123f x f x x ⎛⎫+= ⎪⎝⎭得出132()f f x x x ⎛⎫+= ⎪⎝⎭,与原式列方程組解出函数()y f x =的解析式. 【详解】(1)设()(0)f x kx b k =+≠,则[][]3(1)2(1)3(1)2(1)5217f x f x k x b k x b kx b k x +--=++--+=++=+所以2,517k b k =⎧⎨+=⎩解得:2,7k b =⎧⎨=⎩所以()27f x x =+;(2)232321111113x x x x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=++-=++-⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦33311113f x x x x x x x x ⎛⎫⎛⎫⎛⎫+=+=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴,令1t x x=+,由双勾函数的性质可得2t ≤-或2t ≥, 3()3f t t t =-∴,3()3(2f x x x x =-≥∴或2)x ≤-(3)因为()()()21f x y f x y x y -=--+对一切实数x 、y 都成立,且()01f = 令x y =则()()()021f f x x x x =--+,又因为()01f = 所以()()()01=1f f x x x =-+,即()22+1f x x x =+(4)将1x代入等式()123f x f x x ⎛⎫+= ⎪⎝⎭得出132()f f x x x ⎛⎫+= ⎪⎝⎭,联立12()313()2f x f x x f x f x x ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,变形得:14()2613()2f x f x x f x f x x ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,解得1()2(0)f x x x x=-≠ 【点睛】考查求函数解析式的一般方法:配凑法、换元法、待定系数法、方程组法.14.若函数f (x )()()2211,02,0b x b x x b x x ⎧-+->⎪=⎨-+-≤⎪⎩,满足对于任意的12x x ≠,都有()()12120f x f x x x ->-成立,g (x )=23x +.(1)求b 的取值范围;(2)当b =2时,写出f [g (x )],g [f (x )]的表达式.【答案】(1)12b ≤≤;(2)()()23610,2323,2x x f g x x x ⎧+>-⎪⎪⎡⎤=⎨⎣⎦⎪-+≤-⎪⎩;[]265,0()23,0x x g f x x x +>⎧=⎨-+≤⎩. 【分析】(1)先利用已知条件判断函数单调性,再根据分段函数单调性列条件计算即得结果;(2)先讨论()g x 的符号,再代入分段函数()f x 解析式中,即得[]()f g x 的解析式;利用分段函数()f x 的解析式,直接代入()g x 的解析式,即得[]()g f x 的解析式.【详解】解:(1)因为任意的12x x ≠,都有()()12120f x f x x x ->-成立,故设任意的12x x <时,有()()12f x f x <,即分段函数()f x 在R 上单调递增,故当0x >时,()()211f x b x b =-+-单调递增,即210b ->,即12b >; 当0x ≤时,()2()2f x x b x =-+-单调递增,即对称轴202bx -=≥,即2b ≤; 且在临界点0x =处,左边取值不大于右边取值,即01b ≤-,即1b ≥ . 综上,b 的取值范围是12b ≤≤;(2)当b =2时,231,0(),0x x f x x x +>⎧=⎨-≤⎩,又()23g x x =+, 故当()230g x x =+>时,即32x >-时,()()3231610f g x x x ⎡⎤=++=+⎣⎦, 当()230g x x =+≤时,即32x ≤-时,[]()2()23f g x x =-+, 故()()23610,2323,2x x f g x x x ⎧+>-⎪⎪⎡⎤=⎨⎣⎦⎪-+≤-⎪⎩; 当0x >时,()31f x x =+,则[]()(31)2(31)365g f x g x x x =+=++=+, 当0x ≤时,2()f x x =-,则[]22()()23g f x g x x =-=-+,故[]265,0()23,0x x g f x x x +>⎧=⎨-+≤⎩. 【点睛】关键点点睛::要讨论分段函数的自变量所在的取值区间确定对应的关系式,进而代入,以突破难点.15.已知函数()f x 的解析式为()()()()350501281x x f x x x x x ⎧+≤⎪=+<≤⎨⎪-+>⎩,(1)求12f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; (2)若()2f a =,求a 的值;(3)画出()f x 的图象,并求出函数的值域;【答案】(1)3-;(2) 1a =-或3;(3)答案见解析,值域为(],6-∞;【分析】(1)先求出12f ⎛⎫ ⎪⎝⎭,进而可求出12f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. (2)按0a ≤,01a <≤,1a >三种情况进行讨论,分别由()2f a =列出关于a 的方程,进而可求出a 的值.(3)画出分段函数的图象后,由图象可求出函数的值域.【详解】(1)解:因为1012<<,所以111122f ⎛⎫=> ⎪⎝⎭,则11111283222f f f ⎛⎫⎛⎫⎛⎫==-⨯+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)解:当0a ≤时,()352f a a =+=,解得1a =-;当01a <≤时,()52f a a =+=, 解得3a =-,不符合题意;当1a >时,282a -+=,解得3a =,综上所述,1a =-或3.(3)解:如图所示,当1x =时,函数最大值为6,无最小值,所以值域为(],6-∞.【点睛】考查了分段函数函数值的求解,考查了分段函数图象.。

高中数学必修一课件:第四章函数的零点与方程的解

高中数学必修一课件:第四章函数的零点与方程的解

要点3 函数零点存在定理 如果函数y=f(x)在区间[a,b]上的图象是一条____连__续_不__断_____的曲线,且有 ___f_(a_)_f(_b)_<_0 ___,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在 c∈(a,b),使得___f(_c)_=_0____,这个c也就是方程f(x)=0的解.
解析 令f(x)=0,得-x2+5x-6=0,即x2-5x+6=0,(x-2)(x-3)=0,
∴x=2或x=3.故选B.
3.方程ex-x=2在实数范围内的解有( C )
A.0个
B.1个
C.2个
D.3个
解析 由题意令y1=ex,y2=x+2,在同一坐标系下作出两个函数的图象, 如图,由图可知两图象有两个交点,即方程ex-x=2有两个解.故选C.
3.如何正确理解函数零点存在定理? 答:(1)并不是所有的函数都有零点,如函数y=1x就没有零点. (2)函数y=f(x)若满足:①函数在区间[a,b]上的图象是一条连续不断的曲 线;②f(a)f(b)<0,则函数y=f(x)在区间(a,b)内有零点. (3)对于有些函数,即使它的图象是一条连续不断的曲线,当它通过零点 时,函数值也不一定变号.如函数y=x2有零点x0=0,但显然函数值没有变 号.但是,对于任意一个函数,相邻的两个零点之间所有的函数值保持同号. (4)函数在区间[a,b]上的图象是一条连续不断的曲线,且在区间(a,b)上单 调,若f(a)f(b)<0,则函数y=f(x)在区间(a,b)内有且只有一个零点.
4.若二次函数y=x2+2x+k+3有两个不同的零点,则k的取值范围是( B )
A.(-2,+∞)
B.(-∞,-2)
C.(2,+∞)

高中数学教案 必修1 第十讲:函数与方程

高中数学教案 必修1 第十讲:函数与方程

博途教育学科教师辅导讲义(一)学员姓名: 年级:高一日期:辅导科目:数学学科教师:刘云丰时间:课题第十讲:函数与方程授课日期教学目标1、能够结合二次函数的图像判断一元二次方程根的存在性及根的个数;2、理解函数的零点与方程的联系.教学内容函数与方程〖教学重点与难点〗◆教学重点:理解函数的零点与方程根的联系,使学生遇到一元二次方程根的问题时能顺利联想函数的思想和方法;◆教学难点:函数零点存在的条件。

〖教学过程〗一、函数的零点探究一元二次方程与相应二次函数的关系。

出示表格,填写表格,并分析填出的表格,从二次方程的根和二次函数的图像与x轴的交点的坐标,探究一元二次方程与相应二次函数的关系。

一元二次方程方程的根二次函数图像与X轴的交点x2-2x-3=0 x1=-1,x2=3 y=x2-2x-3 (-1,0),(3,0)x2-2x+1=0 x1= x2=1 y=x2-2x+1 (1,0)x2-2x+3=0 无实数根y=x2-2x+3 无交点(图1-1)函数y=x 2-2x-3的图像(图1-2)函数y=x 2-2x+1的图像(图1-3)函数y=x 2-2x+3的图像归纳:1.如果一元二次方程没有实数根,相应的二次函数图像与x 轴没有交点;2.如果一元二次方程有实数根,相应的二次函数图像与x 轴有交点。

反之,二次函数图像与x 轴没有交点,相应的一元二次方程没有实数根;二次函数图像与x 轴有交点,则交点的横坐标就是相应一元二次方程的实数根。

1.函数的零点 概念:对于函数y=f(x)(x ∈D),把使f(x)=0成立的实数x 叫做函数y=f(x)(x ∈D)的零点。

xy0 -32 1 12 ----...... . . . .x y-32 1 12 54 3yx-21 12. . .. .(1) 意义方程f(x)=0有实数根函数y=f(x)的图像与x 轴有交点 函数y=f(x)有零点 (2) 求函数的零点① 代数法:求方程f(x)=0的实数根② 几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图像联系起来,并利用函数的性质找出零点。

数学 必修1 函数与方程 总复习

数学 必修1 函数与方程 总复习

高中数学 必修1 数学———函数与方程一.要点精讲1.方程的根与函数的零点(1)函数零点概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点。

零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(<b f a f ,那么函数)(x f y =在区间),(b a 内有零点。

既存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程的根。

2.二分法二分法及步骤:对于在区间a [,]b 上连续不断,且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精度ε,用二分法求函数)(x f 的零点近似值的步骤如下: (1)确定区间a [,]b ,验证)(a f ·)(b f 0<,给定精度ε; (2)求区间a (,)b 的中点1x ; (3)计算)(1x f :①若)(1x f =0,则1x 就是函数的零点;②若)(a f ·)(1x f <0,则令b =1x (此时零点),(10x a x ∈); ③若)(1x f ·)(b f <0,则令a =1x (此时零点),(10b x x ∈); (4)判断是否达到精度ε;即若ε<-||b a ,则得到零点零点值a (或b );否则重复步骤2~4。

注:函数零点的性质从“数”的角度看:即是使0)(=x f 的实数;从“形”的角度看:即是函数)(x f 的图象与x 轴交点的横坐标;若函数)(x f 的图象在0x x =处与x 轴相切,则零点0x 通常称为不变号零点;若函数)(x f 的图象在0x x =处与x 轴相交,则零点0x 通常称为变号零点。

高中数学详细目录章节

高中数学详细目录章节
பைடு நூலகம்
12.3数列的进一步认识 第13章 不等式 13.1不等关系 13.2一元二次不等式 13.3二元一次不等式组与简单的线性规划问题 13.4基本不等式 选修1-1 第1章 常用逻辑用语 1.1命题及其关系 1.2简单的逻辑联结词 1.3全称量词与存在量词 第2章 圆锥曲线与方程 2.1圆锥曲线 2.2椭圆 2.3双曲线 2.4抛物线 2.5圆锥曲线与方程 第3章 导数及其应用 3.1导数的概念 3.2导数的运算 3.3导数在研究函数中的应用 3.4导数在实际生活中的应用 选修1-2 第1章 统计案例 1.1假设检验 1.2独立性检验 1.3线性回归分析 1.4聚类分析 第2章 推理与证明 2.1合情推理与演绎推理 2.2直接证明与间接证明 2.3公理化思想 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 5.2结构图 选修2-1 第1章 常用逻辑用语 1.1命题及其关系 1.2简单的逻辑连接词 1.3全称量词与存在量词 第2章 圆锥曲线与方程 2.1圆锥曲线 2.2椭圆
2.3双曲线 2.4抛物线 2.5圆锥曲线的统一定义 2.6曲线与方程 第3章 空间向量与立体几何 3.1空间向量及其运算 3.2空间向量的应用 选修2-2 第1章 导数及其应用 1.1导数的概念 1.2导数的运算 1.3导数在研究函数中的应用 1.4导数在实际生活中的应用 1.5定积分 第2章 推理与证明 2.1合情推理与演绎推理 2.2直接证明与间接证明 2.3数学归纳法 2.4公理化思想 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 选修2-3 第1章 计数原理 1.1两个基本原理 1.2排列 1.3组合 1.4计数应用题 1.5二项式定理 第2章 概率 2.1随机变量及其概率分布 2.2超几何分布 2.3独立性 2.4二项分布 2.5离散型随机变量的均值与方差 2.6正态分布 第3章 统计案例 3.1假设检验 3.2独立性检验 3.3线性回归分析 4.4聚类分析

函数与方程、不等式之间的关系教案-高一上学期数学人教B版(2019)必修第一册

函数与方程、不等式之间的关系教案-高一上学期数学人教B版(2019)必修第一册

函数与方程、不等式之间的关系【第1课时】【教学目标】【核心素养】1.理解函数零点的概念以及函数的零点与方程的根之间的关系.(难点)2.会求函数的零点.(重点)3.掌握函数与方程、不等式之间的关系,并会用函数零点法求不等式的解集.(重点、难点)1.借助函数零点概念的理解,培养数学抽象的素养.2.通过函数与方程、不等式之间的关系的学习,提升逻辑推理的素养.3.利用零点法求不等式的解集,培养数学运算的素养.【教学过程】一、新知初探1.函数的零点(1)函数零点的概念:一般地,如果函数y=f(x)在实数α处的函数值等于零,即f(α)=0,则称实数α为函数y=f(x)的零点.(2)三者之间的关系:函数f(x)的零点⇔函数f(x)的图像与x轴有交点⇔方程f(x)=0有实数根.2.二次函数的零点及其与对应方程、不等式的关系(1)ax2+bx+c=0(a≠0)的解是函数f(x)=ax2+bx+c的零点.(2)ax2+bx+c>0(a≠0)的解集是使f(x)=ax2+bx+c的函数值为正数的自变量x的取值集合;ax2+bx+c<0(a≠0)的解集是使f(x)=ax2+bx+c 的函数值为负数的自变量x的取值集合.3.图像法解一元二次不等式的步骤(1)解一元二次不等式对应的一元二次方程;(2)求出其对应的二次函数的零点;(3)画出二次函数的图像;(4)结合图像写出一元二次不等式的解集.二、初试身手1.函数y=1+1x的零点是()A.(-1,0)B.x=-1 C.x=1 D.x=0 答案:B解析:令1+1x=0解得x=-1,故选B.2.根据表格中的数据,可以断定方程e x-(x+2)=0(e≈2.72)的一个x -1012 3e x0.3712.727.4020.12x+21234 5A.(-1,0)B.(0,1)C.(1,2)D.(2,3)答案:C解析:令f(x)=e x-(x+2),则f(-1)=0.37-1<0,f(0)=1-2<0,f(1)=2.72-3<0,f(2)=7.40-4=3.40>0.由于f(1)·f(2)<0,∴方程e x-(x+2)=0的一个根在(1,2)内.3.若f(x)=-x2+mx-1的函数值有正值,则m的取值范围是()A.m<-2或m>2 B.-2<m<2C.m≠±2D.1<m<3答案:A解析:∵f(x)=-x2+mx-1有正值,∴Δ=m2-4>0,∴m>2或m<-2.4.不等式1+x1-x≥0的解集为________.答案:[-1,1)解析:原不等式等价于(x+1)(x-1)≤0,且x-1≠0,∴-1≤x<1.三、合作探究类型1:函数的零点及求法例1:求函数f(x)=x3-7x+6的零点.解:令f(x)=0,即x3-7x+6=0,∴(x3-x)-(6x-6)=0,∴x(x-1)(x+1)-6(x-1)=(x-1)·(x2+x-6)=(x-1)(x-2)(x+3)=0,解得x1=1,x2=2,x3=-3,∴函数f(x)=x3-7x+6的零点是1,2,-3.规律方法求函数y=f(x)的零点通常有两种方法:一是令y=0,根据解方程f(x)=0的根求得函数的零点;二是画出函数y=f(x)的图像,图像与x轴的交点的横坐标即为函数的零点.跟踪训练1.如图所示是一个二次函数y=f(x)的图像.(1)写出这个二次函数的零点;(2)试比较f(-4)·f(-1),f(0)·f(2)与0的大小关系.解:(1)由图像可知,函数f(x)的两个零点分别是-3,1.(2)根据图像可知,f(-4)·f(-1)<0,f(0)·f(2)<0.类型2:二次函数的零点及其与对应方程、不等式的关系例2:利用函数求下列不等式的解集:(1)x2-5x-6>0;(2)(2-x)(x+3)<0;(3)4(2x2-2x+1)>x(4-x).解:(1)方程x2-5x-6=0的两根为x1=-1,x2=6.结合二次函数y=x2-5x-6的图像知,原不等式的解集为(-∞,-1)∪(6,+∞).(2)原不等式可化为(x-2)(x+3)>0.方程(x-2)(x+3)=0的两根为x1=2,x2=-3.结合二次函数y=(x-2)(x+3)的图像知,原不等式的解集为(-∞,-3)∪(2,+∞).(3)由原不等式得8x 2-8x +4>4x -x 2,即9x 2-12x +4>0.解方程9x 2-12x +4=0,解得x 1=x 2=23.结合二次函数y =9x 2-12x +4的图像知,原不等式的解集为⎝ ⎛⎭⎪⎫-∞,23∪⎝ ⎛⎭⎪⎫23,+∞. 规律方法利用函数求不等式解集的基本步骤1.把一元二次不等式化成一般形式,并把a 的符号化为正;2.计算其对应一元二次方程的根的判别式Δ;3.求其对应一元二次方程的根;4.写出解集大于取两边,小于取中间. 跟踪训练2.利用函数求下列不等式的解集:(1)2x 2+7x +3>0;(2)-x 2+8x -3>0;(3)x 2-4x -5<0;(4)-4x 2+18x -814>0.解:(1)对于方程2x 2+7x +3=0,因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不相等的实数根,x 1=-3,x 2=-12.又因为二次函数y =2x 2+7x +3的图像开口向上,所以原不等式的解集为(-∞,-3)∪⎝ ⎛⎭⎪⎫-12,+∞. (2)对于方程-x 2+8x -3=0,因为Δ=82-4×(-1)×(-3)=52>0, 所以方程-x 2+8x -3=0有两个不相等的实数根,x 1=4-13,x 2=4+13. 又因为二次函数y =-x 2+8x -3的图像开口向下,所以原不等式的解集为(4-13,4+13).(3)原不等式可化为(x -5)(x +1)<0,所以原不等式的解集为(-1,5).(4)原不等式可化为⎝ ⎛⎭⎪⎫2x -922<0, 所以原不等式的解集为∅.类型3:用函数零点法求一元高次不等式的解集例3:求函数f(x)=(x-1)(x-2)(x+3)的零点,并作出函数图像的示意图,写出不等式f(x)≥0和f(x)<0的解集.解:函数的零点为-3,1,2.x (-∞,-3)(-3,1)(1,2)(2,+∞)f(x)-+-+由此可以画出此函数的示意图如图.由图可知,f(x)≥0的解集为[-3,1]∪[2,+∞),f(x)<0的解集为(-∞,-3)∪(1,2).规律方法解题步骤:1.求出零点;2.拆分定义域;3.判断符号;4.写出解集.注意判断符号的方法,将最高项的系数化为正数,最右边的区间内为正,然后往左依次负正相间.跟踪训练3.求函数f(x)=(1-x)(x-2)(x+2)的零点,并作出函数图像的示意图,写出不等式f(x)≥0和f(x)<0的解集.解:函数的零点为-2,1,2.x (-∞,-2)(-2,1)(1,2)(2,+∞)f(x)+-+-由此可以画出此函数的示意图如图.由图可知,f(x)≥0的解集为(-∞,-2]∪[1,2],f(x)<0的解集为(-2,1)∪(2,+∞).四、课堂小结1.方程f(x)=g(x)的根是函数f(x)与g(x)的图像交点的横坐标,也是函数y=f(x)-g(x)的图像与x轴交点的横坐标.2.二次函数的零点及其与对应方程、不等式的关系(1)ax2+bx+c=0(a≠0)的解是函数f(x)=ax2+bx+c的零点.(2)ax2+bx+c>0(a≠0)的解集是使f(x)=ax2+bx+c的函数值为正数的自变量x的取值集合;ax2+bx+c<0(a≠0)的解集是f(x)=ax2+bx+c的函数值为负数的自变量x的取值集合.3.图像法解一元二次不等式的步骤(1)解一元二次不等式对应的一元二次方程;(2)求出其对应的二次函数的零点;(3)画出二次函数的图像;(4)结合图像写出一元二次不等式的解集.五、当堂达标1.下列图像表示的函数中没有零点的是()答案:A解析:B,C,D的图像均与x轴有交点,故函数均有零点,A的图像与x 轴没有交点,故函数没有零点.2.方程5x2-7x-1=0的根所在的区间是()A.(-1,0)B.(1,2)C.一个根在(-1,0)上,另一个根在(1,2)上D.一个根在(0,1)上,另一个根在(-2,-1)上答案:C解析:∵f(-1)·f(0)<0,f(1)·f(2)<0,∴选C.3.函数f(x)=x-1x零点的个数是()A.0 B.1 C.2 D.3答案:C解析:令x-1x=0,即x2-1=0,∴x=±1.∴f(x)=x-1x的零点有两个.4.函数f(x)=(x2-1)(x+2)2(x2-2x-3)的零点个数是________.答案:4解析:f(x)=(x+1)(x-1)(x+2)2(x-3)(x+1)=(x+1)2(x-1)(x+2)2(x-3).可知零点为±1,-2,3,共4个.【第2课时】【教学目标】【核心素养】1.掌握函数零点的存在性定理,并会判断函数零点的个数.(重点)2.了解二分法是求方程近似解的常用方法,掌握二分法是求函数零点近似解的步骤.(难点)3.理解函数与方程之间的联系,并能用函数与方程思想分析问题、解决问题.(重点、难点)1.通过存在性定理的学习,培养逻辑推理的素养.2.通过二分法的学习,提升数据分析,数学建模的学科素养.3.理解函数与方程之间的联系,提升数学抽象的学科素养.【教学过程】一、新知初探1.函数零点的存在性定理如果函数y=f(x)在区间[a,b]上的图像是连续不断的,并且f(a)f(b)<0(即在区间两个端点处的函数值异号),则函数y=f(x)在区间[a,b]中至少有一个零点,即∃x0∈[a,b],f(x0)=0.2.二分法的定义(1)二分法的条件:函数y=f(x)在区间[a,b]上连续不断且f(a)f(b)<0.(2)二分法的过程:通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法,称为二分法.由函数的零点与相应方程根的关系,也可以用二分法求方程的近似解.3.用二分法求函数零点近似值的步骤给定精确度ε,用二分法求函数f (x )在[a ,b ]上的零点近似值的步骤是:第一步:检查|b -a |<2ε是否成立,如果成立,取x 1=a +b 2,计算结束;如果不成立,转到第二步.第二步:计算区间[a ,b ]的中点a +b 2对应的函数值,若f ⎝ ⎛⎭⎪⎫a +b 2=0,取x 1=a +b 2,计算结束;若f ⎝ ⎛⎭⎪⎫a +b 2≠0,转到第三步. 第三步 若f (a )f ⎝ ⎛⎭⎪⎫a +b 2<0,将a +b 2的值赋给b ⎝ ⎛⎭⎪⎫用a +b 2→b 表示,下同,回到第一步;若f ⎝ ⎛⎭⎪⎫a +b 2f (b )<0,将a +b 2的值赋给a ,回到第一步. 二、初试身手1.下列函数不宜用二分法求零点的是( )A .f (x )=x 3-1B .f (x )=ln x +3C .f (x )=x 2+22x +2D .f (x )=-x 2+4x -1 答案:C解析:因为f (x )=x 2+22x +2=(x +2)2≥0,不存在小于0的函数值,所以不能用二分法求零点.2.若函数f (x )在区间[a ,b ]上为单调函数,且图像是连续不断的曲线,则下列说法中正确的是( )A .函数f (x )在区间[a ,b ]上不可能有零点B .函数f (x )在区间[a ,b ]上一定有零点C .若函数f (x )在区间[a ,b ]上有零点,则必有f (a )·f (b )<0D .若函数f (x )在区间[a ,b ]上没有零点,则必有f (a )·f (b )>0 答案:D解析:函数f (x )在区间[a ,b ]上为单调函数,如果f (a )·f (b )<0,可知函数在(a ,b )上有一个零点,如果f (a )·f (b )>0,可知函数在[a ,b ]上没有零点,所以函数f (x )在区间[a ,b ]上可能没有零点,也可能有零点,所以A 不正确;函数f (x )在区间[a ,b ]上可能有零点,也可能没有零点;所以B 不正确; 若函数f (x )在区间[a ,b ]上有零点,则可能f (a )·f (b )<0,也可能f (a )·f (b )=0所以C 不正确;若函数f(x)在区间[a,b]上没有零点,则必有f(a)·f(b)>0,正确;故选D.]3.用“二分法”可求近似解,对于精确度ε说法正确的是()A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关答案:B解析:依“二分法”的具体步骤可知,ε越大,零点的精确度越低.4.若函数f(x)的图像是连续不断的,且f(0)>0,f(1)·f(2)·f(4)<0,则下列命题正确的是________.①函数f(x)在区间(0,1)内有零点;②函数f(x)在区间(1,2)内有零点;③函数f(x)在区间(0,2)内有零点;④函数f(x)在区间(0,4)内有零点.答案:④解析:∵f(0)>0,而由f(1)·f(2)·f(4)<0,知f(1),f(2),f(4)中至少有一个小于0.∴(0,4)上有零点.三、合作探究类型1:判断函数零点所在的区间例1:求证:方程x4-4x-2=0在区间[-1,2]内至少有两个实数解.证明:设f(x)=x4-4x-2,其图像是连续曲线.因为f(-1)=3>0,f(0)=-2<0,f(2)=6>0,所以方程在(-1,0),(0,2)内都有实数解.从而证明该方程在给定的区间内至少有两个实数解.规律方法一般而言,判断函数零点所在区间的方法是将区间端点代入函数求出函数的值,进行符号判断即可得出结论.此类问题的难点往往是函数值符号的判断,可运用函数的有关性质进行判断.跟踪训练1.若函数y=f(x)在区间[a,b]上的图像为连续不断的一条曲线,则下列说法正确的是()A.若f(a)f(b)>0,则不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,则存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,则有可能存在实数c∈(a,b)使得f(c)=0D.若f(a)f(b)<0,则有可能不存在实数c∈(a,b)使得f(c)=0 答案:C解析:对于A选项,可能存在,如y=x2;对于B选项,必存在但不一定唯一,选项D一定存在.类型2:对二分法概念的理解例2:下列图像与x轴均有交点,其中不能用二分法求函数零点的是()答案:B解析:利用二分法求函数的零点必须满足零点两侧函数值异号,在选项B 中,不满足零点两侧函数值异号,不能用二分法求零点.由于A、C、D中零点的两侧函数值异号,故可采用二分法求零点.规律方法二分法是求一般函数的零点的一种通法,使用二分法的前提条件是:函数零点的存在性.对“函数在区间[a,b]上连续”的理解如下:不管函数在整个定义域内是否连续,只要找得到包含零点的区间上函数图像是连续的即可.跟踪训练2.如图是函数f(x)的图像,它与x轴有4个不同的公共点.给出下列四个区间,不能用二分法求出函数f(x)的零点近似值的是()A.(-2.1,-1)B.(1.9,2.3)C.(4.1,5)D.(5,6.1)答案:B解析:只有B 中的区间所含零点是不变号零点. 类型3:用二分法求函数零点例3:求函数f (x )=x 2-5的负零点.(精确度为0.1) 解:由于f (-2)=-1<0,f (-3)=4>0, 故取区间(-3,-2)作为计算的初始区间, 区间 中点的值 中点函数近似值 (-3,-2) -2.5 1.25 (-2.5,-2) -2.25 0.0625 (-2.25,-2) -2.125 -0.4844 (-2.25,-2.125) -2.1875-0.2148 (-2.25,-2.1875)-2.21875-0.0771由于|-2.25-(-2.1875)|=0.0625<0.1, 所以函数的一个近似负零点可取-2.25. 规律方法利用二分法求函数零点应关注三点1.要选好计算的初始区间,这个区间既要包含函数的零点,又要使其长度尽量小.2.用列表法往往能比较清晰地表达函数零点所在的区间.3.根据给定的精确度,及时检验所得区间长度是否达到要求,以决定是停止计算还是继续计算.跟踪训练3.证明函数f (x )=2x +3x -6在区间[1,2]内有唯一零点,并求出这个零点(精确度为0.1).解:由于f (1)=-1<0,f (2)=4>0,又函数f (x )在[1,2]内是增函数,所以函数在区间[1,2]内有唯一零点,不妨设为x 0,则x 0∈[1,2].下面用二分(a ,b ) (a ,b )的中点f (a ) f (b ) f ⎝⎛⎭⎪⎫a +b 2 (1,2)1.5f (1)<0f (2)>0f (1.5)>0(1,1.5) 1.25 f (1)<0 f (1.5)>0 f (1.25)>0 (1,1.25) 1.125f (1)<0 f (1.25)>0f (1.125)<0 (1.125,1.25)1.1875 f (1.125)<0f (1.25)>0f (1.1875)<0因为|1.1875-1.25|=0.0625<0.1,所以函数f (x )=2x +3x -6的精确度为0.1的近似零点可取为1.25.类型4:用二分法求方程的近似解例4:用二分法求方程2x 3+3x -3=0的一个正实数近似解(精确度为0.1). 解:令f (x )=2x 3+3x -3,经计算,f (0)=-3<0,f (1)=2>0,f (0)·f (1)<0, 所以函数f (x )在(0,1)内存在零点, 即方程2x 3+3x -3=0在(0,1)内有解.取(0,1)的中点0.5,经计算f (0.5)<0,又f (1)>0, 所以方程2x 3+3x -3=0在(0.5,1)内有解. (a ,b ) 中点c f (a ) f (b ) f ⎝⎛⎭⎪⎫a +b 2 (0,1) 0.5 f (0)<0 f (1)>0 f (0.5)<0 (0.5,1) 0.75 f (0.5)<0 f (1)>0 f (0.75)>0 (0.5,0.75) 0.625 f (0.5)<0 f (0.75)>0 f (0.625)<0 (0.625,0.75) 0.6875f (0.625)<0f (0.75)>0f (0.6875)<0(0.6875,0.75)|0.6875-0.75|=0.0625<0.1由于|0.6875-0.75|=0.0625<0.1,所以0.75可作为方程的一个正实数近似解.规律方法用二分法求方程的近似解应明确两点(1)根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f (x )=0的近似解,即按照用二分法求函数零点近似值的步骤求解.(2)对于求形如f (x )=g (x )的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.跟踪训练4.求方程x2=2x+1的一个近似解.(精确度0.1)解:设f(x)=x2-2x-1.∵f(2)=-1<0,f(3)=2>0.∴在区间(2,3)内,方程x2-2x-1=0有一解,记为x0.取2与3的平均数2.5,∵f(2.5)=0.25>0,∴2<x0<2.5;再取2与2.5的平均数2.25,∵f(2.25)=-0.4375<0,∴2.25<x0<2.5;如此继续下去,有f(2.375)<0,f(2.5)>0⇒x0∈(2.375,2.5);f(2.375)<0,f(2.4375)>0⇒x0∈(2.375,2.4375).∵|2.375-2.4375|=0.0625<0.1,∴方程x2=2x+1的一个精确度为0.1的近似解可取为2.4375.四、课堂小结1.二分法就是通过不断地将所选区间一分为二,使区间的两个端点逐步逼近零点,直至找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点.2.并非所有函数都可以用二分法求其零点,只有满足:(1)在区间[a,b]上连续不断;(2)f(a)·f(b)<0,上述两条的函数方可采用二分法求得零点的近似值.五、当堂达标1.函数y=-x2+8x-16在区间[3,5]上()A.没有零点B.有一个零点C.有两个零点D.有无数个零点答案:B解析:令-x2+8x-16=0,得x=4,故函数y=-x2+8x-16在[3,5]上有一个零点.2.用二分法求函数f (x )=x 3+x 2-2x -2的一个正零点的近似值(精确到0.1)时,依次计算得到如下数据:f (1)=-2,f (1.5)=0.625,f (1.25)≈-0.984,f (1.375)≈-0.260,关于下一步的说法正确的是( )A .已经达到精确度的要求,可以取1.4作为近似值B .已经达到精确度的要求,可以取1.375作为近似C .没有达到精确度的要求,应该接着计算f (1.4375)D .没有达到精确度的要求,应该接着计算f (1.3125) 答案:C解析:由二分法知,方程x 3+x 2-2x -2=0的根在区间(1.375,1.5),没有达到精确度的要求,应该接着计算f (1.4375).故选C .3.函数图像与x 轴均有交点,但不宜用二分法求交点横坐标的是( )答案:B4.用二分法求函数零点,函数的零点总位于区间[a n ,b n ]上,当|a n -b n |<ε时,函数的近似零点a n +b n2与真正零点的误差不超过A .εB .12εC .2εD .14ε 答案:B解析:根据用“二分法”求函数近似零点的步骤知,当|a n -b n |<ε时,区间[a n ,b n ]的中点x n =12(a n +b n )就是函数的近似零点,这时计算终止,从而函数的近似零点与真正零点的误差不超过12ε.故选B .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9讲 函数与方程(2)
考点1函数的零点
考法1函数零点的概念
1.把函数()y f x =的图像与横轴的交点的横坐标称为这个函数的零点.也可说成是使函数值为零的自变量的值.
函数的零点是一个实数,而不是点,例如函数1y x =+的零点为1-,不是(1,0)-. 因此,函数()y f x =的零点就是方程()0f x =实数根.2()23f x x x =--的零点就是方程2230x x --=的两个实根.
2.并不是每一个函数都有零点,如函数2()1f x x =+没有零点.
3.若函数有零点,零点一定在定义域内.
考法2存在性定理
如果函数()y f x =在区间[,]a b 上的图象是连续不断的一条曲线,并且有()f a ()0f b ⋅<,那么,函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使 ()0f c =,这个c 也就是方程()0f x =的根.
函数在区间[,]a b 上有零点必须满足两个条件:①连续;②()()0f a f b ⋅<.
1.函数1()f x x =,易知(1)(1)0f f -⋅<,但1()f x x
=在(1,1)-内没有零点. 2.函数()y f x =在区间(2,2)-内没有零点.
1.(2011·全国课标卷·文科)在下列区间中,函数34)(-+=x e x f x 的零点所在的区间为 C A.1(,0)4- B.1(0,)4 C.11(,)42 D.13(,)24
考法3唯一性定理
如果函数()y f x =在区间[,]a b 上连续且单调,如果有()()0f a f b ⋅<,那么函数()y f x =在区间(,)a b 内有且仅有一个零点.
1.(2014·北京卷·文科)已知函数26()log f x x x
=
-,在下列区间中,包含()f x 零点的区间是 A.(0,1) B.(1,2) C.(2,4) D.(4,)+∞ 考点2判断函数的零点方法
考法1解对应的方程
1.求函数)1lg()(-=x x f 的零点.
2.求函数32()89f x x x x =--的零点.
考法2图像法
1.(2013·江西卷·理科)若a b c <<,则函数()()()()()f x x a x b x b x c =--+--+ ()()x c x a --两个零点分别位于区间 A
A.(,)a b 和(,)b c 内
B.(,)a -∞和(,)a b 内
C.(,)b c 和(,)c +∞内
D.(,)a -∞和(,)c +∞内
2.(2010·天津卷·理科)函数()23x f x x =+的零点所在的一个区间是 B
A.(2,1)--
B.(1,0)-
C.(0,1)
D.(1,2)
3.(2010·浙江卷·文科)已知0x 是函数1()21f x x
=+-的一个零点,若10(1,)x x ∈ ,20(,)x x ∈+∞,则 B
A.1()0f x <,2()0f x <
B.1()0f x <,2()0f x >
C.1()0f x >,2()0f x <
D.1()0f x >,2()0f x >
4.设0x 是函数21()()log 3
x f x x =-的零点,若00a x <<,则()f a 的值满足 A.()0f a = B.()0f a < C.()0f a > D.符号不确定 考点3函数零点的应用
考法1判断函数零点的个数及所在的区间
1.(2012·天津卷·理科)函数3()22x f x x =+-在区间(0,1)内的零点个数是 B
A.0
B.1
C.2
D.3
2.(2012·北京卷·文科)函数12
1()()2x f x x =-的零点个数为 B A.0 B.1 C.2 D.3
3.(2014·福建卷·文科)函数220()26ln 0x x f x x x x ⎧-≤=⎨-+>⎩
的零点个数是 .2 考法2利用函数零点确定方程的根
1.(2010·上海卷·理科)若0x 是方程31
)21(x x =的解,则0x 属于区间 C A.2(,1)3 B.12(,)23 C.11(,)32 D.1(0,)3 考法3求参数的取值范围
1.(2014·山东卷·理科)已知函数()21f x x =-+,()g x kx =,若()()f x g x =有两个不相等的实根,则实数k 的取值范围是 B A.1(0,)2 B.1(,1)2 C.(1,2) D.(2,)+∞
2.(2010·大纲全国卷·理科)直线1y =与曲线2y x x a =-+有四个交点,则a
的取值范围是 . 5(1,)4 3.(2018·全国卷Ⅰ·理科)已知函数0()ln 0
x
e x
f x x
x ⎧≤=⎨>⎩,()()g x f x x a =++.若()g x 存在两个零点,则a 的取值范围为 A.[1,0)- B.[0,)+∞ C.[1,)-+∞ D.[1,)+∞
4.(2015·湖南卷·文科)若函数()22x f x b =--有两个零点,则实数b 的取值范围是 . (0,2)。

相关文档
最新文档