大数定理与中心极限定理5

合集下载

第五章 大数定律和中心极限定理

第五章 大数定律和中心极限定理

一、大数定律切比雪夫大数定律:设随机变量X1,X2,…,X n,…相互独立,且具有相同的数学期望且方差有界,那么对辛钦大数定律:设X1,X2,…,X n,…为独立同分布的随机变量序列,且数学期望E(X i)=μ存在,则对任意【例87·填空题】设X1,X2,…,X n,…相互独立,且都服从P(λ),那么依概率收敛到_____[答疑编号986305101:针对该题提问]答案:【例88·填空题】设X1,X2,…,X n,…相互独立,且都服从参数为0.5的指数分布,则。

[答疑编号986305102:针对该题提问]【例89·选择题】设随机变量列X1,X2,…,X n,…相互独立,则根据辛钦大数定律,当n充分大时依概率收敛于共同的数学期望,只要X1,X2,…,X n,…()A.有相同的数学期望B.服从同一离散型分布C.服从同一泊松分布D.服从同一连续型分布[答疑编号986305103:针对该题提问]答案:C【例90·选择题】设随机变量,X1,X2,…,X n,…是独立同分布,且分布函数为则辛钦大数定律对此序列()A.适用B.当常数a,b取适当的数值时适用C.不适用D.无法判别[答疑编号986305104:针对该题提问]答案C二、中心极限定理独立同分布的中心极限定理:设随机变量X1,X2,…,X n,…相互独立,服从同一分布,【例91·选择题】(05-4-4)设X1,X2,…,X n,…为独立同分布的随机变量列,且均服从参数为λ(λ>0)的指数分布,记为标准正态分布函数,则()[答疑编号986305105:针对该题提问]答案:C。

第五章 大数定律和中心极限定理

第五章 大数定律和中心极限定理
P 1 n 定理(辛钦大数定律) 设 { X n } 为独立同分布随机变量序列,若 EX 1 存在,则 X i . n i 1
第三节 中心极限定理
所谓中心极限定理,就是关于大量微小的随机变量之和的极限分布在什么条件下是正态分布的定理. 定义 1 设 { X n } 为一随机变量序列, DX n , n 1,2, ,若
2
83
n a n lim P(a X i b) P n i 1 n
X
i 1
n
i
n
n
b n b n a n ) ( ). ( n n n
例 1 一加法器同时收到 50 个噪声电压 Vi (i 1,2, ,50 ) , 设 V i (单位: 微伏)相互独立且均在 [0,10] 上 服从均匀分布,求该加法器上总电压 V
i 1
n
1 n2
c n 0(n ) ,
i 1
n
c
推论 2 (贝努里大数定律) 设 S n 为 n 重贝努里试验中事件 A 出现的次数, p 为 A 在每次 n
证 明 :令 Xi
1 在第i 次试验中A出现 , 则 X i ~ B(1, p ) , i 1,2,, n 且 相 互 独 立 , 0 在第 i 次试验中 A 不出现
c 0 ,使得 DX n c , n 1,2, ,则
P 1 n ( X i EX i ) 0 . n i 1
证明:只须验证马尔可夫条件成立即可.由于 { X n } 两两互不相关,故
0
因此马尔可夫条件成立.
n 1 1 D ( Xi) 2 2 n n i 1
DX i

05大数定律及中心极限定理

05大数定律及中心极限定理

概率论
定 1 得 由 理即 nA limP{| − p |< ε } n→∞ n 1 = limP{| ( X1 + X2 +L+ Xn ) − p |< ε } = 1 n→∞ n nA 或 limP{| − p |≥ ε } = 0 证毕
n→ ∞
n
注 贝努里大数定律表明,当重复试验次数n充分 贝努里大数定律表明,当重复试验次数 充分 大时,事件A发生的频率 发生的频率n 与事件 的概率p有较 与事件A的概率 大时,事件 发生的频率 A/n与事件 的概率 有较 大偏差的概率很小. 大偏差的概率很小
概率论
说明
1n 1 定 中 ∑ Xi −µ |< ε }是 一 随 事 , 、 理 {| 指 个 机 件 ni=1 n 当 →∞时 这 事 的 率 于 . , 个 件 概 趋 1
2 定 以 学 式 明 随 变 X1,LXn 、理 数 形 证 了 机 量 1n 的 术 均 = ∑ Xi 接 数 期 E( k = µ 算 平 X 近 学 望 X) ni=1 k , ( = 1,2L n) 这 接 说 其 有 稳 性. , 种 近 明 具 的 定
n→∞ np(1− p) t2 1 − 2 = Φ(x) e dt 2π
≤ x} = limP{ k=1
∑ Xk − np np(1 − p)
n
≤ x}
ηn ~ N(np, np(1− p))
近似地
limP{
n→∞
ηn − np
np(1− p)
≤ x} = ∫−∞
x
1 e dt = Φ(x) 2π
t2 − 2
η 证 由第四章知识知可将 n分解成为n个相互独立、
从 一 服 同 (0 − 1)分 的 随 变 X1, X2,LXn之 , 布 诸 机 量 和

第五章 大数定律与中心极限定理

第五章  大数定律与中心极限定理

中心极限定理
独立随机变量和
设 {Xn} 为独立随机变量序列,记其和为
Yn = ∑Xi
i=1 n
讨论独立随机变量和的极限分布, 指出极限分布为正态分布.
13 July 2011
湖南大学
第五章 大数定律与中心极限定理
第18页 18页
独立同分布下的中心极限定理
林德贝格—勒维中心极限定理 设 {Xn} 为独立同分布随机变量序列,数学期 望为µ, 方差为 σ2>0,则当 n 充分大时,有
解: 设 X 表示命中的炮弹数, 则 X ~ b(500, 0.01)
(1) P( X = 5) = C ×0.015 ×0.99495 =0.17635
5 500
(2) 应用正态逼近: P(X=5) = P(4.5 < X < 5.5) = 0.1742
13 July 2011
5.5 − 5 4.5 − 5 ≈ Φ −Φ 4.95 4.95
第五章 大数定律与中心极限定理
第25页 25页
三、给定 y 和概率,求 n
例7 用调查对象中的收看比例 k/n 作为某电视节
目的收视率 p 的估计。 要有 90% 的把握,使k/n与p 的差异不大于0.05,问至少要调查多少对象?
解:用 Yn表示n 个调查对象中收看此节目的人数,则
P ( Yn / n − p < 0.05) ≈ 2Φ 0.05 n / p(1 − p) − 1 ≥ 0.90
湖南大学
湖南大学
第五章 大数定律与中心极限定理
第16页 16页
X 例 设 1, X2 ,L, Xn是独 立同 布 分 的随 变量 它们 机 , 都服 从 [a, b]上的 [ 均匀 布 f (x)是 a, b]上 连 函 , 分 , 的 续 数 证明 :

(完整版)大数定律和中心极限定理

(完整版)大数定律和中心极限定理

第五章 大数定律和中心极限定理一、内容提要(一)切贝谢夫不等式 1. 切贝谢夫不等式的内容设随机变量X 具有有限的数学期望E (X )和方差D (X ),则对任何正数ε,下列不等式成立。

(){}()(){}().1,22εεεεX D X E X P X D X E X P -≤-≤≥-2. 切贝谢夫不等式的意义(1)只要知道随机变量X 的数学期望和方差(不须知道分布律),利用切贝谢夫不等式,就能够对事件(){}ε≥-X E X 的概率做出估计,这是它的最大优点,今后在理论推导及实际应用中都常用到切贝谢夫不等式。

(2)不足之处为要计算(){}ε≥-X E X P 的值时,切贝谢夫不等式就无能为力,只有知道分布密度或分布函数才能解决。

另外,利用本不等式估值时精确性也不够。

(3)当X 的方差D (X )越小时,(){}ε≥-X E X P 的值也越小,表明X 与E (X )有较大“偏差”的可能性也较小,显示出D (X )确是刻画X 与E (X )偏差程度的一个量。

(二)依概率收敛如果对于任何ε>0,事件{}ε a X n -的概率当n →∞时,趋于1,即{}1lim =-∞→ε a X P n n ,则称随机变量序列X 1,X 2,…,X n ,…当n →∞时依概率收敛于α。

(三)大数定律 1. 大数定律的内容(1)大数定律的一般提法若X 1,X 2,…,X n ,…是随机变量序列,如果存在一个常数序列α1,…,αn ,…,对任意ε>0,恒有11lim 1=⎭⎬⎫⎩⎨⎧-∑=∞→ε n i n i n a X n P , 则称序列{X n }服从大数定律(或大数法则)。

(2)切贝谢夫大数定律设随机变量X 1,X 2,…,X n ,…相互独立,分别有数学期望E(X i )和方差D(X i ),且它们的方差有公共上界C ,即()().,,,2,1, n i C X D i =≤则对于任意的ε>0,恒有()111lim 11=⎭⎬⎫⎩⎨⎧-∑∑==∞→ε n i ni i i n X E n X n P 。

第五章大数定律及中心极限定理

第五章大数定律及中心极限定理

k 1
其中 X1, X2 ,, Xn是相互独立的、服从同一
均值为μ,方差为σ2>0的独立同分布的随机变量
n
X1,X2,…,Xn之和 X k 的标准化变量,当n充分
大时,有
k 1
n

k 1
Xk

nm
~近似N(0,1)
ns
n
这样可以用(标准)正态分布来对 X k 作
k 1
理论分析或实际计算,不必求分布函数
19/41
§5.2 中心极限定理
将上式改写为
即对任意的正数ε,当n充分

lim P n
1 n
n k 1
Xk
m

1.

大时,不等式 立的概率很大
|
X
m | 成
3/41
证 由随机变量X1,X2,…,Xn,…相互独立,且具有 相同的数学期望和方差,有
E

1 n
n k 1
Xk

lim
n
P

1 n
(X1

X2

Xn)
p




1,

lim
n
P

nA n

p





1.
伯努利大数定理表明,事件发生的频率nA/n依概率收敛
于事件的概率p,以严格的数学形式表达了频率的稳定性和概
率的合理性
近似:当n很大时,事件发生的频率nA/n与概率有较大偏差的 可能性很小,因此由实际推断原理,由于小概率事件几乎不
辛钦定 理
X P m

第五章 大数定律与中心极限定理 《概率论》PPT课件

第五章  大数定律与中心极限定理  《概率论》PPT课件

概率论与数理统计
§5.2 中心极限定理
2)中 心极限 定理表明,若 随 机 变 量 序 列
X 1 , X 2 , , X n 独立同分布,且它们的数学期
望及方差存在,则当n充分大时,其和的分布,
n
即 X k 都近似服从正态分布. (注意:不一定是 k 1
标准正态分布)
3)中心定理还表明:无论每一个随机变量 X k ,
概率论与数理统计
§5.1 大数定律
定理1(Chebyshev切比雪夫大数定律)
假设{ Xn}是两两不相关的随机
变量序列,EXn , DXn , n 1,2, 存在,
其方差一致有界,即 D(Xi) ≤L,
i=1,2, …, 则对任意的ε>0,
lim P{|
n
1 n
n i1
Xi
1 n
n i1
E(Xi ) | } 1.
概率论与数理统计
§5.2 中心极限定理
现在我们就来研究独立随机变量之和所 特有的规律性问题.
在概率论中,习惯于把和的分布 收敛于正态分布这一类定理都叫做中心 极限定理.
下面给出的独立同分布随机变量序 列的中心极限定理, 也称列维——林德 伯格(Levy-Lindberg)定理.
概率论与数理统计
§5.2 中心极限定理
大量的随机现象平均结果的稳定性
大量抛掷硬币 正面出现频率
生产过程中的 字母使用频率 废品率
概率论与数理统计
§5.1 大数定律
一、大数定律
阐明大量的随机现象平均结果的稳定性的一系
列定理统称为大数定律。
定义1 如果对于任意 0, 当n趋向无穷时,事件
" Xn X " 的概率收敛到1,即

第五章 大数定律与中心极限定理

第五章 大数定律与中心极限定理
∑200
【解】 设 X i 表示“该射手第 i 次射击的得分”,则 Y = X i 表示射手所得总分,
i=1
Xi (i =1, 2, , 200) 独立同分布,分布表如下:
Xi
0
2
3
4
5
p
由于
0.1
0.1
0.2
0.2
0.4
E( Xi ) = 0×0.1+ 2×0.1+ 3×0.2 + 4×0.2 + 5×0.4 = 3.6 ;
试验中发生的概率,这个定律以严格的数学形式刻画了频率的稳定性,在实际应用中,当试 验次数很大时,便可以用事件发生的频率来替代事件的概率.
3、辛钦大数定律
设随机变量序列 X , X , 12
,Xn,
相互独立且服从相同的分布,具有相同的数学期望
E(X i
)
=
μ
,(
i
=
1,
2,
) ,则对任意给定的正数 ε ,有
) ,则对任意实数 x ,有
∑ ⎧

n
X − nμ i
⎫ ⎪
⎨ lim P i=1
≤ x⎬ =
⎪ n→∞




∫ 1

x −t2
e
−∞
2 dt = Φ(x) .
154
第五章 大数定律与中心极限定理
n
∑ 【评注】 n 个相互独立同分布、方差存在的随机变量之和 Xi ,当 n 充分大时,近似 i =1
第五章 大数定律与中心极限定理
本章学习要点
① 了解切比雪夫不等式; ② 了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


1 n lim P X k 1 n n k 1
定理的意义:
具有相同数学期望和方差的独立随机变量序列的
算术平均值依概率收敛于数学期望.即
1 n 1 n X i EX i P 0 (n ) n i 1 n i 1
当 n 足够大时,算术平均值几乎就是一个常数, 可以用算术平均值近似地代替数学期望.


P(| X E ( X ) | ) 1
D( X )

2
示意图
j(x)
Dx/2
Ex
Ex
Ex+
x
例1 设x是掷一颗骰子所出现的点数, 若给定e=1,2, 实际计算P(|x-Ex|e), 并验证切贝谢 夫不等式成立. 解 因P(x=k)=1/6, (k=1,2,3,4,5,6)
n
i 1
这便是在n较大情况下反映出的客观规律,故称为“大数” 定 律。 DX i 比推论1条件更宽的一个大数定律是辛钦(Khintchine) 大数定律,它不需要推论1条件中“方差 存在”的限制, 而在其它条件不变的情况下,仍有切比雪夫式的结论。
辛钦大数定律-推论2 设 X 1 , X 2 ,, X n , 相互独立,服从同一
算术平均值, Y n 依概率收敛于其数学期望 p . 结果同样适用于服从其它分布的独立随
机变量序列
Chebyshev 大数定律 设随机变量序列 X 1 , X 2 ,, X n , 相互独立,
(指任意给定 n > 1, X 1 , X 2 ,, X n 相互独立),且 具有相同的数学期望和方差
nA n
nA nA p 是 频率 与 p 有较大偏差 n n
小概率事件, 因而在 n 足够大时, 可以用频率 近似代替 p . 这种稳定称为依概率稳定.
定义 设 Y1 , Y2 ,, Yn , 是一系列随机变量,
a 是一常数, 若 0 有
n
lim P Yn a 0
§5.3 中心极限定理
人们已经知道,在自然界和生产实践中遇到的大量随机 变量都服从或近似服从正态分布,正因如此,正态分布占有 特别重要的地位。那么,如何判断一个随机变量服从正态分 布显得尤为重要。如经过长期的观测,人们已经知道,很多 工程测量中产生的误差X都是服从正态分布的随机变量。分 析起来,造成误差的原因有仪器偏差X1、大气折射偏差X2, 温度变化偏差X3、估读误差造成的偏差X4等等,这些偏差Xi 对总误差 X X i 的影响都很微小,没有一个起到特别突 出的影响,虽然每个Xi的分布并不知道,但 X X i 却服从正态分布。类似的例子不胜枚举。 设 { X n } 为一随机变量序列,其标准化随机变量
0 有
nA lim P p 0 n n

nA lim P p 1 n n
贝努里(Bernoulli) 大数定律的意义:
在概率的统计定义中,事件 A 发生的频率 “ 稳定于”事件 A 在一次试验中发生的概率是 指:
lim P{ X n X } 1
n
则称 X n 依概率收敛于X,记为 X n P X 或 X n X P 0 ,n . 下面是一个带普遍性结果的大数定律。
大数定律
贝努里(Bernoulli) 大数定律
设 nA 是 n 次独立重复试验中事件 A 发生的 次数, p 是每次试验中 A 发生的概率,则
第五章
大数定律与中心极限定理
ANSWER
本章要解决的问题 1. 为何能以某事件发生的频率 作为该事件的 概率的估计? 2. 为何能以样本均值作为总体 期望的估计?
大数 定律
中心极 限定理
3. 为何正态分布在概率论中占 有极其重要的地位? 4. 大样本统计推断的理论基础 是什么?
大数定律和中心极限定理是概率论的重要基本理 论,它们揭示了随机现象的重要统计规律,在概率 论与数理统计的理论研究和实际应用中都具有重要 的意义。 迄今为止,人们已发现很多大数定律(laws of large numbers) 所谓大数定律,简单地说,就是大量数目的随机变量所呈现 出的规律,这种规律一般用随机变量序列的某种收敛性来刻 画。 本章仅介绍几个最基本的大数定律。下面,先介绍一个 重要的不等式。
本结果由俄国数学家切比雪夫于1866年证明,是 关于大数定律的普遍结果,许多大数定律的古典 结果都是它的特例。
推论1

{X n }
是独立同分布的随机变量序列,且
EX i , DX i 2 , i 1, 2,
则对任意ε>0,有
1 n lim P X i 1 n n i 1
E ( X k ) , D( X k ) 2 , k 1,2,
则 0 有
算术平均值
1 n 1 n lim P X i EX i 1 n n i 1 n i 1
1 n lim P X k 0 n n k 1
例2 设有一大批种子,其中良种占1/6. 试估计 在任选的 6000 粒种子中, 良种所占比例与 1/6 比较上下小于1%的概率. 解 设 X 表示 6000 粒种子中的良种数 , X ~ B (6000,1/6 )
---注:二项分布
5000 E ( X ) 1000, D( X ) 6 1 X P 0.01 5000 6000 6 6 83 0.7685 P(| X 1000 | 60) 1 602 108
1+ 2 + 3 + 4 + 5 + 6 7 1 + 4 + 9 + 16 + 25 + 36 91 2 Ex , Ex 6 2 6 6 91 49 182 147 35 2 2 Dx Ex ( Ex ) 6 4 12 12 Dx 35 2 7 1 : 2 P(| x | 1) 12 3 2 Dx 35 35 1 7 2: 2 P(| x | 2) 4 12 48 3 2
X ~ B(n,0.75)
E ( X ) 0.75 n, D( X ) 0.1875n
事件A发生 的概率
0.74 X 0.76 0.90 要使 P ,求 n n
即 P0.74 n X 0.76 n 0.90
即 P| X 0.75n | 0.01n 0.90 由 Chebyshev 不等式, = 0.01n ,故
Yn
X
i 1
n
i
E ( X i )
i 1 n
n
D ( X i )
i 1
在什么条件下, lim PYn x ( x) , 这是十八世纪以来概率论 n 研究的中心课题,因而,从二十世纪二十年代开始,习惯上把 研究随机变量和的分布收敛到正态分布的这类定理称为中心极 限定理(Central Limit Theorems)。这里仅介绍独立同分 布场合下的中心极限定理。
分布,且具有数学期望 E(X k) = , k= 1,2,…, 则对任意正数 > 0
1 n lim P X k 0 n n k 1
推论2(贝努利大数定律)设事件A发生的概率为p,在n重 贝努利试验中A发生的频率为 f n ,则对任意的ε>0,有
.
推论1使我们关于算术平均值的法则有了理论上的依据。如 我们要测量某段距离,在相同条件下重复进行n次,得n个 测量值 X 1 , X 2 ,, X n ,它们可以看成是n个相互独立的随机 变量,具有相同的分布、相同的数学期望μ和方差 2 , 由推论1的大数定律知,只要n充分大,则以接近于1的概率 1 n 保证 Xi
P{ | X EX | } 的一个上界,该上界并不涉及随机变X
的具体概率分布,而只与其方差DX和ε有关,因此,切比 雪夫不等式在理论和实际中都有相当广泛的应用。需要指 出的是,虽然切比雪夫不等式应用广泛,但在一个具体问 题中,由它给出的概率上界通常比较保守。
5.2 大数定律
在叙述大数定律之前,首先介绍两个基本概念。 定义5.1 设 X 1 , X 2 ,, X n , 为一个随机变量序列,记为 { X n } ,若对任何n≥2,随机变量 X 1 , X 2 ,, X n 都相互独 立,则称 { X n } 是相互独立的随机变量序列。 定义5.2 设 { X n } 为一随机变量序列,X为一随机变 量或常数,若对任意ε>0,有
0.1875n P| X 0.75n | 0.01n 1 (0.01n) 2

0.1875n 1 0.90 2 (0.01n)
解得 n 18750
切比雪夫不等式说明,DX越小,则 P{ | X EX | } 越小, P{ | X EX | } 越大,也就是说,随机变量X取值基 本上集中在EX附近,这进一步说明了方差的意义。 同时当EX 和DX 已知时,切比雪夫不等式给出了概率
5.1
切尔谢夫不等式
重要不等式 马尔可夫(Markov) 不等式
设非负随机变量 X 的期望 E( X )存在, 则对于任意实数 > 0,
P( X ) E( X )

推论 2 ——切贝雪夫( chebyshev )不等式
设随机变量 X 的方差 D ( X )存在, 则对于任意实数 > 0, D( X ) P(| X E ( X ) | ) 2
lim P{| f n p | } 1
n
,
f n P p, n 即,
.
这是历史上最早的大数定律,是贝努利在1713年建立 的。概率论的研究到现在约有300多年的历史,最终以事件 的频率稳定值来定义其概率。作为概率这门学科的基础, 其“定义”的合理性这一悬而未决的带根本性的问题,由贝 努 利于1713年发表的这个“大数定律”给予了解决,被称为 概 率论的第一篇论文,为概率论的公理化体系奠定了理论基础。 之所以被成为“定律”,是这一规律表述了一种全人类多年 的
相关文档
最新文档