奇石乐kibo燃烧分析仪应用lya

合集下载

分析仪KISTLER

分析仪KISTLER
试验完成后,测试数据被存入数据库,并用于 ECU 的批量生产(某些 ECU 供应商:Siemens, Bosch, VDO 等)。 车载燃烧分析 由于在批量生产中存在公差,所以需要分析安装在 车上发动机的性能。车载试验对系统的要求为: 1. 数据采集系统 测量发动机缸压, 曲轴转角等信号 测量其它参数,如
优点: 便携, 同时适用台架和车载燃烧分析 基于 Windows 系统,易于升级 可同时作为高性能通用数据采集系统 性能价格比优 产品包括:KISTLER 压力传感器、KISTLER 力传感器、KISTLER 加速度计、 KISTLER 加速度传感器、KISTLER 电子压头、KISTLER 分析软件
9313,9323,9333,9343,9363 9931A1,9931A4,9039/9049/9069,9345A,9275,9277A5,9143B,9251A/9252A,9067C/ 9068C,9602A,9317B,9327A,9420A,9232A 9017B/9018B,9047C/9048C,9067/9068,9067C/9068C,9077B/9078B,,9347C,9367C,9 377B,9366BB,9203,9205,9207,9215,9217A 分析仪 KISTLER 两种典型应用: 发动机试验台 发动机试验台可识别发动机的所有工作点(功率,转 速,爆震等),并将这些数据储在 ECU 中作为参考,以正确进行车辆的闭环控制。
分析仪 KISTLER
编辑者:广州南创 谭工
分析仪 KISTLER、KISTLER 力传感器、KISTLER 加速度计、KISTLER 加速度 传感器、KISTLER 电子压头、KISTLER 分析软件。特价代理瑞士奇石乐 KISTLER 压力传感器、KISTLER 力传感器、KISTLER 加速度计、KISTLER 加速度传感器、 KISTLER 电子压头、KISTLER 分析软件等等。瑞士 KISTLER(奇石乐)作为世界 领先的测量仪器制造商, 提供 KISTLER 压电式压力传感器、KISTLER 压阻式压 力传感器, KISTLER 力传感器,KISTLER 测力仪, KISTLER 加速度计及相应的电 子和分析软件。KISTLER 的产品在30多个国家设立了国外办事处及售后服务中 心,并在中国设立了广州南创传感器事业部,为 KISTLER 提供最佳的服务与解 决方案。奇石乐为航天、航空、汽车和军工等许多领域的科研和生产提供广泛的 解决方案。以下为典型的应用领域:内燃机燃烧分析试验;注塑过程的质量控制; 内弹道压力测量;切削力的测量和分析;零次品生产和产品测试的过程监测;运 动和医学生物力学测量;振动和模态分析。 分析仪 KISTLER 图片:

奇石乐发动机燃烧分析仪说明书

奇石乐发动机燃烧分析仪说明书

奇石乐发动机燃烧分析仪说明书奇石乐发动机燃烧分析仪说明书1:简介1.1 产品概述1.2 产品特点1.3 销售配套件2:产品安装与基本操作2.1 安装步骤2.2 连接电源2.3 启动与关闭仪器2.4 菜单操作说明2.5 仪器标定与校准3:仪器功能与参数介绍3.1 燃烧分析原理3.2 主要功能3.3 仪器参数说明4:使用流程4.1 打开仪器并预热4.2 连接测试设备与被测发动机4.3 启动发动机并进行测试4.4 数据分析与导出5:故障排查与维护5.1 常见故障与排查方法5.2 仪器维护与保养6:安全注意事项6.1 仪器使用前的准备工作6.2 操作时的安全事项6.3 仪器维护的注意事项7:附件7.1 附件清单7.2 附件使用说明法律名词及注释:1:知识产权法:保护创造性作品的法律体系以及进行专利、商标、著作权等知识产权保护的法律规定。

2:商品质量法:规定了商品在生产、加工、销售等环节中应符合的质量标准及消费者权益保护机制的法律法规。

3:安全生产法:保障工作单位和从业人员的安全生产权益,预防事故、降低危害和损失的法律法规。

4:环境保护法:保护和改善环境质量,维护生态平衡,保障公民的健康权益的法律法规。

附件:1:快速安装指南2:用户手册3:保修卡附件使用说明:1:快速安装指南:详细介绍了产品的快速安装步骤以及常见问题的解决办法。

2:用户手册:包含了产品的详细技术参数、操作流程、故障排查方法和维护保养内容。

3:保修卡:记录了产品购买日期、序列号以及相关售后服务的联系方式。

LOPA在化工安全仪表系统SIL定级中的应用分析

LOPA在化工安全仪表系统SIL定级中的应用分析

LOPA在化工安全仪表系统SIL定级中的应用分析1. 引言1.1 背景介绍随着化工行业的快速发展,安全问题已成为该行业面临的重要挑战之一。

化工安全仪表系统SIL (Safety Integrity Level) 定级是保证化工安全生产的重要手段,它是根据危险源的潜在风险程度来确定安全仪表系统所需的可靠性水平的过程。

LOPA (Layer of Protection Analysis) 是一种常用的SIL定级方法,它通过层次保护分析的过程,找出并评估各层次保护措施,从而确定最终的安全完整性水平。

LOPA 方法简单直观,被广泛应用于化工领域。

本文旨在分析LOPA在化工安全仪表系统SIL定级中的应用情况,探讨其优势与局限性,以及与其他定级方法的比较。

通过深入研究和案例分析,旨在为化工行业提供更加有效的安全措施和指导,提升安全生产水平。

1.2 研究目的本文旨在探讨LOPA在化工安全仪表系统SIL定级中的应用,分析其在实际工程中的效果和局限性。

通过对LOPA概念的阐述,结合化工安全仪表系统SIL定级方法的介绍,以及具体的案例分析,来探讨LOPA在SIL定级中的具体应用和效果。

本文将对LOPA的优势和局限性进行分析,探讨其在实际工程中的可操作性和适用性,为工程师和专业人员提供参考。

本文还将与其他SIL定级方法进行比较,分析其优缺点,为读者提供更全面的选择和判断。

最终,通过总结和展望,对LOPA在化工安全仪表系统SIL定级中的应用进行概括和展望,为相关领域的研究和实践提供借鉴和指导。

2. 正文2.1 LOPA概述Layer of Protection Analysis (LOPA)是一种常用的风险评估方法,用于评估工厂或装置的安全性能。

LOPA是一种半定量方法,结合了定性和定量分析,旨在确定可能发生的事故并评估现有安全措施的有效性。

LOPA通过识别并评估各种防护层的性能,从而确定系统的安全完整性水平。

LOPA的核心是确定每个防护层的可靠性和失效概率,以便计算整体系统的安全完整性水平。

KIMO 燃烧分析仪说明书

KIMO 燃烧分析仪说明书

COMBUSTION ANALYSERS Domestic & industrial heatingFrench Manufacturer• 2 interchangeable sensors • Remote printer (option)• Thermocouple K input for DHW network• Supplied with calibration certificate, Ligaz-2 software, protective shell and storage bag• O 2 and CO sensors • Remote printer (option)• Thermocouple K input for DHW network • Supplied with adjustment certificate and storage bag• 2 interchangeable sensors• Sensor protection by pump shutdown • Integrated printer• Supplied with calibration certificate, Ligaz-2 software, protective shell and storage bagCOMPACTKigaz 80ECONOMICALKigaz 50ESSENTIALKigaz 110Combustion analysersGas analysis / Temperature / PressureKigazThe new Kigaz analysers are intended for efficiency monitoring and optimisation and for limiting emissions from all types of boiler.This new range of combustion analysersprovides practical solutions to improve working life in the field.O 2• Up to 3 interchangeable sensors • CO sensor protection by solenoid valve • Auto-zero in flue • Integrated printer• Supplied with calibration certificate, Ligaz-2 software, protective shell and storage bag • Changeable probe length• Up to 4 interchangeable sensors • CO dilution up to 5%• Auto-zero in flue • Integrated printer • Integrated condensate trap • 3 pressure sensors• Supplied with calibration certificate, Ligaz-2 software, protective shell and storage case FLEXIBLEKigaz 210EXPERTKigaz 310Advantages.....................04Software . . . . . . . . . . . . . . . . . . . . . . .05Kigaz 310 . (06)Kigaz 210 ......................08Kigaz 110 ......................09Kigaz 80 .. (10)Kigaz 50 .......................11Accessories (11)SummaryP . 05P . 04Mobile application compatible with the entire Kigaz range*.Easy user replacement, no need to return to the factory*.Kigaz mobileInterchangeable sensors*Excluding Kigaz 50The advantagesof the Kigaz rangeWith a colour or black-and-white screen, our new combustiongas analysers have an ergonomic design enablingmeasurements to be made as easily as possible by means of:• A 10 button keypad• An intuitive graphical interfaceAvailable as an option, the low consumption Bluetooth mo-dule is compatible with all Kigaz units (excluding the class 50)and provides significant time gains by wirelessly connectinganalysers with LIGAZ-2 or LOGAZ-2 software or the mobileKigaz application.Connected appliancesEasy to useInterchangeable sensorsThe sensor electronics contain calibration data,which means that the operator can replace themwithout returning the unit to the factory.Kimo equips its Kigaz units with a lead-free O2sensor with a lifetime of 5 years.Bluetooth®connectionLong lifeO2sensorProtective rubbershellFREEappDISPONIBLE SUR6Kigaz 310The Kigaz 310 is the most comprehensive in the range and isconfigurable to your requirements, with four interchangeable sensors.The expertCODilution Long life O 2 sensor Auto-zeroin the flue Mobile applicationIntegrated printerDHW network 2 thermocouple K inputsBluetooth ®connectionUp to 4interchangeable sensorsChangeable probe lengthThe Kigaz 310 adapts to any standard-based constraint and meets all of your requirements.Access to the sensors is straightforward, and theoperator can replace them without returning the unit to the factory.For still more accurate measurements, the Kigaz 310 is equipped with 3 pressure sensors, enabling:• measurement of differential pressure with manualauto-zero• high accuracy draught measurement withauto-zero by solenoid valve• measurement of pump flow with 3 levels ofregulation, blocked filter compensation and seal testing3 pressure sensorsUp to 4 interchangeable sensorsIntegrated condensate trapSave time with the Kigaz 310’s integratedcondensate trap. The trap provides the security of overflow-free measurement and warns you when the maximum level is reached.The filter integrated into the handle of the probe is easy to replace.O 2L V / CO-H 2 / NO / NO 2 / SO 2 / CH 4interchangeableMaximum level alarmAutomatic pump controlKigaz 210Flexible and accurate, the Kigaz 210 makes all of your operations simple. It offers a range of configurable measurements according to your requirements, and its icon-based navigation system makes it very easy to use.The flexible unitUp to 3interchangeable sensorsMobile applicationIntegrated printerO 2LV / CO-H 2 NO / CH 4interchangeable CO sensor protection by solenoid valveSupplied with CALIBRATIONcertificateAuto-zero in the flue Changeable probe lengthThe Kigaz 110 combustion gas analyser is the idealappliance for rapid use on all types of boiler up to 400 kW.Easy to use and sturdy, it allows the main inspection pointsto be examined.The essential unitLong lifeO2sensorMobileapplicationIntegratedprinterO2L V / CO-H2interchangeableSensor protectionby pump shut-downDHW network1 thermocouple KinputSupplied withCALIBRATIONcertificateWith a light, compact design, the Kigaz 80 provides allthe necessary functions to accurately measure the maincombustion data for a domestic boiler up to 400 kW. The compact unitMobileapplicationRemoteprinterO2/ CO-H2interchangeableSensor protectionby pumpshutdownDHW network1 thermocouple KinputSupplied withCALIBRATIONcertificateKigaz 50functions in a compact unit, enabling you to take reliable sets of measurements from domestic boilers up to 400 kW.The economical unit2 fixed sensorsAuto-zero 30 secondsOptionRemote printerKimo at your service in more than 150 countriesD o c C o m b u s t i o n - V 1 - A n g l a i s - 12/17 R C S (24)P ér i g u e u x 349 282 095 - D o c u m e n t n o n c o n t r a c t u e l - N o u s n o u s r és e r v o n s l a p o s s i b i l i t é d e f a i r e év o l u e r l e s c a r a c t ér i s t i q u e s d e n o s p r o d u i t s s a n s p r éa v i s**************More information。

奇石乐KiBox 燃烧分析仪应用 _ Lya

奇石乐KiBox 燃烧分析仪应用 _ Lya

4.
KPEAK_STAT : Knock Peak Statistic
Lya 2014
KiBox Application
7
2. 汽油机爆震分析 (监控)
Evaluation methods: 5. Limit monitoring :
Trigger storage Digital output
V2.0
பைடு நூலகம்
additionally
Indication results are transferred via CAN to testbed controller
AVL IndiCom Serial Testbed Protocol via RS232 or Ethernet
2013
Lya 2014 KiBox Application
Lya 2014 KiBox Application 33
3. CAN Monitoring
Configure CAN database
Lya 2014
KiBox Application
34
3. CAN Monitoring
KiBox CAN data displayed in a device accepts CAN data
Lya 2014
KiBox Application
27
1. Misfire 失火分析
0.6
0.4 IMEP1 bar IMEP2 bar IMEP3 bar IMEP4 bar 0 50 100 150 200 250
0.2
Evaluation parameter:
300 IMEP
0
-0.2
-0.4

氧指数测定仪与氧指数测试仪测试沥青燃烧性解析

氧指数测定仪与氧指数测试仪测试沥青燃烧性解析

氧指数测定仪与氧指数测试仪测试沥青燃烧性解析众所周知,从隧道安全角度而言,沥青的阻燃性能至关重要。

目前评价沥青燃烧性能的指标主要有闪点和燃点,这只是描述了沥青能够燃烧的条件,而不能说明沥青在已经着火燃烧情况下持续燃烧的能力。

在化工等领域通常采用氧指数来定量描述材料的持续燃烧性能,并已有相应的国际标准和国内标准,氧指数测定仪与氧指数测试仪是常用的试验仪器,在一定氧氮浓度下点燃试样,观察燃烧现象,记录持续燃烧时间或试样燃烧量,再与规定值相比较,调整氧氮浓度得到试样的氧指数。

试验仪器及材料:1.氧指数测定仪/氧指数测试仪2.燃烧所用气源为工业级气体,O2和N2含量浓度均≥99.5%,符合GB3863及GB3864标准要求。

3.计时器用秒表,精度0.2s。

4.点火器材统一采用内径为2mm±1mm的管子通以液化石油气,该液化石油气技术要求符合GB11174—89。

试验原理:氧指数是指在规定的条件下,试样在氧、氮混合气流中维持平衡燃烧所需的最低氧浓度,以氧气所占的体积百分数表示,表示为IO。

沥青燃烧临界氧气浓度测定:目前路用沥青闪点一般较高(远高于常温),在常温下,即使加大氧浓度,仍然难以点燃。

在试验中对于参考标准的点燃方法做一定的调整:将沥青试样加热到一定的温度后,再点燃并测试相应的氧气浓度及燃烧时间。

从燃烧试验观察,对于沥青持续燃烧能力测试影响因素较多。

本文主要从试样燃烧前温度、试样量和燃烧时总气流量3个方面进行比较。

试样燃烧前加热温度:参考标准中通常规定试验温度为常温。

由于沥青闪点远远大于此规定温度(中、轻交通道路沥青中最低闪点要求不小于180°C),所以在这样的温度条件下无法点燃沥青,将氧浓度调至60%~80%都不能够燃烧。

所以,必须将沥青加热到一定的温度再进行燃烧测试。

沥青的比热容与它的稠度、温度有关。

在0°C时,沥青的比热容为1.672×10-6~1.7974×10-6J/(kg·°C)。

奇石乐发动机燃烧分析仪说明书

奇石乐发动机燃烧分析仪说明书
的意思,Curie 兄弟在 1880 年发现包 括石英在内的某些晶体表面受到机械 应力时会产生电荷。电荷量与作用在 晶体上的力精确地成正比。通常测量 以微微库仑为单位(1pC=10-12 库仑)。
压阻式压力传感器
压阻原理以1954年首次发现的半导体 效应为基础,即在机械应力作用下, 半导体的阻值会发生变化。与传统的 应变仪测量相比,这一发现开拓了全 新的应用领域。从那时起,其他相近 的技术开始出现,如金属薄膜技术和 陶瓷厚膜技术。
开始: – 奇石乐 – 传感器型号 – 版本 – 传感器版本号 – 传感器序号
初始校准: – 工作温度范围 – 初始校准日期 – 初始校准值
再校准: – 参考温度 – 再校准日期 – 再校准值
结尾: – 注释
传感器
密封
连接电缆
传感器、连接电缆和 TEDS 元件
PiezoSmart®适配器
压阻式低压
压电式缸压
PiezoStar®-10 多年来奇石乐在厂内培养高灵 敏和高温稳定的晶体。
2


目录
从晶体到传感器需要 200 道工序
4
奇石乐压力传感器 - 设计的多样化和创新
6
PiezoSmart® 意味着传感器的自动识别
8
技术先驱 - 引导发动机测试技术发展
压电式缸压
PiezoSmart® 传感器
优点概述
● 电荷和电压放大器参数的自动设 置
● 精确压力指示数据测量简便 ● 简化设置过程缩短试验台的测量
准备时间 ● 通过分析系统数据自动交换,简
化测量分析和记录 ● 传感器自动识别技术极大地提高
多通道校准系统的自动化程度
更多关于升级的信息, 请参考第 18 页

HORIBA SZ-100 Particle Size Analyzer 和 Autotitrato

HORIBA SZ-100 Particle Size Analyzer 和 Autotitrato

SZ-100Particle Size AnalyzerAN206 Using the SZ-100 Autotitrator to fi nd Isoelectric Point (IEP)The isoelectric point, IEP, of a colloidal system is determined automatically with the SZ-100 and Autotitrator from HORIBA Instruments. Zeta potential data as a function of pH is collected while the author is drinking coffee and writing support documents.IntroductionZeta potential is the charge on a particle at the shear plane. This value of surface charge is useful for understanding and predicting interactions between particles in suspension. A large magnitude (either positive or negative), that is, over about 25 mV, zeta potential is generally considered an indication that the particle suspension will be electrostatically stabilized. Zeta potential can be measured with the HORIBA SZ-100-Z shown in Figure 1.Figure 1: SZ-100 Nanoparticle AnalyzerZeta potential is a function of both the particle surface chemistry and the suspending medium chemistry (1). The ions that are at the particle surface and controlling surface potential are a function of the concentration and nature of the ions in the bulk liquid. In addition, the concentration of ions affects the distance over which charge effects persist. For example, a signifi cant amount of dissolved salt will shield the electrostatic interactions between particles. Some ions, known as specifi c ions will prefer to stick to the particle surface as the concentration of these ions increases. Examples of specifi c ions include H+ and polyvalent ions. In this work, the effect of H+ concentration on particle surface charge is studied. Other examples on the effect of various ion concentrations can be found in (2) and (3). T ypically, and for good reason, H+ concentration is discussed in terms of pH. pH has a strong effect on the surface charge of many types of particles. In addition, pH is a parameter that is often and readily changed in a formulation. For these reasons, the effect of pH on particle surface charge is often studied. One number that characterizes a surface is the isoelectric point, IEP, or point of zero charge, PZC, which refers to the conditions, often pH, at which the particle surface charge is zero. At pH values lower than the IEP, the particle surface charge is positive and at pH values higher than the IEP, the particle surface charge is negative. One rule of thumb for stable suspensions is to ensure that the pH is one full pH unit away from the IEP. Values of IEP are obtained by measuring the zeta potential as a function of pH and identifying the pH at which the zeta potential value crosses zero. In most cases this is achieved by interpolating the experimental data. T extbook values of IEP are often not useful for practical work since the value of IEP can change dramatically with even a small amount of impurity that is driven to the sample surface. IEP measurement results can also be affected by incomplete particle surface wetting or by the choice of surfactants. For example, adding TSPP to a metal oxide suspension will cause the IEP to shift to extremely low pH values or disappear altogether. For these reasons, IEP values are typically measured and that is a process that can be automated. The automation of isoelectric point measurement is achieved with the HORIBA Autotitrator accessory for theFigure 2:Autotitrator accessory for the SZ-100Page 2/2SZ-100 shown in Figure 2. The Autotitrator automatically adds acid or base to adjust the pH of the sample, records pH, and loads the sample into the graphite electrode cell in the SZ-100. Zeta potential is then determined and the cycle is automatically repeated for the next pH in the series.Materials and Methods Arti fi cial coffee creamer was diluted until slightly cloudy in DI water. Sample pH was automatically decreased to pH 2 and then increased stepwise with the HORIBA Autotitrator. Zeta potential was measured with the reusable graphite electrode cell in the HORIBA SZ-100Z nanoparticle analyzer. Sample pH was measured with the HORIBA 9621C temperature-compensated pH electrode. In this study, 100 mM nitric acid and 100 mM sodium hydroxide were used as the acid and base reagents respectively. The Autotitrator reagent containers include provision for molecular sieve treatment of incoming air that replaces removed titrant. The 5 mL burettes precisely deliver the reagents without bubbles eliminating the need for degassing. The smallest reagent dose that can be delivered manually is 0.0025 mL. The Autotitrator was set up in the software via a wizard type interface as shown in Figure 3 below. T he available manual mode was not used in this study.Figure 3: Screen Shot of Autotitratorsetup screen in the software.The pH probe was fi lled and calibrated using HORIBA standard solution set 101-S. After cleaning, it was held in place over the sample beaker with an integrated ring stand. The integrated stir plate mixed the sample as reagent was automatically delivered. When the target pH was reached, a peristaltic pump rinsed the zeta potential cell and delivered the sample for measurement. The zeta potential was measured in triplicate and pH monitored for drift during measurement. Then, the cycle was repeated for the next pH in the series.Results and DiscussionThe zeta potential of the coffee powder suspension as a function of pH is shown in Figure 3 below. From pH 2 to pH3, the zeta potential value of the coffee creamer emulsion increases. This is probably due to speci fi c shifts in the structure of the emulsion at low pH. From pH 3 to pH 11, the shape of the curve is the classical backwards S shape. At low pH, the particle charge is positive due to the large H + ion concentration. At high pH, the particle charge is negative due to the large OH- ion concentration. The obtained valueof the isoelectric point where the zeta potential crosses frompositive to negative is at pH 5. Finally, there is a decreasein the magnitude of the zeta potential between pH 11 and pH 13. This is either due to another structural shift in the emulsion or due to the shielding effect of the increased number of ions in the suspension. The main point of this plot is that the isoelectric point of this system is at pH 5.Figure 4: Screen shot of results of automatic titrationresults with the SZ-100 and Autotitrator.ConclusionsThe IEP of a suspension can be automatically determined using the HORIBA SZ-100 and the HORIBA Autotitrator. The IEP of this particular arti fi cial coffee creamer was found to be at pH 5.References(1) HORIBA Application Note AN195 “Isoelectric Point Determination”, available at /fi leadmin/uploads/Scienti fi c/Documents/PSA/AN195_app.pdf (2) HORIBA Application Note AN201 “Wastewater T reatment: Zeta Potential Analysis of Suspended Clay Solids”, available at /fi leadmin/uploads/Scienti fi c/Documents/PSA/Application_Notes/AN201_app.pdf(3) HORIBA Application Note AN202 “Zeta Potential Analysis of Re fi nery Wastewater and Its T reatment,” available at /fi leadmin/uploads/Scienti fi c/Documents/PSA/Application_Notes/AN202_app.pdf******************/scienti fi cUSA: (800) 446-7422 France:+33 (0)1 64 54 13 00 Japan: +81 (0)3 38618231T h i s d o c u m e n t i s n o t c o n t r a c t u a l l y b i n d i n g u n d e r a n y c i r c u m s t a n c e s - © H O R I B A I n s t r u m e n t s , I n c . 05/2012。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Direct CN
(directly generated by the cylinder pressure attenuation)
Indirect CN
(attenuated by the cylinder pressure but generated by mechanics)
Lya 2014 KiBox Application
Lya 2014 KiBox Application
22
5. 汽油机标定 主要关注参数
Lya 2014 KiBox Application
23
6. 柴油机标定 主要关注参数
AI50
Lya 2014 KiBox Application
RMAX : Maximum rise per degree crank angle
爆震 残余气体 能量平衡 喷射特性 发动机功率
Lya 2014 KiBox Application
2
热动力学分析
Lya 2014 KiBox Application
3
1. 柴油机喷射参数优化
Lya 2014 KiBox Application
4
2. 汽油机爆震分析 (Knock Analysis)
useful for invehicle testing
Lya 2014 KiBox Application
20
4. 与标定软件 ATI VISION 集成
Offline Analysis
Lya 2014 KiBox Application
21
5. 汽油机标定 主要关注参数
KPeak : Knock Peak AI50 : Location of 50% burnt mass fraction IMEP_cov : Variant coefficient over a certain number of cycles
ARMAX : Crank angle location of RMAX
24
7. 应用举例: 换挡扭矩控制
Lya 2014 KiBox Application
25
Trouble-shooting
Lya 2014 KiBox Application
26
1. Misfire 失火分析
100 90 80 70 60 50 40 30 20 10 0 0
35
32
2. Limit monitoring — Digital output
Lya 2014 KiBox Application
Digital signal can also be imported to a 3-rd device in the test bench : e.g. Emergency stop
Lya 2014 KiBox Application
5
2. 汽油机爆震分析 (Siemens VDO)
Lya 2014 KiBox Application
6
2. 汽油机爆震分析 (评价)
评价方法: 1. KFRQ + KRAT : Knock Frequency + Knock Ratio 2. KPEAK : Knock Peak 3. KINT : Knock Integral 4. KPEAK_STAT : Knock Peak Statistic
Heat release position: AI50 ≈ 8°CA AI50 > 8°CA, Post-combustion , Power AI50 < 8°CA, Post-combustion , Power
Lya 2014 KiBox Application
9
4. NVH 噪声
CAV+A: Actual volume,
13
标定
Lya 2014 KiBox Application
14
1. 发动机标定系统
Lya 2014 KiBox Application
15
1. 发动机标定系统
Lya 2014 KiBox Application
16
2. 与台架通讯 --- AVL PUMA / Horiba
V1.4
V2.0
IMEP1 bar IMEP2 bar IMEP3 bar IMEP4 bar
Evaluation parameter:
50
100
150
200
250
300 IMEP
Lya 2014 KiBox Application
28
1. Misfire 失火分析
Mis-fire
Normal
Lya 2014 KiBox Application
33
3. CAN Monitoring
Configure CAN database
Lya 2014 KiBox Application
34
3. CAN Monitoring
KiBox CAN data displayed in a device accepts CAN data
Lya 2014 KiBox Application
Evaluation parameter: PMAX IMEP
29
2. PMAX 过大的危害分析
发动机的运动部件,尤其活塞连杆机构,在每个循环 都承受很大的负荷
当缸内燃烧压力峰值过大时,会导致一些零部件因负 载太大而损坏
例如:活塞环会因为负载太大而断裂,导致拉缸。 严重的甚至导致整台发动机报废。
Evaluation parameter: PMAX
PMAX1 bar PMAX2 bar PMAX3 bar PMAX4 bar
50
100Biblioteka 150200250
300
Lya 2014 KiBox Application
27
1. Misfire 失火分析
0.6 0.4 0.2
0 0
-0.2 -0.4 -0.6
Combustion Noise
(all noise components which correlate with the
cylinder pressure)
Mechanical Noise
(all noise components which do not correlate with the cylinder pressure)
Indication results are transferred via INCA to testbed controller
Indication results are transferred via CAN to testbed controller
additionally
AVL IndiCom Serial Testbed Protocol via RS232 or Ethernet
which the KiBox is to be used
Lya 2014 KiBox Application
During measurement: the INCA icon appears
18
3. 与标定软件 ETAS INCA 集成
During measurement: Parameters are auto-
matically imported into INCA
Lya 2014 KiBox Application
19
4. 与标定软件 ATI VISION 集成
Multiple configurations may be added to the device
Can be switched at any time
Lya 2014 KiBox Application
Structure Response Function
4-Cyl. 2.2l Diesel 6-Cyl. 3.2l Diesel 4-Cyl. 1.7l Diesel
Standard Struct. Resp. Function Mean Struct.Response Function
Frequency [Hz]
4. NVH 噪声 Fully Anechoic Test Bench
Fully Anechoic Engine Test Stand
Lya 2014 KiBox Application
4. NVH 噪声
Total Engine Noise (Air Borne Noise Level)
Lya 2014 KiBox Application
7
2. 汽油机爆震分析 (监控)
Evaluation methods: 5. Limit monitoring :
Trigger storage
Digital output
Lya 2014 KiBox Application
8
3. 动力与排放平衡
Lya 2014 KiBox Application
30
监控
Lya 2014 KiBox Application
31
1. Limit monitoring — Data stored automatically
Lya 2014 KiBox Application
Data stored automatically when the specified condition is triggered
Can be measured on the acoustic test bench using a microphone.
Lya 2014 KiBox Application
10
Structure Response Function [dB(A)]
相关文档
最新文档