06弯曲变形PPT课件
合集下载
材料力学(理工科课件)第六章 弯曲变形)

§6-1 基本概念及工程实例 (Basic concepts and example problems)
一、工程实例(Example problem)
(Deflection of Beams)
但在另外一些情况下,有时却要求构件具有较大的弹性变 形,以满足特定的工作需要.
例如,车辆上的板弹簧,要求有足够大的变形,以缓解车辆受
M 0 w 0
x
O
M 0 w 0
M
(Deflection of Beams)
w (1 w )
2 3 2
M ( x) EI
2 w 与 1 相比十分微小而可以忽略不计,故上式可近似为
w"
M ( x) EI
(6.5)
此式称为 梁的挠曲线近似微分方程(differential equation of the deflection curve) 近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项; (3) tan w w( x )
x Cx D
4
(Deflection of Beams)
边界条件x=0 和 x=l时, w 0
梁的转角方程和挠曲线方程 A 分别为 q 2 3 3 (6lx 4 x l ) 24 EI qx 2 3 3 w (2lx x l ) 24 EI 最大转角和最大挠度分别为 在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
A a l D B
b
(Deflection of Beams)
解: 梁的两个支反力为
FRA F FRB F b l a l
x
l x
F FRA
A 1 a D b 2
材料力学第5章弯曲变形ppt课件

qL
4.22kNm
4.22kNm
M
max
32 M
max
76.4MPa
WZ
d 3
例题
20kN m
A
4m
FA
20kN m
A
MA
4m
试求图示梁的支反力
40kN
B
D
2m
2m
B
B1 FB
FB 40kN
B
D
B2
2m
2m
在小变形条件下,B点轴向力较小可忽略不
计,所以为一次超静定.
C
B1 B2
FBBBMF12AA2383qFEqELBqqLI84LI2LLZZ32F35BFF4FEFB83PBPLIEL7Z3L12IZ.218352.k75N5kFkN2PNmEL2IZ2
x
边界条件
A
L2
B
L2
C
y
连续条件
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
全梁仅一个挠曲线方程
C
q
EA
共有两个积分常数 边界条件
L1
A
x
B
EI Z
L
y
例题 5.5
用积分法求图示各梁挠曲线方程时,试问在列各梁 的挠曲线近似微分方程时应分几段;将分别出现几个 积分常数,并写出其确定积分常数的边界条件
q
a
B C LBC
B
2a
FN
B
q2a4
8EIZ
FN 2a3
3EIZ
C
FN
a
D
弯曲变形ppt课件

4
3.
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
工程实例
engineering examples
5
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
2. The predigesting of beams is that the axis of beam represents the beam. 2. 载荷简化
作用于梁上的载荷(包括支座反力)可简化为三种类型:集中力、 集中 力偶和分布载荷
The predigesting of loads involves three types :concentrated forces, concentrated
the beam must be in the same plane.It is called plane bending.
对称弯曲(如下图)—— 典型的平面弯曲。 Symmetrical bending(as shown Fig 9-1 is character plane bending
P1
q
P2
6
4.
常见心律失常心电图诊断的误区诺如承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
平面弯曲:杆发生弯曲变形后,轴线仍然和外力在同一平面内。
If all loads are applied in a plane,then the elastic curve for
3.
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
工程实例
engineering examples
5
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
2. The predigesting of beams is that the axis of beam represents the beam. 2. 载荷简化
作用于梁上的载荷(包括支座反力)可简化为三种类型:集中力、 集中 力偶和分布载荷
The predigesting of loads involves three types :concentrated forces, concentrated
the beam must be in the same plane.It is called plane bending.
对称弯曲(如下图)—— 典型的平面弯曲。 Symmetrical bending(as shown Fig 9-1 is character plane bending
P1
q
P2
6
4.
常见心律失常心电图诊断的误区诺如承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
平面弯曲:杆发生弯曲变形后,轴线仍然和外力在同一平面内。
If all loads are applied in a plane,then the elastic curve for
《弯曲变形静不定梁》课件

THANK YOU
。
适用范围
适用于分析简单梁结构,计 算过程相对简单,但精度略 低于弹性力学方法和有限元 方法。
04
静不定梁的应用
工程结构
桥梁
静不定梁在桥梁设计中应用广泛 ,如斜拉桥、悬索桥等,能够承 受较大的弯曲和剪切力,提高桥 梁的稳定性和安全性。
建筑
在高层建筑、大跨度结构等建筑 设计中,静不定梁能够提供更好 的支撑和稳定性,保证建筑的安 全性和耐久性。
解法
通过求解弹性力学基本方程,可以得到梁的位 移、应变和应力等参数。
适用范围
适用于分析梁的精确解,但计算过程较为复杂。
有限元方法
基本思想
01
将连续的梁离散为有限个小的单元,对每个单元进行受力分析
,再通过单元的集合体来近似表示整个梁。
求解过程
02
通过迭代或直接求解方法,得到每个单元的位移和应力,再通
大跨度结构
大跨度结构如体育场馆、会展中心等需要承受较大的荷载和 变形,静不定梁能够提供更好的承载和支撑,保证大跨度结 构的稳定性和安全性。
05
静不定梁的优化设计
材料选择
钢材
高强度钢材具有较高的承载能力和耐久性,适用于需要承受较大 载荷的静不定梁。
铝合金
铝合金具有轻质、耐腐蚀的优点,适用于需要减轻自重的静不定梁 。
01
03
为了减小扭转变形的影响,可以通过增加梁的截面尺 寸、提高材料的剪切模量或改变截面形状等方式来实
现。
04
在静不定梁中,扭转变形的影响通常较小,但在某些 情况下,如梁的长度较大或受到较大的力矩作用时, 其影响可能会变得较为显著。
03
静不定梁的分析方法
弹性力学方法
《弯曲变形》课件2

航空航天器中的弯曲变形控制
总结词
航空航天器中,弯曲变形控制对于确保 飞行器的气动性能和结构稳定性至关重 要。
VS
详细描述
在航空航天领域,弯曲变形控制涉及到飞 机和航天器的整体和局部结构的刚度和稳 定性要求。为了减小弯曲变形,需要采取 一系列的设计和控制措施,如优化结构设 计、加强材料和制造工艺的控制等。这有 助于提高飞行器的性能和安全性。
感谢观看
THANKS
弯曲变形的定义
01
02
03
弯曲变形
物体在受到外力作用时, 其形状发生改变的现象。
弯曲变形的程度
与外力的大小、物体的材 料性质和受力方式等因素 有关。
弯曲变形的特点
物体在受力后发生弯曲, 但内部结构并未发生破坏 或永久性变形。
弯曲变形的应用场景
桥梁工程
桥梁在车辆和风载等外力作用下会发 生弯曲变形,但设计合理的桥梁结构 能够保证安全性和稳定性。
几何方程
描述了物体形状的变化和 应变之间的关系。
弯曲变形的能量平衡方程
应变能
物体因弯曲变形而储存的能量, 与应力和应变有关。
外力势能
物体受到的外力与位移有关,可以 转化为势能。
能量平衡方程
描述了物体在弯曲变形过程中能量 的变化和平衡。
弯曲变形的有限元分析
有限元模型
将物体划分为有限个小的单元 ,每个单元有一定的属性和行
分析
对实验结果进行统计分析,研究弯曲变形的规律和特点。通过对比不同材料和规 格的试样,分析其抗弯性能和影响因素。结合理论分析,探讨弯曲变形的本质和 机理。
06
弯曲变形的实际应用案例
桥梁工程中的弯曲变形控制
总结词
桥梁工程中,弯曲变形控制是确保结构安全和稳定的关键因素。
《材料力学弯曲》课件

定义方式
弯曲应变通常用曲率半径的变化量与原始曲率半径的比值来表示,即 ΔR/R。其中 ΔR 是曲率半径的变化量,R 是原始曲率半径。
弯曲应变的计算
应变计法
通过在物体上粘贴应变片 ,并利用应变计测量应变 值,从而计算出弯曲应变 。
有限元分析法
利用有限元分析软件,建 立物体的有限元模型,通 过模拟受力情况下的变形 过程,计算出弯曲应变。
实验法
通过实验测试物体的弯曲 变形,利用相关公式计算 出弯曲应变。
弯曲应变的分布
应变分布图
通过绘制应变分布图,可以直观地了 解物体在弯曲变形过程中应变的大小 和分布情况。
应变集中
应变梯度
在弯曲变形过程中,物体不同部位上 的应变大小和方向可能不同,形成应 变梯度。
在物体受力点附近区域,应变会集中 增大,可能导致材料疲劳或断裂。
材料力学的重要性
总结词
材料力学在工程设计和实践中具有重要意义。
详细描述
在工程设计和实践中,材料力学是必不可少的学科之一。通过对材料力学的研究 ,工程师可以更好地理解材料的性能,预测其在各种工况下的行为,从而设计出 更加安全、可靠、经济的工程结构。
材料力学的基本假设
总结词
材料力学基于一系列基本假设,这些假设简 化了问题的复杂性,使得分析更为简便。
学习目标
01
02
03
04
掌握材料力学的基本概念、原 理和分析方法。
理解弯曲问题的特点和解决方 法。
能够运用所学知识解决简单的 弯曲问题。
培养分析问题和解决问题的能 力,提高力学素养。
02
材料力学基础
材料力学的定义
总结词
材料力学是一门研究材料在各种 力和力矩作用下的行为的学科。
弯曲应变通常用曲率半径的变化量与原始曲率半径的比值来表示,即 ΔR/R。其中 ΔR 是曲率半径的变化量,R 是原始曲率半径。
弯曲应变的计算
应变计法
通过在物体上粘贴应变片 ,并利用应变计测量应变 值,从而计算出弯曲应变 。
有限元分析法
利用有限元分析软件,建 立物体的有限元模型,通 过模拟受力情况下的变形 过程,计算出弯曲应变。
实验法
通过实验测试物体的弯曲 变形,利用相关公式计算 出弯曲应变。
弯曲应变的分布
应变分布图
通过绘制应变分布图,可以直观地了 解物体在弯曲变形过程中应变的大小 和分布情况。
应变集中
应变梯度
在弯曲变形过程中,物体不同部位上 的应变大小和方向可能不同,形成应 变梯度。
在物体受力点附近区域,应变会集中 增大,可能导致材料疲劳或断裂。
材料力学的重要性
总结词
材料力学在工程设计和实践中具有重要意义。
详细描述
在工程设计和实践中,材料力学是必不可少的学科之一。通过对材料力学的研究 ,工程师可以更好地理解材料的性能,预测其在各种工况下的行为,从而设计出 更加安全、可靠、经济的工程结构。
材料力学的基本假设
总结词
材料力学基于一系列基本假设,这些假设简 化了问题的复杂性,使得分析更为简便。
学习目标
01
02
03
04
掌握材料力学的基本概念、原 理和分析方法。
理解弯曲问题的特点和解决方 法。
能够运用所学知识解决简单的 弯曲问题。
培养分析问题和解决问题的能 力,提高力学素养。
02
材料力学基础
材料力学的定义
总结词
材料力学是一门研究材料在各种 力和力矩作用下的行为的学科。
《平面弯曲变形》课件
平面弯曲变形的应用实 例
桥梁和建筑结构的平面弯曲变形分析
桥梁结构:桥梁 的平面弯曲变形 分析,包括梁、 拱、索等结构
建筑结构:建筑结构 的平面弯曲变形分析, 包括框架、剪力墙、 筒体等结构
变形原因:荷载、 温度、湿度、地 震等外部因素引 起的变形
变形影响:对结构 安全性、稳定性、 耐久性的影响
变形控制:通过设 计、施工、维护等 手段控制变形,保 证结构安全
剪切应力的分布规律:剪切应力在剪切面上分布不均匀,靠近剪切面中心处应力较小, 远离剪切面中心处应力较大
剪切应力的影响因素:剪切力、剪切面形状、材料性质等
剪切应力的应用:在工程设计中,需要考虑剪切应力对结构的影响,以避免结构破坏 或失效。
平面弯曲变形的能量平 衡
弹性势能与动能之间的关系
弹性势能:物体在弹性形变过 程中储存的能量
感谢观看
汇报人:
平面弯曲变形可以分为弹性变形和塑性变形两种类型。
弹性变形是指物体在外力作用下,其形状和尺寸发生变化,但外力消失后,物体可以 恢复到原来的形状和尺寸。
塑性变形是指物体在外力作用下,其形状和尺寸发生变化,但外力消失后,物体不能 恢复到原来的形状和尺寸。
平面弯曲变形的分类
弯曲变形:物体在外力作用下发生弯曲变形 扭转变形:物体在外力作用下发生扭转变形 弯曲-扭转变形:物体在外力作用下同时发生弯曲和扭转变形 弯曲-弯曲变形:物体在外力作用下同时发生弯曲和弯曲变形
平面弯曲变形的稳定性 分析
稳定性分析的基本概念
稳定性分析的目的:确定结构在受力作用下的稳定性 稳定性分析的方法:有限元分析、能量法等 稳定性分析的指标:临界载荷、临界应力等 稳定性分析的应用:结构设计、优化等
稳定性分析的方法和步骤
弯曲变形课件
其余部分被看作为刚体,因此又称为逐段刚化法或 逐段求和法。
注意
迭加法是利用载荷迭加;是分解载荷; 广义迭加法将梁各部份变形对所求截面的挠度和转
角的贡献量进行迭加;是分解梁。
例5. 图示悬臂梁左侧受均布载荷,用迭加法求
自由端的挠度和转角。已知EI为常数。 解:
f B fC θC L 2
2.用迭加法求解静不定梁
变形协调条件和补充方程
fB 0
f B f Bq f BR 0
qL4 RBR L3 0 8EI 3EI
3qL R B 8
当此段梁受到正弯矩时,挠曲轴
为凹曲线,其二阶导数也为正。
当此段梁受到负弯矩时,挠曲轴
为凸曲线,其二阶导数也为负。
挠曲轴近似微分方程
M( x ) v" EI z
6.3 用积分法求弯曲变形 (Beam deflection by integration )
1.挠曲轴近似微分方程的积分
挠度。已知抗弯刚度EI为常数。 解:
Pb RA L
" 1
Pa RB L
Pb AD : EIv x1 (0 x1 a) L
" DB : EIv2
( a x2 L )
Pb x2 P( x2 a) L
Pb EIv x1 (0 x1 a) L Pb 2 v1 ' x1 C 1 2 EIL Pb 3 v1 x1 C 1 x1 D1 6EIL
L 4 L 3 q ( ) q( ) 4 7 qL L 2 2 8EI 6EI 2 384EI
L q ( )3 3 qL θB θC 2 6EI 48EI
材料力学弯曲变形
材料力学弯曲变形
材料力学中的弯曲变形是指物体在受到外力作用下发生的一种变形形式。
当材料受到垂直于其长度方向的外力时,会产生弯矩,使得物体产生弯曲变形。
弯曲变形的原理可以通过材料力学中的悬臂梁模型进行解释。
在悬臂梁中,一个固定的端点支撑着一根梁,梁的另一端受到外力作用,使得梁产生弯曲。
在悬臂梁的弯曲变形中,梁上部的纤维受到拉力,而下部的纤维受到压力。
由于力的作用,纤维之间会相互滑动,从而产生弯曲变形。
弯曲变形可以通过材料的弹性性质进行描述。
弯曲变形的程度取决于材料的弯曲刚度,即弹性模量,以及外力的大小和作用点的位置。
与拉伸变形不同,弯曲变形的应变分布不是均匀的,而是随着离中轴线的距离而变化。
中轴线上的纤维经历的应变为零,而离中轴线较远的纤维经历的应变较大。
弯曲变形是材料工程中常见的一种变形形式,它在很多结构中都会发挥作用。
例如,在桥梁和楼板等结构中,弯曲变形可以帮助承受外部荷载并保持结构的稳定性。
在材料设计和工程应用中,科学家和工程师常常要考虑材料的弯曲性能,以确保结构的强度和稳定性。
精品课件-材料力学(张功学)-第6章
梁的抗弯刚度EI为常量,求此梁的转角方程和挠曲线方程,并 确定最大挠度值。
图6-4
6.1 引 言
解(1)求约束力。建立坐标系如图所示,求得约束力为
方向均竖直向上。
FAy
b l
F
,
FBy
a l
F
(2)写出弯矩方程。由于集中力加在两支座之间,弯矩方
程在AC、BC两段各不相同。
AC段:
M
1(
x)
b l
Fx
w(a )w(a ), (a ) (a )
(f)
利用式(e)和式(f),即可解得
D1 D2 0,
C1
C2
Fb(b 6l
2
l
2
)
于是,求得梁的转角方程和挠曲线方程分别为
6.1 引 言
AC段:
EI (x) Fb(3x2 b2 l 2 )
6l
EIw(x) Fbx[x3 (b2 l 2 )x] 6l
(a) (b) (c)
6.1 引 言
确定积分常数C和D的边界条件为:在固定端截面处,挠度 和转角均为零。即
w00, 00
将(b)、(c)两式代入,得
D0, C0
将所得积分常数代入(b)、(c)两式,得到梁的转角方程和挠
度方程分别为
(x)dw
1
Wx 2 (
Wlx )
dx EI 2
w(x) 1 (Wx 3 Wlx 2 ) EI 6 2
6.1 引 言 显然在自由端处转角与挠度最大,即当x=l时,得
m
ax
B
1 EI
(Wl 2
2
Wl
2
Wl 2 )
2EI
1 Wl 3 Wl 3 Wl 3
图6-4
6.1 引 言
解(1)求约束力。建立坐标系如图所示,求得约束力为
方向均竖直向上。
FAy
b l
F
,
FBy
a l
F
(2)写出弯矩方程。由于集中力加在两支座之间,弯矩方
程在AC、BC两段各不相同。
AC段:
M
1(
x)
b l
Fx
w(a )w(a ), (a ) (a )
(f)
利用式(e)和式(f),即可解得
D1 D2 0,
C1
C2
Fb(b 6l
2
l
2
)
于是,求得梁的转角方程和挠曲线方程分别为
6.1 引 言
AC段:
EI (x) Fb(3x2 b2 l 2 )
6l
EIw(x) Fbx[x3 (b2 l 2 )x] 6l
(a) (b) (c)
6.1 引 言
确定积分常数C和D的边界条件为:在固定端截面处,挠度 和转角均为零。即
w00, 00
将(b)、(c)两式代入,得
D0, C0
将所得积分常数代入(b)、(c)两式,得到梁的转角方程和挠
度方程分别为
(x)dw
1
Wx 2 (
Wlx )
dx EI 2
w(x) 1 (Wx 3 Wlx 2 ) EI 6 2
6.1 引 言 显然在自由端处转角与挠度最大,即当x=l时,得
m
ax
B
1 EI
(Wl 2
2
Wl
2
Wl 2 )
2EI
1 Wl 3 Wl 3 Wl 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
建立坐标系并写出弯矩方程
M (x)P (Lx)
写出微分方程并积分
应用位移边界条件求积分常数
E w IM (x ) P (L x ) Ew I12P(Lx)2C1
EI(0w )1 6P3LC20
E(I0)Ew I(0)1 2P2L C 10
EIw 1 6P(Lx)3C 1xC2 C11 2P2L;C21 6P3L
写出弹性曲线方程并画出曲线
w (x)P(Lx)33L 2xL 3 6EI
最大挠度及最大转角
m
ax(L)
PL2
2EI
PL3 wmaxw(L)3EI
[例2] 求下列各等截面直梁的弹性曲线、最大挠度及最大转角。
解:建立坐标系并写出弯矩方程
M (x) 0 P(xa)
(0xa) (axL)
写出微分方程并积分
x
2
( l ,3 2
l
)
3.变形分析:
AB段:
由于
y1ME1(xI1)
F1x 2EI
积分后得:
1(x1)y2 E FIx1d1xC14 E FxI12C1
y1(x1)4 E FIx12d1xC1x1D 11E 2 FxI13C1x1D 1
15
BC段:由于 y2 M E 2(x2I)E F(I2 3lx2) ,积分后得:
2(x2)y E FI(2 3lx2)d2 xC 2 E F (2 3 Il2 xx 2 2 2)C 2 y2(x2) E FI(2 3l2 x1 2x2 2)d2 xC 2x2D 2 E F (4 3 Il2 2 x1 6x2 3)C 2x2D 2
边界条件:
当 x 1 0 时 y 1 , 0 ; x 2 l时 y 2 , 0
写出弹性曲线方程并画出曲线
w(x)66P P E EII(x3aa2x)3a33a2xa3
(0xa) (axL)
最大挠度及最大转角
m
ax(a)
Pa2 2EI
wma xw(L)6 PE2aI3La
[例3] 试用积分法求图示梁的挠曲线方程和转角方程,并
求C截面挠度和A截面转角。设梁的抗弯刚度EI为常数。
P
q [例4] 按叠加原理求A点转角
A
பைடு நூலகம்
C
B 和C点挠度。
a
a
P
=
解、① 载荷分解如图 ② 由梁的简单载荷变形表,
A
B
查简单载荷引起的变形。
+
PA
4
一、度量梁变形的两个基本位移量 1.挠度:横截面形心沿垂直于轴线方向的线位移。用w表示。
与 y 同向为正,反之为负。
2.转角:横截面绕其中性轴转
动的角度。用 表示,反时
针转动为正,顺之为负。
二、挠曲线:变形后,轴线变为光滑曲线,该曲线称为挠曲线。
其方程为: w =f (x)
小变形
三、转角与挠曲线的关系: tg dw w
连续光滑条件:
当 x x l时 y y , ,
12
1 21 2
代入以上积分公式中,解得:
C 1 1 F E 2 2 , lI C 25 6 F E 2, lID 1 0 , D 2 4 F E 3 lI
16
故挠曲线方程和转角方程分别为:
y1E2FEFI(I43x13lx221F216El2xI23x)156FEl2Ix2
Fl3
4EI
12((xx12))4EEFFIIx(1232 lx12F2El212Ix22)3FEl2I
由此可知:
A
1(x1
0)
Fl2 (逆时针方); 向 12EI
yC
y2(x2
3l) 2
Fl3 8EI
(向下)
17
§6.4 用叠加原理求弯曲变形 一、载荷叠加
多个载荷同时作用于结构而引起的变形等于每个载荷单独 作用于结构而引起的变形的代数和。
1
第六章 弯曲变形
§6.1 概述 §6.2 挠曲线近似微分方程 §6.3 用积分法求弯曲变形 §6.4 用叠加原理求弯曲变形 §6.5 梁的刚度校核 §6.6 提高弯曲刚度的一些措施
2
§6.1 概 述
研究范围:梁在对称弯曲时位移的计算。 研究目的:①对梁作刚度校核;
②解超静定梁(为变形几何条件提供补充方程)。
或写 w C 左 成 w C 右
或 写 C 左 成C 右
讨论:
①适用于小变形情况下、线弹性材料、细长构件的平面弯曲。
②可应用于求解承受各种载荷的等截面或变截面梁的位移。
③积分常数由挠曲线变形的几何相容条件(边界条件、连续条
件)确定。
④优点:使用范围广,直接求出较精确; 缺点:计算较繁。
[例1] 求下列各等截面直梁的弹性曲线、最大挠度及最大转角。
Ew I 0 P(xa)
(0xa) (axL)
E
Iw
1 2
P(x
a)2
C1
D1
EIw16P(xa)3 C1xC2 D1xD2
应用位移边界条件求积分常数
EI(0w )1 6P3aC20
EI(0)12Pa2C10 (a)(a) C1 D1
w(a)w(a)
C 1aC 2D 1aD 2
C 1D 11 2P2a ;C 2D 21 6P3a
( P 1 、 P 2 、 P n ) 1 ( P 1 ) 2 ( P 2 ) n ( P n )
f ( P 1 、 P 2 、 P n ) f 1 ( P 1 ) f 2 ( P 2 ) f n ( P n )
二、结构形式叠加(逐段刚化法)
挠曲线近似微分方程为:
1.微分方程的积分
Ew IM (x)
Ew IM(x)
Ew I(M (x)d )xC 1
E I( w (M (x )d x )) d x C 1 x C 2
2.位移边界条件
P
A
C
B
D
P
支点位移条件:
wA 0 wB 0
连续条件: wC wC
光滑条件:
C
C
wD 0 D 0
dx
(1
§6.2 挠曲线近似微分方程
一、挠曲线近似微分方程
1 M z (x)
EI z
(1)
1(1w w2)3小2变形 w
w Mz (x) EIz
w M (x)
EIz
(2)
式(2)就是挠曲线近似微分方程。
对于等截面直梁,挠曲线近似微分方程可写成如下形式:
Ew IM (x)
§6.3 用积分法求弯曲变形
解:1.外力分析:求支座约束反力。 研究梁ABC,受力分析如图,列平衡方程:
m F yA R R A B R l B FF 1 .5 0 l0 R R B A 1 .0 5.F 5F
14
2.内力分析:分区段列出梁的弯矩方程:
M
M
1 2
1 2
F
Fx1 (3l 2
x2
)
x1 (0, l )