X荧光光谱法(XRF)

合集下载

X射线荧光光谱

X射线荧光光谱

矿物成分分析 环境分析 陶瓷材料分析 催化剂成分分析 薄膜厚度测定 X射线荧光光谱法具有谱线简单、无损检测等特 点,应用不断扩大,已成 主要局限性

不能分析原子序数小于5的元素 分析灵敏度不高 对标准试样的要求很严格
1.2 X射线荧光的产生

X射线的能量与原子轨道能级差的数量级相等, 待测元素经X射线照射后,发生X射线吸收, 原子内层电子(如K层)受到激发,逐出一个 电子,形成一个空穴,此时,较外层(如L层) 上的电子发生跃迁来填补这个空穴,这时就 会发出特征的X射线。
X射线激发电子弛豫过程示意图
1.3 俄歇效应
发 射K层X射 线 数 产 生K层 空 穴 数
一般来说,对于原子序数小于11的元素以发 射俄歇电子为主,而原子序数大于11的元素 以发射X荧光射线为主,因此 XRF法更适合分析原子序数较大元素。
2. X射线荧光法定性分析

对于每种元素来说,由于各自的能级分布不同,所发射出 的能量(或波长)互不相同,称为特征谱线。特征谱线的 频率取决于电子跃迁的始态和终态的能量差。
X射线荧光光谱
1.原理
X射线光谱分析法包括: X射线荧光光谱法(XRF) X射线衍射光谱法(XRD) X射线荧光光谱法是利用元素内层电子跃迁产生 的荧光光谱,应用于元素的定性、定量分析, 特别适合于固体表面成分分析。

1.1 什么是X射线

X射线是介于紫外线和 射线之间的一种电磁 辐射,波长范围0.001~10nm,波长大于0.1nm 的X射线称“软”X射线,而波长较长的X射线 称“硬”X射线。X射线与物质作用产生衍射 现象,这是X射线作为电磁波的特征,X射线 也可看作具有一定能量的光子。

当较外层电子跃迁到空穴时,所释放出的 能量随即在原子内部被吸收又释放出另一 个较外层的电子时,此效应称为俄歇效应。 而所产生的新的光电子叫俄歇电子。它的 能量是特征的与入射辐射的能量无关。

帕纳科xrf原理-概述说明以及解释

帕纳科xrf原理-概述说明以及解释

帕纳科xrf原理-概述说明以及解释1.引言1.1 概述帕纳科XRF原理(即帕纳科X射线荧光光谱仪原理)是一种非常重要的分析技术,它利用X射线荧光光谱仪进行物质的分析与检测。

X射线荧光光谱仪(XRF)是一种基于X射线的分析技术,能够快速、无损地分析样品的元素成分及其含量。

帕纳科XRF原理通过将样品暴露在高能量的X射线辐射下,激发样品中的原子发生内层电子跃迁,从而产生特定能量的特征X射线。

这些特征X射线与样品中元素的种类和含量密切相关。

X射线荧光分析原理基于这个原理,通过测量样品中发射出的特征X射线的能量和强度来确定样品的元素成分。

帕纳科XRF原理在许多领域都有广泛的应用。

在材料分析方面,它可以用于合金分析、陶瓷成分分析、矿石成分分析等。

在环境监测方面,它可以用于土壤中重金属含量的检测、水中有害物质的检测等。

在文物保护方面,它可以用于非破坏性地分析文物的元素成分,以了解其制作材料和年代等信息。

帕纳科XRF原理具有许多优点。

首先,它非常快速和高效,能够在几分钟内完成样品的分析。

其次,它是一种无损检测技术,不需要破坏样品,适用于各种形态的样品。

此外,它还具有高准确性和重复性,并且可以同时分析多个元素。

然而,帕纳科XRF原理也存在一些局限性。

首先,它对于低能量X射线不敏感,因此无法检测低原子序数元素。

其次,样品的尺寸和形态对分析结果可能产生影响。

最后,它对于元素的定量分析相对有限,通常只能得到元素的相对含量。

随着科学技术的不断发展,帕纳科XRF原理也在不断进步和完善。

未来,我们可以期待更加精确和灵敏的X射线荧光光谱仪的研发,以及更加全面和准确的元素分析方法的开发。

综上所述,帕纳科XRF原理是一种重要的分析技术,具有广泛的应用领域和许多优点。

随着技术的不断进步,帕纳科XRF原理将在各个领域发挥更大的作用。

文章结构部分的内容如下所示:1.2 文章结构本篇长文主要围绕帕纳科XRF原理展开,文章的主要部分分为引言、正文和结论三个部分。

X荧光光谱法(XRF)课件PPT

X荧光光谱法(XRF)课件PPT
与其他分析方法相比,X荧光光谱法具 有较高的检测精度和稳定性,操作简 便,对环境和人员无害,尤其适用于 现场快速分析和在线检测等领域。
02 X荧光光谱法的基本原理
原子结构与能级跃迁
01
02
03
原子结构
原子由原子核和核外电子 组成,电子在不同能级上 运动。
能级跃迁
当原子受到外界能量(如 光子)的激发时,电子从 低能级跃迁到高能级,反 之亦然。
环境样品分析
总结词
X荧光光谱法在环境样品分析中具有独特的优势,能够同时测定多种元素,且对样品的 前处理要求较低。
详细描述
X荧光光谱法可用于水质检测,如测定水体中的重金属离子和溶解氧等;还可用于大气 颗粒物分析,了解空气污染物的来源和分布情况。
考古样品分析
ቤተ መጻሕፍቲ ባይዱ
总结词
详细描述
X荧光光谱法在考古样品分析中具有重要作 用,能够快速准确地测定文物中的元素组成, 为文物鉴定和保护提供依据。
现状
随着科技的不断进步,X荧光光谱仪器的性能不断提升,检测精度和稳定性不断 提高,同时新型的仪器和应用也不断涌现,如便携式X荧光光谱仪、在线X荧光 光谱仪等。
特点与优势
特点
X荧光光谱法具有非破坏性、快速、 多元素同时分析等特点,能够同时检 测物质中多种元素的含量,且对样品 形状和大小要求不高。
优势
化合物分析
总结词
X荧光光谱法不仅可以检测元素,还可以对化合物进行分析。
详细描述
通过测量不同元素荧光谱线的能量和强度,可以对化合物的类型和结构进行分析。该方法在化学、制药、生物等 领域有广泛应用,可用于药物成分分析、生物组织成分分析等。
样品制备与处理
总结词
为了获得准确的X荧光光谱分析结果,需要对样品进行适当的制备与处理。

X射线荧光光谱(XRF)分析

X射线荧光光谱(XRF)分析

消除基体效应
基体效应会影响XRF的测 量结果,因此需要采取措 施消除基体效应,如稀释 样品或添加标准物质。
固体样品的制备
研磨
将固体样品研磨成细粉,以便进行XRF分析。
分选
将研磨后的样品进行分选,去除其中的杂质和粗 颗粒。
压片
将分选后的样品压制成型,以便进行XRF测量。
液体样品的制备
1 2
稀释
将液体样品进行稀释,以便进行XRF分析。
定性分析的方法
标样法
01
通过与已知标准样品的荧光光谱进行比较,确定样品中元素的
种类。
参考法
02
利用已知元素的标准光谱,通过匹配样品中释放的X射线荧光光
谱来识别元素。
特征谱线法
03
通过测量样品中特定元素的特征谱线,与标准谱线进行对比,
确定元素的存在。
定性分析的步骤
X射线照射
使用X射线源照射样品,激发 原子中的电子跃迁并释放出X 射线荧光光谱。
XRF和ICP-AES都是常用的元素分析方法,ICP-AES具有更高的灵敏度和更低 的检测限,适用于痕量元素分析,而XRF具有更广泛的应用范围和更简便的操 作。
XRF与EDS的比较
XRF和EDS都是用于表面元素分析的方法,EDS具有更高的空间分辨率,适用于 微区分析,而XRF具有更广泛的元素覆盖范围和更简便的操作。
XRF分析的局限性
01
元素检测限较高
对于某些低浓度元素,XRF的检 测限相对较高,可能无法满足某 些应用领域的精度要求。
02
定量分析准确性有 限
由于XRF分析基于相对强度测量, 因此对于不同样品基质中相同元 素的定量分析可能存在偏差。
03
对非金属元素分析 能力有限

XRF、EDX、EDS区别

XRF、EDX、EDS区别

XRF、EDX、EDS区别XRF、EDX、EDS,作为最常见的元素分析仪器,它们之间有什么区别呢,XRF指的是X射线荧光光谱仪;EDX指的是能量散射型X射线荧光光谱仪,也有人叫EDXRF;EDS是能谱仪。

XRF的应用a) X射线用于元素分析,是一种新的分析技术,但在经过二十多年的探索以后,现在已完全成熟,已成为一种广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域。

b) 每个元素的特征X射线的强度除与激发源的能量和强度有关外,还与这种元素在样品中的含量。

c) 根据各元素的特征X射线的强度,也可以获得各元素的含量信息。

这就是X 射线荧光分析的基本原理。

优点:a) 分析速度高。

测定用时与测定精密度有关,但一般都很短,2~5分钟就可以测完样品中的全部待测元素。

b) X射线荧光光谱跟样品的化学结合状态无关,而且跟固体、粉末、液体及晶质、非晶质等物质的状态也基本上没有关系。

(气体密封在容器内也可分析)但是在高分辨率的精密测定中却可看到有波长变化等现象。

特别是在超软X射线范围内,这种效应更为显著。

波长变化用于化学位的测定。

c) 非破坏分析。

在测定中不会引起化学状态的改变,也不会出现试样飞散现象。

同一试样可反复多次测量,结果重现性好。

d) X射线荧光分析是一种物理分析方法,所以对在化学性质上属同一族的元素也能进行分析。

e) 分析精密度高。

f) 制样简单,固体、粉末、液体样品等都可以进行分析。

缺点:a)难于作绝对分析,故定量分析需要标样。

b)对轻元素的灵敏度要低一些。

c)容易受相互元素干扰和叠加峰影响。

其实是一样的,但是美国人一般叫EDS,英国人一般叫EDX,国内叫EDS 的多EDX也是属于XRF的能量色散型,还有种WDX波长色散型,不过现在市面上多是EDX。

XRF用的物理原理,通过X射线穿透原子内部电子,由外层电子补给产生的能量差来判断属于何种元素。

所以它只能测元素而不能测化合物。

ICP则需要对样品进行溶解,采用的是化学方法,测试的是样品的溶液,它的精确度和准确度当然比XRF要高了。

X荧光光谱法(XRF)

X荧光光谱法(XRF)
X荧光光谱法(XRF)
利用能量足够高的X射线 (或电子)照射试样,激发出来的 光叫X射线荧光.利用分光计分析 X射线荧光光谱,鉴定样品的化学 成分称为X射线荧光分析.
X射线荧光分析原理
当样品中元素的原子受到高能X射线照 射时,即发射出具有一定特征的X射线谱, 特征谱线的波长只与元素的原子序数(Z) 有关,而与激发X射线的能量无关.谱线的 强度和元素含量的多少有关,所以测定谱 线的波长,就可知道试样中包含什么元素, 测定谱线的强度,就可知道该元素的含量.
定性分析的步骤
谱图解析: 1)除掉靶发射的所有X射线 2)查找

K( 49In以下元素)或L( 50 Sn以上元素)与标样相应谱线的2 对比,进行初步判定
3)若存在 K 或L 谱线 ,则需进行强度比的计算以 确定该元素的存在. 4)微量元素,有时只存在 K 线.
定量分析
因为X射线荧光分析得到的是相对分 析值,所以进行定量分析时需要标样.选 定分光晶体和检测器,统计测量样品发出 的X射线荧光的强度,将已知含量的标准 样品和未知样品在同一条件下测定,确定 未知样品的含量.

受能 每 激量 一 原的 次 子释 的 的放 跃 二, 迁 次从 都 而伴 射形 随 线成 有 。

X
X

在当今众多的元素分析技术中,X射线荧光技术是 一种应用较早,且至今仍广泛应用的多元素分析 技术。

曾经成功的解决了:矿石中Nb和Ta,Zr和Hf及单个稀土 元素(REE)的测定问题;地质与无机材料分析中工作 量最大,最繁重,最耗时的主次量组分快速全分析的难 题;以及高精度,海量地球化学数据的获取问题等等。
定性分析
基本原理:试样发出的X荧光射线波长 与元素的原子序数存在一定关系,即 元素的原子序数增加,X射线荧光的波 长变短,关系式为 1 1 ( ) 2 K (Z S )

x荧光光谱法

x荧光光谱法

x荧光光谱法X荧光光谱法(X-ray fluorescent spectroscopy,XRF)是现代分析科学中常用的一种无损表面分析技术。

它通过测量物质被激发后放射出的X射线能谱图,从而确定样品中各种基本元素的相对含量和结构信息。

X荧光光谱法具有高灵敏度、高分辨率、广泛适用性等优点,在材料科学、地球科学、环境科学、矿业勘探等领域有着广泛的应用。

本文将详细介绍X荧光光谱法的原理、仪器设备以及应用领域。

一、X荧光光谱法的原理1.1 X射线的产生和相互作用X射线是电磁波谱中波长最短的一种辐射。

X射线的产生主要有两种途径:一种是由高能电子通过急剧的减速过程产生的,称为广义X射线;另一种是由高能粒子与物质相互作用而产生的,如β粒子与重原子核相互作用产生的射线,称为硬X射线。

当高能电子与物质相互作用时,会发生三种主要的相互作用过程:电离作用、激发作用和散射作用。

这些相互作用过程对物质的特性有很大的影响。

其中,电离作用是指电子与物质原子中的电子发生碰撞,导致电子被打出原子,产生电离现象。

激发作用是指电子与物质原子中的内层电子发生碰撞,使内层电子被激发到高能级,然后返回基态时放出能量。

散射作用是指电子与物质原子中的电子发生弹性碰撞,改变方向后出射。

1.2 X荧光光谱法的原理X荧光光谱法是利用物质受激发后放射出的X射线能谱图来分析样品中的成分和结构信息。

当X射线照射到物质上时,物质原子的内层电子可以被激发到高能级,然后返回基态时会放出能量。

这些能量的大小和原子的电子能级差有关,不同元素的电子能级差是不同的。

当物质被X射线照射时,其中的原子会被激发,激发后返回基态时放出的能量就形成了一系列特定的X射线能谱线。

这些能谱线对应着不同元素的电子能级差,因此可以通过测量物质放射出的X射线能谱图来确定样品中各种基本元素的相对含量和结构信息。

1.3 X荧光光谱法的仪器设备X荧光光谱法主要的仪器设备有X射线发生器、样品支架、能谱仪和数据处理系统。

X荧光光谱法(XRF)解析

X荧光光谱法(XRF)解析

定性分析
基本原理:试样发出的X荧光射线波长 与元素的原子序数存在一定关系,即 元素的原子序数增加,X射线荧光的波 长变短,关系式为 1 1 ( ) 2 K (Z S )
式中K ,S:随不同谱线系列而定的常 数;Z:原子序数.
定性分析
从试样发出的X射线荧光具有所含元素 的固有波长,该波长可用Bragg公式表示:
波长色散型:分光元件(分光晶体+狭缝); 特点:分辨率好,定性分析容易(谱线重叠 少);分析元素为 5 B 92U 灵敏度低. 能量色散型:半导体检测器;分辨率差,定 性较难(谱线重叠多),分析元素为 11 Na 92U 灵敏度高.需液氮冷却.

X射线管
波长色散型X射线荧光分析装置原理
X射线荧光光谱仪器组成

X射线发生系统:产生初级高强X射线,用于激发样品; 冷却系统:用于冷却产生大量热的X射线管; 样品传输系统:将放置在样品盘中的样品传输到测定位置 分光检测系统:把样品产生的X射线荧光用分光元件和检 测器进行分光,检测; 计数系统:统计,测量由检测器测出的信号,同时也可以除 去过强的信号和干扰线; 真空系统:将样品传输系统和分析检测系统抽成真空 ,使 检测在真空中进行(避免强度的吸收损失); 控制和数据处理系统:对各部分进行控制,并处理统计测 量的数据,进行定性,定量分析,打印结果.

受能 每 激量 一 原的 次 子释 的 的放 跃 二, 迁 次从 都 而伴 射形 随 线成 有 。

X
X

在当今众多的元素分析技术中,X射线荧光技术是 一种应用较早,且至今仍广泛应用的多元素分析 技术。

曾经成功的解决了:矿石中Nb和Ta,Zr和Hf及单个稀土 元素(REE)的测定问题;地质与无机材料分析中工作 量最大,最繁重,最耗时的主次量组分快速全分析的难 题;以及高精度,海量地球化学数据的获取问题等等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X射线管
波长色散型X射线荧光分析装置原理
X射线荧光光谱仪器组成
X射线发生系统:产生初级高强X射线,用于激发样品; 射线发生系统:产生初级高强X射线,用于激发样品; 冷却系统:用于冷却产生大量热的X射线管; 冷却系统:用于冷却产生大量热的X射线管; 样品传输系统: 样品传输系统:将放置在样品盘中的样品传输到测定位置 分光检测系统:把样品产生的X 分光检测系统:把样品产生的X射线荧光用分光元件和检 测器进行分光,检测; 测器进行分光,检测; 计数系统:统计,测量由检测器测出的信号, 计数系统:统计,测量由检测器测出的信号,同时也可以除 去过强的信号和干扰线; 去过强的信号和干扰线; 真空系统:将样品传输系统和分析检测系统抽成真空, 真空系统:将样品传输系统和分析检测系统抽成真空,使 检测在真空中进行(避免强度的吸收损失); 检测在真空中进行(避免强度的吸收损失); 控制和数据处理系统:对各部分进行控制, 控制和数据处理系统:对各部分进行控制,并处理统计测 量的数据,进行定性,定量分析,打印结果. 量的数据,进行定性,定量分析,打印结果.
定性分析
从试样发出的X 从试样发出的X射线荧光具有所含元素 的固有波长,该波长可用Bragg公式表示: Bragg公式表示 的固有波长,该波长可用Bragg公式表示 X射线荧光分析是已知分光晶体的晶面间 d,测定分光晶体对样品发射出的 测定分光晶体对样品发射出的X 距d,测定分光晶体对样品发射出的X射线 然后求出X 荧光的衍射角θ ,然后求出X射线荧光的波 由此确定元素的种类, 长 λ .由此确定元素的种类,进行元素分 通常被检测X 析.通常被检测X射线荧光的位置不用波长 表示, 表示. 表示,而是用 2θ 表示.
定量分析
因为X 因为X射线荧光分析得到的是相对分 析值,所以进行定量分析时需要标样 进行定量分析时需要标样. 析值,所以进行定量分析时需要标样.选 定分光晶体和检测器, 定分光晶体和检测器,统计测量样品发出 射线荧光的强度, 的X射线荧光的强度,将已知含量的标准 样品和未知样品在同一条件下测定, 样品和未知样品在同一条件下测定,确定 未知样品的含量. 未知样品的含量.
X射线荧光光谱仪器种类
波长色散型:分光元件(分光晶体+狭缝); 波长色散型:分光元件(分光晶体+狭缝); 特点:分辨率好,定性分析容易( 特点:分辨率好,定性分析容易(谱线重叠 );分析元素为 少);分析元素为 5 B → 92U 灵敏度低. 灵敏度低. 能量色散型:半导体检测器;分辨率差, 能量色散型:半导体检测器;分辨率差,定 性较难(谱线重叠多), ),分析元素为 性较难(谱线重叠多),分析元素为 11 Na → 92U 灵敏度高.需液氮冷却. 灵敏度高.需液氮冷却.
X射线荧光的种类
入射的X射线具有相对大的能量, 入射的X射线具有相对大的能量,该能量 可以轰击出元素原子内层中的电子. 可以轰击出元素原子内层中的电子. K层空缺时,电子由L层跃迁入K层,辐射出的 层空缺时,电子由L层跃迁入K 特征X 层跃迁入K 特征X射线称为 K α 线;从M层跃迁入K层,辐 射出的特征X 同理L 射出的特征X射线称为 K β 线.同理L系X射线 等特征X射线.X .X射线荧光光谱 也具有 Lα , Lβ 等特征X射线.X射线荧光光谱 法多采用K 系荧光,其他线系较少采用. 法多采用K系L系荧光,其他线系较少采用.
定性分析的步骤
谱图解析: 谱图解析: 1)除掉靶发射的所有 除掉靶发射的所有X 1)除掉靶发射的所有X射线 2)查找 2)查找
Kα(49In以下元素)或Lα(50Sn以上元素)与标样相应谱线的2θ对比,进行初步判定
3)若存在 3)若存在 K β 或Lβ 谱线 ,则需进行强度比的计算以 确定该元素的存在. 确定该元素的存在. 4)微量元素 微量元素, 4)微量元素,有时只存在 Kα 线.
当样品中元素的原子受到高能X 当样品中元素的原子受到高能X射线照 射时,即发射出具有一定特征的X射线谱, 射时,即发射出具有一定特征的X射线谱, 特征谱线的波长只与元素的原子序数(Z) 特征谱线的波长只与元素的原子序数(Z) 有关,而与激发X射线的能量无关. 有关,而与激发X射线的能量无关.谱线的 强度和元素含量的多少有关,所以测定谱 强度和元素含量的多少有关,所以测定谱 线的波长,就可知道试样中包含什么元素, 线的波长,就可知道试样中包含什么元素, 测定谱线的强度,就可知道该元素的含量. 测定谱线的强度,就可知道该元素的含量.
定性分析
基本原理:试样发出的X 基本原理:试样发出的X荧光射线波长 与元素的原子序数存在一定关系, 与元素的原子序数存在一定关系,即 元素的原子序数增加,X ,X射线荧光的波 元素的原子序数增加,X射线荧光的波 长变短, 长变短,关系式为 1 1 ( ) 2 = K (Z S ) λ 式中K ,S:随不同谱线系列而定的常 式中K ,S:随不同谱线系列而定的常 ;Z:原子序数 原子序数. 数;Z:原子序数.
定量分析的方法
标准工作曲线法 内标法 基本参数法
基体效应
试样内部产生的X荧光射线, 试样内部产生的X荧光射线,在到达试 样表面前,周围的共存元素会产生吸收( 样表面前,周围的共存元素会产生吸收(吸 收效应).同时还会产生X ).同时还会产生 收效应).同时还会产生X荧光射线并对共存 元素二次激发(二次激发效应). ).因此即使含 元素二次激发(二次激光射线强 量一样,由于共存元素的不同,X荧光射线强 度也会有所差别,这就是基体效应. 度也会有所差别,这就是基体效应.在定量 分析时,尤其要注意基体效应的影响. 分析时,尤其要注意基体效应的影响.
λ = 2d sin θ
定性分析的步骤
选择测定条件: 选择测定条件: 测定的X射线: 测定的X射线: 49 In以下元素 Kα , 50 Sn以上元素 Lα 管电压-管电流:Rh靶 管电压-管电流:Rh靶 3kW 40kV,70mA,4kW40kV,95mA 分光晶体:一般地,F~Mg用TPA晶体 晶体, 分光晶体:一般地,F~Mg用TPA晶体, Al~Si用PET晶体 P~Ar用Ge晶体 K~U用 晶体, 晶体, Al~Si用PET晶体,P~Ar用Ge晶体,K~U用 LiF晶体 晶体. LiF晶体. 扫描速度: 扫描速度:一般为 2° ~ 8° / min
XRF之特点 XRF之特点
谱线简单 105 ~ 108 g / g 分析灵敏度高: 分析灵敏度高:大多数元素检出限达 分析元素范围宽:B~U(5~92) 分析元素范围宽:B~U(5~92) 定量分析线性范围宽: 定量分析线性范围宽:从常量至微量 分析方法的精密度高:误差一般在5% 5%以内 分析方法的精密度高:误差一般在5%以内 制样简单:固体,粉末,液体, 制样简单:固体,粉末,液体,无损分析 分析速度快
检出限
对于固体和粉末样品, 对于固体和粉末样品,轻元素的检出 限为50 g/g,重元素为 g/g.轻元素的灵 50g/g,重元素为5 限为50 g/g,重元素为5 g/g.轻元素的灵 敏度低是因为它们的荧光产生率(变成X 敏度低是因为它们的荧光产生率(变成X射 线的比率) 线的比率)小.
问 题 讨 论
第九讲 X荧光光谱法(XRF) 荧光光谱法(XRF)
利用能量足够高的X 利用能量足够高的X射线 或电子)照射试样, (或电子)照射试样,激发出来的 光叫X射线荧光. 光叫X射线荧光.利用分光计分析 射线荧光光谱, X射线荧光光谱,鉴定样品的化学 成分称为X射线荧光分析. 成分称为X射线荧光分析.
X射线荧光分析原理
相关文档
最新文档