变频器原理
变频器基本原理和作用

变频器基本原理和作用变频器(Inverter)是一种电力电子器件,其基本原理是将直流电能转换为可调频的交流电能。
它主要由直流输入电源、逆变桥、滤波电路、控制器和交流输出端组成。
变频器广泛应用于工业、航空、军事、交通等领域,并发挥了重要的作用。
下面将详细介绍变频器的基本原理和作用。
变频器的基本原理如下:1.直流输入电源:变频器的输入端接收来自交流电源的交流电压,并使用整流电路将其转换为直流电压。
通常使用整流电路+电容滤波器的方式进行直流电压平滑处理。
2.逆变桥:逆变桥是变频器的核心组件,它将平滑的直流电压转换为可调频的交流电压。
逆变桥由四个可控开关组成,通常是IGBT(绝缘栅双极型晶体管)或MOSFET(金属氧化物半导体场效应晶体管)。
3.滤波电路:逆变桥输出的交流电压含有较高频率的谐波成分,为了减小谐波影响,需要使用LC滤波器进行滤波。
LC滤波器通过选择合适的电感和电容来过滤谐波成分,使交流输出电压更接近正弦波。
4.控制器:变频器的控制器是变频器的大脑,它通过对逆变桥的开关控制来实现对输出电压频率和幅值的调整。
控制器通常由微处理器、运算放大器等芯片组成,利用脉宽调制(PWM)技术来控制逆变桥开关的导通和断开,从而控制输出电压的频率和幅值。
5.交流输出端:变频器的交流输出端将可调频的交流电能提供给负载。
根据应用需求,可以将交流输出端连接到电动机、电炉、照明设备等不同的负载上,实现对其速度、温度、亮度等参数的精确控制。
变频器主要有以下作用:1.节能降耗:传统的电动机驱动系统通常采用带有固定转速的交流电源,而变频器可以根据实际负载需求,调整电机的转速和输出功率,降低电机的无功损耗和机械能量的损耗,从而实现能量的经济利用。
2.频率调节:变频器可以调节电机的输出频率,从而实现对驱动设备的控制。
例如,变频器常用于电梯、空调、水泵等场合,可以根据需求调整其运行频率,提高设备的工作效率和使用寿命。
3.调速控制:传统的电动机驱动系统通常只能实现定速运行,而变频器可以通过调整输出频率,实现对电机的精确调速控制。
变频器的基本原理

变频器的基本原理
变频器是一种用于改变电源频率的电子设备,它采用电力电子器件来将输入直流电源转换为可调节的交流电源输出。
其基本原理如下:
1. 整流:首先,变频器将输入的交流电源通过整流电路转换为直流电流。
整流电路通常由二极管桥等组成,能够将交流电源的正、负半周分别转换为单一方向的直流电流。
2. 滤波:经过整流后得到的直流电流含有较大的脉动成分,需要通过滤波电路进行平滑。
滤波电路一般由电容器和电感器组成,能够将脉动成分去除,得到较为平稳的直流电源。
3. 逆变:经过滤波后得到的电流是直流电流,需要将其转换成交流电源输出。
逆变电路一般采用晶闸管、IGBT(绝缘栅双
极型晶体管)等器件,通过不断切换电源极性来生成不同频率、幅度的交流电流。
控制逆变电路开关频率和占空比,可以达到变频的目的。
4. 控制系统:变频器还配备了控制系统,用于监测输入输出电压、电流,以及控制逆变电路的开关频率和占空比。
控制系统常使用微处理器或FPGA(现场可编程门阵列)等数字控制芯片,通过接收外部信号或运算逻辑,动态调整变频器的工作状态,以满足不同的需求。
总的来说,变频器通过整流、滤波和逆变等过程将输入直流电源转换为可调节的交流电源输出。
通过控制系统的控制,可以
实现对输出频率和电压的精确调节,从而满足不同设备对电力供应的需求。
变频器的原理及应用

变频器的原理及应用1. 变频器的基本原理变频器是一种能够改变交流电频率的装置,通过将固定频率的交流电转换为可调节频率的交流电供给电动机。
其基本原理如下:•变频器接收来自电源的交流电,并经过整流电路将其转换为直流电。
•直流电经过滤波电路后,进入逆变电路,通过逆变电路将直流电转换为可调节频率的交流电。
•可调节频率的交流电通过输出端与电动机相连,供电动机工作。
变频器的最重要的部分就是逆变电路,逆变电路一般采用晶闸管或者IGBT管,可以将直流电转换为可调节频率的交流电。
2. 变频器的应用领域变频器由于其调节电机转速的能力,被广泛应用于各个领域。
以下是一些常见的应用领域:2.1 工业自动化在工业自动化领域中,变频器常作为电动机的驱动器使用。
通过变频器可以根据需求精确地控制电机的转速,从而实现对生产设备的精准控制。
2.2 HVAC系统变频器在供暖、通风和空调系统中的应用非常广泛。
通过使用变频器可以调节风机或泵的转速,提高系统的能效,减少能耗和噪音。
2.3 污水处理在污水处理领域,变频器常用于控制泵和风机的转速,以满足污水处理的需求。
通过调节泵和风机的转速,可以有效地控制液位和流量。
2.4 输电与配电系统变频器可以用于控制输电线路和配电系统中的电动机。
通过调节电机的转速,可以有效地控制电网的稳定性和电压。
2.5 电动交通工具变频器在电动交通工具中也有广泛的应用。
例如,在电动汽车中,变频器用于控制电动机的速度和转矩,实现对车辆的精确控制。
3. 变频器的优势使用变频器有许多优势,包括但不限于:•节能:通过调节电动机的转速,减少了不必要的能量消耗,提高了能源利用效率。
•精确控制:变频器可以实现对电动机的精确控制,满足不同工况的需求。
•提高设备寿命:通过减少启动冲击和电压波动,可以延长设备的使用寿命。
•减少噪音:变频器可以减少电动机的噪音,提升工作环境的舒适度。
•减少维护成本:通过调节工作负载,可以减少设备的磨损和维护成本。
变频器工作原理

变频器工作原理一、引言变频器是一种电力电子器件,广泛应用于工业生产中的电机调速控制系统中。
本文将详细介绍变频器的工作原理。
二、工作原理1. 交流电源输入变频器通过交流电源供电,通常为三相交流电源。
交流电源经过整流和滤波后,得到稳定的直流电源。
2. 逆变器逆变器是变频器的核心部件,它将直流电源转换为可调频率和可调幅度的交流电源。
逆变器由多个功率开关器件(如IGBT)组成,通过控制这些开关器件的开关状态,可以调节输出电压的频率和幅度。
3. 控制单元控制单元是变频器的大脑,它负责接收用户输入的控制信号,并根据这些信号来控制逆变器的输出。
控制单元通常由一块微处理器芯片组成,它可以根据用户的需求来调整电机的转速。
4. 反馈回路为了实现精确的电机转速控制,变频器通常配备了反馈回路。
反馈回路通过传感器(如编码器)来监测电机的转速,并将实际转速信息反馈给控制单元。
控制单元根据反馈信息来调整逆变器的输出,使电机的实际转速与设定值保持一致。
5. 保护功能变频器还具有多种保护功能,以保证电机和变频器的安全运行。
例如,过电流保护可以防止电机过载;过温保护可以防止电机过热;短路保护可以防止电路短路等。
三、应用领域变频器广泛应用于各个领域的电机调速控制系统中。
以下是一些常见的应用领域:1. 工业生产变频器在工业生产中被广泛应用于各种设备的调速控制,如风机、水泵、压缩机等。
通过调整电机的转速,可以实现对设备的精确控制,提高生产效率。
2. 交通运输变频器在电动车辆和铁路交通中的应用越来越广泛。
通过控制电机的转速,可以实现对车辆的平稳加速和减速,提高能源利用率。
3. 新能源领域随着新能源的快速发展,变频器在太阳能发电和风力发电等领域的应用也越来越重要。
通过控制电机的转速,可以实现对发电设备的最佳工作状态,提高能源利用效率。
四、优势和挑战变频器具有以下优势:1. 节能高效:通过调整电机的转速,可以根据实际需求来调节能量的消耗,提高能源利用效率。
变频器工作原理

变频器工作原理
变频器是一种可以改变电源频率的电气装置。
它通过改变输入电源的频率,从而控制输出电源的频率,以满足不同的应用需求。
变频器的工作原理如下:
1. 输入电源转换:变频器通过整流电路将交流输入电源转换为直流电压。
2. 直流电压转换:变频器使用直流-交流转换器将直流电压转换为调制的中频交流电压。
3. 逆变:经过调制的电压通过逆变器转换为可调节频率和幅值的交流电源。
4. 控制电路:变频器的控制电路根据系统需求对逆变器进行控制,以实现输出频率和幅值的调节。
5. 输出滤波:变频器通过滤波电路对逆变器输出的电压进行滤波,以减小输出波形的谐波成分。
6. 输出:经过滤波的电压通过输出端口提供给外部负载,实现对负载的供电。
总之,变频器通过转换电源频率和幅值,实现对输出电源的控制,适应不同的应用需求。
它被广泛应用于电动机调速、电力系统的稳定控制等领域。
变频器的工作原理

变频器的工作原理一、引言变频器是一种用于控制交流电动机转速的电子设备,广泛应用于工业生产中。
本文将详细介绍变频器的工作原理,包括基本原理、主要组成部分和工作过程。
二、基本原理变频器的基本原理是通过改变输入电源的频率来控制电机的转速。
传统的交流电源提供的电力是固定频率的,例如50Hz或60Hz,而变频器可以将输入电源的频率调节为不同的数值,从而改变电机的转速。
三、主要组成部分1. 整流器:变频器的输入电源通常为交流电,整流器用于将交流电转换为直流电。
整流器通常由整流桥电路组成,将交流电转换为直流电供给后续的逆变器使用。
2. 逆变器:逆变器是变频器的核心部件,它将直流电转换为可调频率的交流电。
逆变器通常由多个功率晶体管或IGBT组成,通过控制这些晶体管的开关状态,可以产生不同频率的交流电。
3. 控制单元:控制单元是变频器的大脑,它负责接收用户的指令,并根据指令控制逆变器的工作。
控制单元通常由微处理器和相关电路组成,可以实现多种功能,如速度控制、转矩控制等。
4. 过载保护装置:变频器通常配备过载保护装置,用于监测电机的负载情况。
当电机负载过大时,过载保护装置会自动切断电源,以保护电机和变频器不受损坏。
四、工作过程变频器的工作过程可以分为以下几个步骤:1. 输入电源经过整流器转换为直流电,并供给逆变器使用。
2. 控制单元接收用户的指令,根据指令控制逆变器的工作。
用户可以通过控制单元设置电机的转速、转矩等参数。
3. 逆变器根据控制单元的指令,控制功率晶体管或IGBT的开关状态,产生可调频率的交流电。
交流电的频率决定了电机的转速。
4. 变频器将调节后的交流电供给电机,电机根据输入的电源频率进行工作。
由于变频器可以调节输入电源的频率,因此可以实现电机的无级调速。
5. 过载保护装置实时监测电机的负载情况,当负载过大时,自动切断电源,保护电机和变频器。
五、应用范围变频器广泛应用于工业生产中,特别是需要对电机转速进行精确控制的领域。
变频器的工作原理
变频器的工作原理一、引言变频器是一种电力电子设备,用于控制交流电机的转速和扭矩。
它通过改变电源电压和频率,实现对电机的精确控制。
本文将详细介绍变频器的工作原理。
二、工作原理1. 电源输入变频器通常由三相交流电源供电。
交流电源经过整流和滤波后,得到稳定的直流电压。
2. 逆变器逆变器是变频器的核心部件,它将直流电压转换为交流电压。
逆变器采用高频开关器件(如IGBT)来控制电流的流动。
通过调整开关器件的开关频率和占空比,逆变器可以产生不同频率和幅值的交流电压。
3. 控制单元控制单元是变频器的智能部分,它接收用户输入的控制信号,并根据设定的参数计算出逆变器的工作状态。
控制单元通常由微处理器和逻辑电路组成,它可以实现多种控制策略,如恒转矩控制、恒功率控制等。
4. 输出滤波器输出滤波器用于滤除逆变器产生的高频噪声,使输出电压更加纯净。
滤波器通常由电感和电容组成,可以有效地消除电磁干扰。
5. 反馈回路为了实现对电机的闭环控制,变频器通常需要接入反馈回路。
反馈回路可以监测电机的转速、电流等参数,并将这些信息反馈给控制单元。
控制单元根据反馈信号对逆变器的输出进行调整,以实现所需的控制效果。
6. 保护功能变频器通常具有多种保护功能,以保证设备和操作人员的安全。
常见的保护功能包括过流保护、过压保护、欠压保护、过载保护等。
当变频器检测到异常情况时,会自动切断电源或调整输出参数,以避免设备损坏。
7. 其他功能除了基本的转速和扭矩控制外,现代变频器还具有许多其他功能。
例如,它们可以实现多台电机的同步控制、运行数据的记录和分析、网络通信等。
三、应用领域变频器广泛应用于工业生产中的各种电机驱动系统。
它们可以用于风机、水泵、压缩机、输送机等各种设备。
变频器的精确控制能力可以提高设备的效率,降低能耗,延长设备寿命。
四、总结变频器是一种用于控制交流电机的电力电子设备。
它通过改变电源电压和频率,实现对电机的精确控制。
变频器由电源输入、逆变器、控制单元、输出滤波器、反馈回路、保护功能等组成。
变频器的工作原理是什么?
变频器的工作原理是什么?
变频器是一种能将电源稳定输出不同频率的电子设备。
它的工作原理可以概括为一种将输入电源转换成直流电源后再通过三层反复变换电压、电流和频率来稳定输出所需电能的过程。
具体来讲,变频器的工作过程分为以下四个步骤:
1. 整流变换:变频器的输入电源为交流电,首先需要通过整流闭环电路将其转换为直流电,以便后续处理。
2. 逆变变换:在这一步骤中,变频器使用晶闸管等器件对直流电进行逆变处理,即通过快速开合晶体管来模拟交流电流信号,从而得到和原电源完全相同的正弦波交流电。
3. 电压和电流的控制:在逆变变换的基础上,变频器对输出电压和频率进行精确控制,以满足不同负载的需求。
具体来说,变频器使用PWM调制技术来对逆变电路的输出波形进行调节,从而实现对输出电压和频率的控制。
4. 滤波:在经过PWM调制调整后,变频器的输出电压和频率已经达到了所需值,但是还存在噪声、谐波和突波等问题。
因此,
变频器需要通过滤波器来去除这些杂散信号,以确保输出电源的质量和稳定性。
综上所述,变频器通过整流变换、逆变变换、电压和电流的控制以及滤波等步骤来实现对原电源的稳定输出,它已经成为现代工业自动化、能源节约和环保的重要组成部分。
变频器工作原理
变频器工作原理变频器是一种电气设备,用于调节交流电的频率和电压以控制电机的转速和负载。
它在各种工业领域中都有广泛的应用,如电梯、风机、泵站等。
本文将详细介绍变频器的工作原理。
一、变频器的基本组成变频器由整流器、滤波器、逆变器和控制电路组成。
整流器将交流电源转换成直流电源,滤波器用于滤除电源中的高频干扰。
逆变器将直流电转换成交流电,其频率和电压可以根据控制信号进行调节。
控制电路负责接收和处理来自用户的指令,并将相应的控制信号发送给逆变器。
二、变频器的工作原理变频器的工作原理可以简单地分为三个步骤:整流、逆变和控制。
1. 整流交流电源经过整流器后转变为直流电,整流器通常采用可控硅器件或晶闸管进行整流。
整流过程通过斩波控制来调节输出直流电压的幅值,以满足逆变器对输入电压的要求。
2. 逆变直流电进入逆变器,逆变器将其转换成交流电。
逆变器通过调节开关管的导通和截止状态来改变输出电压的形状和频率。
常见的逆变器有PWM(脉宽调制)逆变器和SPWM(正弦波脉宽调制)逆变器等。
PWM逆变器通过将直流电转换成多个脉冲信号,并通过控制脉冲信号的占空比来调节输出电压的频率和幅值。
SPWM逆变器则通过调节多个正弦波信号的振幅和频率,通过合成脉冲宽度来实现对输出电压的调节。
3. 控制控制电路接收来自用户的指令,并将其转化为控制信号发送给逆变器,从而实现对变频器输出的电压和频率的控制。
控制电路通常由微处理器、数字信号处理器和运放等组成。
三、应用举例变频器广泛应用于各行各业。
以工业领域为例,变频器可用于控制电机的转速和负载,实现对生产过程的精确控制。
在电梯行业中,变频器可通过调节电机的转速来实现平稳运行和停靠。
在风机和泵站中,变频器可以根据用户需求实现风量和水流量的控制。
四、总结通过整流、逆变和控制等步骤,变频器可以控制交流电的频率和电压,从而实现对电机转速和负载的精确控制。
变频器在工业领域中具有重要应用,为生产过程的自动化和节能提供了有效的解决方案。
变频器的工作原理及作用
变频器的工作原理及作用变频器的工作原理1、基本概念1)VVVF改变电压、改变频率(Variable Voltage and Variable Frequency)的缩写。
2)CVCF恒电压、恒频率(XXX)的缩写。
通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。
该设备首先要把三相或单相交流电变换为直流电(DC)。
然后再把直流电(DC)变换为三相或单相交流电(AC)。
变频器同时改变输出频率与电压,也就是改变了电机运行曲线上的n0,使电机运行曲线平行下移。
因此变频器可以使电机以较小的启动电流,获得较大的启动转矩,即变频器可以启动重载负荷。
变频器具有调压、调频、稳压、调速等基本功能,应用了现代的科学技术,价格昂贵但性能良好,内部结构复杂但使用简单,所以不只是用于启动电动机,而是广泛的应用到各个领域,各种各样的功率、各种各样的外形、各种各样的体积、各种各样的用途等都有。
随着技术的发展,成本的降低,变频器一定还会得到更广泛的应用。
各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz)。
通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。
为了产生可变的电压和频率,该设备首先要把三相或单相交流电变换为直流电(DC)。
然后再把直流电(DC)变换为三相或单相交流电(AC),我们把实现这种转换的装置称为“变频器”(inverter)。
变频器也可用于家电产品。
使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。
用于电机控制的变频器,既可以改变电压,又可以改变频率。
但用于荧光灯的变频器主要用于调节电源供电的频率。
汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。
变频器的工作原理被广泛应用于各个领域。
例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电源 整流部分 直流部分 逆变部分 电机
U1
U2
V1
V2
W1
W2
11
变频调速公式:
三相异步电机每相电动势: E1=4.44k1f1N1Φm
E1 : 每相感应电动势的有效值 k1: 与绕组结构有关的常数 f1: 定子频率 N1: 定子每相绕组串联匝数 Φm : 每极气隙磁通量
12
变频器的调速原理
调速原理:
P0=55*10%=5.5KW P1=55KW
由PL=P0+KPnL3得: KP=55-5.5=49.5KW P2=5.5+49.5*(50%)3=11.7KW
总消耗的功率为55+11.7=67KW
风机的节电率统计举例
(2)两台变频运行时每台的平均供风量为75%Q P1=P2=5.5+49.5(75%)3=26.4KW
泵类负载和风机负载都属于二 次方律,所以节能效果相同
系统应用效果
使用了变频器以后,不但免去了许多繁琐的人工操作,消除了许多不安 全隐患因素,并使系统始终处于一种节能状态下运行,合理地轮换使用电机 延长了设备的使用寿命,更好的适应了生产需要。而且变频器丰富的内部控 制功能可以很方便地与其他控制系统或设备实现闭环自动控制。这在实现自 动控制的同时,提高了控制精度,从而提高了产品质量。在污水处理厂或相 似的系统中使用变频器应具有很好的推广价值
变频器的控制方法—矢量控制
矢量变换(数学运算)
励磁电流iM 转矩电流iT
两相固定 坐标系
两相旋转 坐标系
φ
三相旋 转坐标系
变频器 旋转
变频器的控制方法—矢量控制
2.矢量控制(基于转子磁链定向)
控制思想:
n*
iT
转速环 矢量
iM
变换
电流环 变频器 旋转
φ
n
M
编码器
变频器的控制方法—直接转矩控制
3.直接转矩控制(基于定子磁场定向)
变频器简称VVVF(Variable Voltage Variable Frequency)
Φm 恒转矩调速
n Φ m1
1
恒功率调速
0
• 基频以下调速为恒转距调速 • V1/F1=常数 • 频率上升,电压上升,转距不变 • 低频时可进行定子电压补偿
fn
f
基频以上调速为恒功率调速V1=V1N 频率上升,电压不变,转矩 减少,功率 不变 弱磁调速
在许多场合,安装编码器不方便,同时也是为了 降低成本,要求使用无编码器系统。例如安装空 间较小,控制精度要求不高的场合。
直流传动和交流传动的比较—电机
直流电机
结构复杂 有电刷,维护困难 转子粗短,转矩惯量大
因为有电刷,所以在 环境恶劣的不适用 变流装置较便宜
功率注入转子,散热所需通 风机功率较大
I 1 23 m o
60°
动画
ωt
V2
NU1
W2
S
W1
V1 U
2
V2
U1
N
W2
S
W1
V1 U2
V2
U1
S
N W2
W1
V1 U2
ωt = 0
ω t = 60°
ω t = 90°
合成磁场方向向下 合成磁场旋转60°合成磁场旋转908°
交流电动机转速
n11=60f11/(P1-Ns)/PN
变 频 调 速 :改变电源的频率 变 极 调 速 :改变电机的极对数 改 变 转 差 率 :绕线电机转子串电阻调速、
RA 变频器制动方式—能量回馈制动
2.能量回馈制动
C
M
当负载回馈能量是,可控变流器工 作于有源逆变状态,将能量回馈电网
变频器的控制方法-电动机调速基础
电动机调速基础
电动机调速的关键是转矩控制
GD2 d n
375
= Td dt
TL
GD^2:电动机和负载的飞轮转矩 Td:电动机的电磁转矩 TL:电动机的负载转矩
39
Example: Bit Parameters
Parameter 217 [Dig Out Status] specifies the status of each of the three digital outputs: • Bit 0 corresponds to digital output one. • Bit 1 corresponds to digital output two. • Bit 2 corresponds to digital output three.
转矩系数
也可以转化为:PL=KFP0+KF3PN
工作与额定F的比值
由此可知二次方律负载遵循如下规律(n: 转速):
流量Q ∝ n
扬程H ∝ n2
功率P ∝ n3
风机的节电率统计举例
用三台变频器控制三台风机,其中两用一备,电机的功率P=55KW, 设计风量为Q。空载损耗为10%,转速1250转/分。若风机正常在970转/分 以下连续可调,每天所需的供风量为1.5Q。 (1)一台工频运行,一台变频运行;则全速
定子调压调速、串级调速、 双馈调速
9
PowerFlex变频器的控制方式
• PowerFlex4 变频器采用V/Hz控制 • PowerFlex40、40P 变频器采用V/Hz和Sensrls Vect控制 • PowerFlex400变频器采用普通V/Hz及用户自定义的V/Hz控制 • PowerFlex70、700 变频器采用Fan/Pmp V/Hz、 Custom V/Hz、
PowerFlex 4M
PowerFlex 400
3.7
7.5
15
37
250
Power Rating (kw @ 400V)
1500
38
Example: ENUM Parameters
Parameter 061 [Autotune] defines autotune technique to use on the drive. Value choices: • 0 “Ready” • 1 “Static Tune” • 2 “Rotate Tune” • 3 “Calculate”
Performance / Functionality
PowerFlex 系列产品
PowerFlex 700S PowerFlex 755
PowerFlex 700L
PowerFlex 700 PowerFlex 70
PowerFlex 700H
PowerFlex 40/40P
PowerFlex 4
直接转矩控制的原理框图
n*+ △n
n -
ST
T* + -
T
电动机变频调速时的机械特性
T=K △n 2 K2:定常系数
T 0
转矩调节器
当T<T*时,T0=1,磁场加速
△n增大,转矩增加; 当T>T*时,T0=0,磁场不变,电 动机转子因惯性使△n减小,转矩
减小。
无速度传感器矢量控制
利用自适应控制法通过电压和电流模型 运算,从而实现磁通和转矩的解藕,并分 别进行控制。
2、工艺调速:
由于工艺的要求需要调速运行的机械,如金属加工,造纸等需要 稳态精度很高的领域,目前该领域正在向交流调速过渡。
直流传动和交流传动的比较--应用
3、牵引调速:
运输机械的电驱动,此类机械对设备的尺寸,重量和防护等级有有 严格的要求,所以交流调速比较占优势。如火车,轮船等系统。
4、 特殊调速:
变频器的原理及其应用
Hong Chunmiao
交流电动机
电电动动机机机机壳壳
定定子子绕绕组组
转转子子//轴轴承承
三相异步电动机结构图 三相异步电动机结构图
2
交流电动机
机座:铸钢或铸铁 定子
定子铁芯:由互相绝缘的硅钢片叠成 定子绕组
4
交流电动机
对调速有特殊要求的调速系统,如调速范围达到1:50000~ 1:100000的场合,只能由特殊的永磁交流电动机实现。如高精度磨床 ,车床等
风机负载和泵类负载的负载特性
风机和泵类负载属于二次方律负载特性(除罗茨风机):
流量公式:QL=Q0+KQnL 转矩(扬程)公式:TL=T0+KTnL2
空载转矩
功率公式:PL=P0+KPnL3
效率0.7~0.75
交流电机
结构简单 无电刷,维护简单 转子细长,转矩惯量小 无电刷,适用环境较广
变流装置较贵 功率注入定子子,散热所需
通风机功率较小 效率0.85~0.9
直流传动和交流传动的比较—应用
传动按应用领域的分类:
1、 通用机械的节能调速:
指风机,泵等机械,它们的用电量占全国发电总量的1/3,此类 机械在不调速交流电机调速时, 风量和流量使用挡板和阀门调节,调 速后可节电30%~ 40%,而且优化了工艺过程,减少了管道和阀门的 压力,提高了设备的寿命,减少了维修。
适用场合 多机,稳频稳压电源 单机
23
变频器的控制方法—恒U/F控制
1.恒U/F控制(属于标量控制)
定子电动势有效值为:
E=4.44ψF
ψ:电动机气隙磁链
F:电动机工作频率
为避免电动机因频率的变化而导致磁路饱和引起励磁电流增大,功 率因数和效率降低,需要维持气隙磁通,所以在调节F时,E也会相应地变 化,即:E/F=K(恒定值)
总消耗的功率为P1+P2=52.8KW (3)三台变频运行时,每台的平均供风量为50%Q
P1=P2=P3=5.5+49.5 (50%)3=11.7KW 总消耗的功率为P1+P2+P3=35.1KW 可见三台风机全投入变频运行时效果最好。假定每月工作30天,每天 工作24小时,按每度0.7元计,则方案三可以比其他两个方案多节省电费 8000元左右。 两台工作是最多可节能 30*24*0.7*(111-52.8)=29332.8元 三台工作是最多可节能 30*24*0.7*(111-35.4)=38102.4元