模式识别试题
模式识别试卷及答案

模式识别试卷及答案一、选择题(每题5分,共30分)1. 以下哪一项不是模式识别的主要任务?A. 分类B. 回归C. 聚类D. 预测答案:B2. 以下哪种算法不属于监督学习?A. 支持向量机(SVM)B. 决策树C. K最近邻(K-NN)D. K均值聚类答案:D3. 在模式识别中,以下哪一项是特征选择的目的是?A. 减少特征维度B. 增强模型泛化能力C. 提高模型计算效率D. 所有上述选项答案:D4. 以下哪种模式识别方法适用于非线性问题?A. 线性判别分析(LDA)B. 主成分分析(PCA)C. 支持向量机(SVM)D. 线性回归答案:C5. 在神经网络中,以下哪种激活函数常用于输出层?A. SigmoidB. TanhC. ReLUD. Softmax答案:D6. 以下哪种聚类算法是基于密度的?A. K均值聚类B. 层次聚类C. DBSCAND. 高斯混合模型答案:C二、填空题(每题5分,共30分)1. 模式识别的主要任务包括______、______、______。
答案:分类、回归、聚类2. 在监督学习中,训练集通常分为______和______两部分。
答案:训练集、测试集3. 支持向量机(SVM)的基本思想是找到一个______,使得不同类别的数据点被最大化地______。
答案:最优分割超平面、间隔4. 主成分分析(PCA)是一种______方法,用于降维和特征提取。
答案:线性变换5. 神经网络的反向传播算法用于______。
答案:梯度下降6. 在聚类算法中,DBSCAN算法的核心思想是找到______。
答案:密度相连的点三、简答题(每题10分,共30分)1. 简述模式识别的基本流程。
答案:模式识别的基本流程包括以下几个步骤:(1)数据预处理:对原始数据进行清洗、标准化和特征提取。
(2)模型选择:根据问题类型选择合适的模式识别算法。
(3)模型训练:使用训练集对模型进行训练,学习数据特征和规律。
2017-2018年中国科学院自动化研究所考博试题 模式识别

第1页 共2页
6. (20 分) 在一个模式识别问题中,有下列 8 个样本,每个样本为一个二维特征向量: (4, 1),(2, 1),(4, 1),(2, 1),(4,1),(2, 1),(4, 1),(2, 1)。其中,括号内的第 一个数据表示该样本点的第一个特征,括号内的第二个数据表示该样本点的第二个特 征。 (1) 现在考虑对这 8 个样本进行聚类。采用 C 均值聚类算法,并假定聚类中心的个数为 2,两个初始聚类点分别为(-5,0)和(5,0)。根据上述初始条件,请写出 C 均值聚类算 法的计算步骤,并给出最后的聚类中心;(10 分) (2) 对上述 8 个样本,假设前 4 个样本属于第一类,后 4 个样本属于第二类,现在要求 只使用一个特征达到这样的分类目的。请给出一种特征选择方法,并给出计算过程 和结果。(10 分)
x6=(5, 3)T 。请完成如下任务: (1)、写出线性支持向量机需要求解的原问题和对偶问题(不要求进行求解);(10 分) (2)、当软间隔惩罚参数 C 取值很大时,定性地画出所得到的分类决策面,并解释原因;
(提示:先将 6 个样本点在答题纸上画出,然后画出分类决策面)(3 分) (3)、当软间隔惩罚参数 C 取值很小时,定性地画出所得到的分类决策面,并解释原因。
科目名称:模式识别
第2页 共2页
中国科学院自动化研究所
2018 年招收攻读博士学位研究生入学统一考试试卷 科目名称:模式识别
考生须知:
1. 本试卷满分为 100 分,全部考试时间总计 180 分钟。 2. 所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。
1. (10 分 ). 对 于 c 类 分 类 问 题 , 假 定 各 类 条 件 概 率 密 度 函 数 均 为 多 元 正 态 分 布 p(x | i ) ~ N(μi , Σi ), i 1, 2, , c ,其中,xRd 表示数据的特征向量,i 和i 分别为第 i 类的均值向量和协方差矩阵,i 代表第 i 个类别。在最小错误率贝叶斯决策的框架下,请完
机器视觉与模式识别试题

机器视觉与模式识别试题一、简答题(每题10分,共10题)1. 请简要解释机器视觉的概念,并举例说明其在实际应用中的作用。
2. 什么是图像分割?请简要介绍常用的图像分割方法。
3. 请解释什么是特征提取,并描述至少两种常用的特征提取方法。
4. 什么是机器学习?简要描述监督学习和无监督学习的区别。
5. 请简要介绍常见的分类器,并说明它们的优缺点。
6. 什么是物体检测?请简要介绍常用的物体检测算法。
7. 请解释什么是模式识别,并举例说明其应用领域。
8. 简要介绍支持向量机(SVM)的原理及其应用。
9. 什么是深度学习?简要解释深度学习与传统机器学习的区别。
10. 简要介绍卷积神经网络(CNN)及其在图像分类中的应用。
二、分析题(共20分)1. 请分析图像分割的难点和挑战,并提出解决方案。
2. 请分析特征提取的关键问题,并探讨如何改进现有的特征提取方法。
3. 请分析支持向量机(SVM)的优势和不足,并提出使用SVM解决模式识别问题的注意事项。
4. 以人脸识别为例,分析深度学习模型相较于传统机器学习模型的优势和局限性。
三、应用题(共30分)1. 设计一个图像分类系统,能够将手写数字图像分为0~9十个类别。
请详细描述你的设计思路并给出实现代码。
2. 以目标检测为任务,设计一个基于卷积神经网络(CNN)的物体检测系统。
请详细描述你的设计思路并给出实现代码。
四、论述题(共40分)请综合所学的机器视觉与模式识别相关知识,自选一个课题进行深入探讨,并撰写一篇论文。
论文应包括问题定义、相关工作综述、解决方案设计和实验结果分析等内容。
请确保论文结构合理,逻辑清晰,表达准确。
以上是机器视觉与模式识别试题,根据题目要求,正文不再重复。
请根据试题内容自行判断和格式化撰写。
2014-2018年中国科学院自动研究所考博试题 模式识别

中国科学院自动化研究所2014年招收攻读博士学位研究生入学统一考试试卷科目名称:模式识别考生须知:1. 本试卷满分为100分,全部考试时间总计180分钟。
2. 所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。
1. (16分) 关于统计学习与支持向量机,请回答如下问题:(1) 给出机器学习问题的形式化表示 (4分);(2) 解释学习机器的推广能力 (4分);(3) 从几何的角度阐述线性支持向量机的原理 (4分);(4) 基于两类支持向量机,设计一个c 类(c > 2)分类训练策略 (4分)。
2. (10分) (1) 请描述径向基函数网络的结构和功能 (4分);(2) 指出径向基函数网络的参数,分析在训练一个径向基函数网络时如何调节这些参数 (6分)。
3. (10分) (1) 简述Fisher 线性判别分析的原理 (4分);(2) 针对两类分类问题,试证明在正态等方差条件下,Fisher 线性判别等价于贝叶斯判别 (6分)。
4. (10分) 假设在某个局部地区细胞识别中正常 (1ω)和异常(2ω)两类的先验分别为1()0.85P ω=和2()0.15P ω=。
现有一待识别细胞,其观察值为x ,从类条件概率密度分布曲线上查得1(|)0.2=P x ω,2(|)0.4=P x ω,请对该细胞x 进行分类,并给出计算过程。
5. (10分) 现有七个位于二维空间的样本:1(1,0)=T x ,2(0,1)=T x ,3(0,1)=-T x ,4(0,0)=T x ,5(0,2)=T x ,6(0,2)=-T x ,7(2,0)=-T x ,其中上标T 表示向量的转置。
假定前三个样本属于第一类,后四个样本属于第二类,请画出最近邻法决策面。
6. (16分) 在一个模式识别问题中,有下列8个样本: 1(1,1)T =-x ,2(1,1)T =--x ,3(0,1)T =x ,4(0,1)T =-x ,5(2,1)T =x ,6(2,1)T =-x ,7(3,1)T =x ,8(3,1)T =-x ,其中上标T 表示向量的转置。
模式识别期末试题及答案

模式识别期末试题及答案正文:模式识别期末试题及答案1. 选择题1.1 下列关于机器学习的说法中,正确的是:A. 机器学习是一种人工智能的应用领域B. 机器学习只能应用于结构化数据C. 机器学习不需要预先定义规则D. 机器学习只能处理监督学习问题答案:A1.2 在监督学习中,以下哪个选项描述了正确的训练过程?A. 通过输入特征和预期输出,训练一个模型来进行预测B. 通过输入特征和可能的输出,训练一个模型来进行预测C. 通过输入特征和无标签的数据,训练一个模型来进行预测D. 通过输入特征和已有标签的数据,训练一个模型来进行分类答案:D2. 简答题2.1 请解释什么是模式识别?模式识别是指在给定一组输入数据的情况下,通过学习和建模,识别和分类输入数据中的模式或规律。
通过模式识别算法,我们可以从数据中提取重要的特征,并根据这些特征进行分类、聚类或预测等任务。
2.2 请解释监督学习和无监督学习的区别。
监督学习是一种机器学习方法,其中训练数据包含了输入特征和对应的标签或输出。
通过给算法提供已知输入和输出的训练样本,监督学习的目标是学习一个函数,将新的输入映射到正确的输出。
而无监督学习则没有标签或输出信息。
无监督学习的目标是从未标记的数据中找到模式和结构。
这种学习方法通常用于聚类、降维和异常检测等任务。
3. 计算题3.1 请计算以下数据集的平均值:[2, 4, 6, 8, 10]答案:63.2 请计算以下数据集的标准差:[1, 3, 5, 7, 9]答案:2.834. 综合题4.1 对于一个二分类问题,我们可以使用逻辑回归模型进行预测。
请简要解释逻辑回归模型的原理,并说明它适用的场景。
逻辑回归模型是一种用于解决二分类问题的监督学习算法。
其基本原理是通过将特征的线性组合传递给一个非线性函数(称为sigmoid函数),将实数值映射到[0,1]之间的概率。
这个映射的概率可以被解释为某个样本属于正类的概率。
逻辑回归适用于需要估计二分类问题的概率的场景,例如垃圾邮件分类、欺诈检测等。
模式识别与机器学习期末考查试题及参考答案

模式识别与机器学习期末考查试卷研究生姓名:入学年份:导师姓名:试题1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。
答:(1)模式识别是研究用计算机来实现人类的模式识别能力的一门学科,是指对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。
主要集中在两方面,一是研究生物体(包括人)是如何感知客观事物的,二是在给定的任务下,如何用计算机实现识别的理论和方法。
机器学习则是一门研究怎样用计算机来模拟或实现人类学习活动的学科,是研究如何使机器通过识别和利用现有知识来获取新知识和新技能。
主要体现以下三方面:一是人类学习过程的认知模型;二是通用学习算法;三是构造面向任务的专用学习系统的方法。
两者关心的很多共同问题,如:分类、聚类、特征选择、信息融合等,这两个领域的界限越来越模糊。
机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/视频分析(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。
(2)机器学习和模式识别是分别从计算机科学和工程的角度发展起来的,各自的研究侧重点也不同。
模式识别的目标就是分类,为了提高分类器的性能,可能会用到机器学习算法。
而机器学习的目标是通过学习提高系统性能,分类只是其最简单的要求,其研究更侧重于理论,包括泛化效果、收敛性等。
模式识别技术相对比较成熟了,而机器学习中一些方法还没有理论基础,只是实验效果比较好。
许多算法他们都在研究,但是研究的目标却不同。
如SVM 在模式识别中研究所关心的就是其对人类效果的提高,偏工程。
而在机器学习中则更侧重于其性能上的理论证明。
试题2:列出在模式识别与机器学习中的常用算法及其优缺点。
答:(1) K近邻法KNN算法作为一种非参数的分类算法,它已经广泛应用于分类、回归和模式识别等。
在应用KNN算法解决问题的时候,要注意的两个方面是样本权重和特征权重。
优缺点:非常有效,实现简单,分类效果好。
中科院模式识别考题总结(详细答案)

1 .简述模式的概念及其直观特性,模式识别的分类,有哪几种方法。
(6')答(1):什么是模式?广义地说,存在于时间和空间中可观察的物体,如果我们可以区别它们是否相同或是否相似,都可以称之为模式。
模式所指的不是事物本身,而是从事物获得的信息,因此,模式往往表现为具有时间和空间分布的信息。
模式的直观特性:可观察性;可区分性;相似性.答(2):模式识别的分类:假说的两种获得方法(模式识别进行学习的两种方法):•监督学习、概念驱动或归纳假说:•非监督学习、数据驱动或演绎假说。
模式分类的主要方法:•数据聚类:用某种相似性度量的方法将原始数据组织成有意义的和有用的各种数据集。
是一种非监督学习的方法,解决方案是数据驱动的。
•统计分类:基于概率统计模型得到各类别的特征向量的分布,以取得分类的方法。
特征向量分布的获得是基于一个类别已知的训练样本集。
是一种监督分类的方法,分类器是概念驱动的。
•结构模式识别:该方法通过考虑识别对象的各部分之间的联系来达到识别分类的目的。
(句法模式识别)•神经网络:由一系列互相联系的、相同的单元(神经元)组成。
相互间的联系可以在不同的神经元之间传递增强或抑制信号。
增强或抑制是通过调整神经元相互间联系的权重系数来(weight)实现。
神经网络可以实现监督和非监督学习条件下的分类。
2.什么是神经网络?有什么主要特点?选择神经网络模式应该考虑什么因素?(8,)•(1 ):所谓△工神经网络就是基于模仿生物大脑的结构和功能而构成的二种值息处理系统计算机Z由于我们建立的信息处理系统实际上是模仿生理神经网络, 的复杂程度,通过调整内部大量节点之间相互连接的关系, 人工神经网络的两种操作过程:训练学习、正常操作答(2):人工神经网络的特点:•固有的并行结构和并行处理;•知识的分布存储,•有较强的容错性,•有一定的自适应性,人工神经网络的局限性:•人工神经网络不适于高精度的计算;•人工神经网络不适于做类似顺序计数的工作;•人工神经网络的学习和训练往往是一个艰难的过程;•人工神经网络必须克服时间域顺序处理方面的困难;•硬件限制:•正确的训练数据的收集。
模式识别答案

模式识别答案模式识别试题⼆答案问答第1题答:在模式识别学科中,就“模式”与“模式类”⽽⾔,模式类是⼀类事物的代表,概念或典型,⽽“模式”则是某⼀事物的具体体现,如“⽼头”是模式类,⽽王先⽣则是“模式”,是“⽼头”的具体化。
问答第2题答:Mahalanobis距离的平⽅定义为:其中x,u为两个数据,是⼀个正定对称矩阵(⼀般为协⽅差矩阵)。
根据定义,距某⼀点的Mahalanobis距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis距离就是通常的欧⽒距离。
问答第3题答:监督学习⽅法⽤来对数据实现分类,分类规则通过训练获得。
该训练集由带分类号的数据集组成,因此监督学习⽅法的训练过程是离线的。
⾮监督学习⽅法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,⼀般⽤来对数据集进⾏分析,如聚类,确定其分布的主分量等。
就道路图像的分割⽽⾔,监督学习⽅法则先在训练⽤图像中获取道路象素与⾮道路象素集,进⾏分类器设计,然后⽤所设计的分类器对道路图像进⾏分割。
使⽤⾮监督学习⽅法,则依据道路路⾯象素与⾮道路象素之间的聚类分析进⾏聚类运算,以实现道路图像的分割。
问答第4题答:动态聚类是指对当前聚类通过迭代运算改善聚类;分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。
问答第5题答:在给定观察序列条件下分析它由某个状态序列S产⽣的概率似后验概率,写成P(S|O),⽽通过O求对状态序列的最⼤似然估计,与贝叶斯决策的最⼩错误率决策相当。
问答第6题答:协⽅差矩阵为,则1)对⾓元素是各分量的⽅差,⾮对⾓元素是各分量之间的协⽅差。
2)主分量,通过求协⽅差矩阵的特征值,⽤得,则,相应的特征向量为:,对应特征向量为,对应。
这两个特征向量即为主分量。
3) K-L变换的最佳准则为:对⼀组数据进⾏按⼀组正交基分解,在只取相同数量分量的条件下,以均⽅误差计算截尾误差最⼩。
4)在经主分量分解后,协⽅差矩阵成为对⾓矩阵,因⽽各主分量间相关消除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《模式识别》试题答案(A卷)
一、填空与选择填空(本题答案写在此试卷上,30分)
1、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定
的类别数目))。
2、欧式距离具有( 1、2 );马式距离具有(1、2、
3、4 )。
(1)平移不变性(2)旋转不
变性(3)尺度缩放不变性(4)不受量纲影响的特性
3、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的
正(负)半空间中;绝对值正比于样本点到判别界面的距离。
)。
4、感知器算法1。
(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。
5、积累势函数法较之于H-K算法的优点是(该方法可用于非线性可分情况(也可用于线性可分情
况));位势函数K(x,x k)与积累位势函数K(x)的关系为(
∑
∈
=
X
x
x
x
K
x
K
~
k
k
k
)
,
(
)
(
α
)。
6、在统计模式分类问题中,聂曼-皮尔逊判决准则主要用于(某一种判决错误较另一种判决错误更
为重要)情况;最小最大判决准则主要用于(先验概率未知的)情况。
7、“特征个数越多越有利于分类”这种说法正确吗?(错误)。
特征选择的主要目的是(从n个特
征中选出最有利于分类的的m个特征(m<n),以降低特征维数)。
一般在(可分性判据对特征个数具有单调性)和( C n m>>n )的条件下,可以使用分支定界法以减少计算量。
8、散度Jij越大,说明i类模式与j类模式的分布(差别越大);当i类模式与j类模式的
分布相同时,Jij=(0)。
9、已知有限状态自动机Af=(,Q,,q0,F),={0,1};Q={q0,q1};:(q0,0)= q1,
(q0,1)= q1,(q1,0)=q0,(q1,1)=q0;q0=q0;F={q0}。
现有输入字符串:(a) 00011101011,
(b) 1100110011,(c) 101100111000,(d)0010011,试问,用Af对上述字符串进行分类的结果
为(ω1:{a,d};ω2:{b,c} )。
二、(15分)在目标识别中,假定类型1为敌方目标,类型2为诱饵(假目标),已知先验概率
P(1)=0.2和P(2)=0.8,类概率密度函数如下:
x 0 x < 1 x 1 1 x < 2 p(x1)= 2 x 1 x 2 p(x2)= 3 x 2 x 3
0 其它 0 其它
(1)求贝叶斯最小误判概率准则下的判决域,并判断样本x=1.5属于哪一类(2)求总错误概率P(e);(3)假设正确判断的损失11=22=0,误判损失分别为12和21,若采用最小损失判决准则,12和21满足怎样的关系时,会使上述对x=1.5的判断相反?
解:(1)应用贝叶斯最小误判概率准则如果则判
得l12(1.5)=1 < =4,故 x=1.5属于 2 。
(2)P(e)===0.08
(3) 两类问题的最小损失准则的似然比形式的判决规则为:
如果则判
带入x=1.5得到12≥421
三、(10分)二维两类问题,已知第一类ω1={三角形ABC},三角形ABC的顶点坐标分别为
{(1,3),(2,1),(3,2)};其它区域为第二类ω2。
试设计一个能对其正确分类的神经网络。
解:三角形ABC三条边的方程:
(y-3)/(x-1)=(y-1)/(x-2) => d1(x,y)=2x+y-5=0
(y-1)/(x-2)=(y-2)/(x-3) => d2(x,y)=-x+y+1=0
(y-3)/(x-1)=(y-2)/(x-3) => d3(x,y)=-x-2y+7=0
故ω1={(x,y)|(2x+y-5>0)∩(-x+y+1>0) ∩(-x-2y+7>0)}
可取有三个神经元的单隐含层网络,隐含层到输出神经元权值为1,输出神经元阀值取为2.5即可。
四、(15分)(1)试给出c-均值算法的算法流程图;
(2)试证明c-均值算法可使误差平方和准则最小。
其中,k是迭代次数;是的样本均值。
解:(1)框图中给出以下基本步骤:
1、任选个模式特征矢量作为初始聚类中心。
2、将待分类的模式特征矢量集中的模式逐个按最小距离原则分划给类中的某一类。
3、计算重新分类后的各类心。
4、如果任一类的类心改变,则转至⑵;否则结束。
(2)设某样本从聚类移至聚类中,移出后的集合记为,移入后的集合记为。
设和所含样本数分别为和,聚类、、和的均矢分别为、、和,显然有
(1)(2)
而这两个新的聚类的类内欧氏距离(平方)和与原来的两个聚类的类内欧氏距离(平方)和的关系是(3)(4)
当距比距更近时,使得(5)
由式(3)、(4及(5)可知,将分划给类可使J变小。
这说明在分类问题中不断地计算新分划的各类的类心,并按最小距离原则归类可使J值减至极小值。