离散傅里叶变换(DFT)

合集下载

离散傅里叶变换(DFT)

离散傅里叶变换(DFT)

尾补L-M个零后,再形成第一行的循环倒相序列。
(2) 第1行以后的各行均是前一行向右循环移1位 形成的。 (3) 矩阵的各主对角线上的序列值均相等。
x( L 1) x( L 2) y (0)c x(0) y (1) x(1) x(0) x( L 1) c y (2)c = x(2) x(1) x(0) y ( L 1)c x( L 1) x( L 2) x( L 3) x(1) h(0) x(2) h(1) x(3) h(2) x (0) h( L 1)
主值序列 x(n)
DFT变换对
x(n)的长度为M点,N≥M
N点DFT 变换对
DFT [ x(n)] X (k ) x(n)WNkn
n 0 N 1
WN e
j
2 N
k 0,1,..., N 1 n 0,1,..., N 1
1 N 1 IDFT [ X (k )] x(n) X (k )WN kn N k 0
1 IDFT[ X (k )]N N
N 1
[ x(m)WNmk ]WN kn
k 0 m 0
N 1 N 1
1 x ( m) N m 0
1 N
WNk ( m n )
k 0
N 1
W
k 0
N 1
k ( mn ) N
1 N
e
k 0
N 1 j 2 k ( m n ) N
x(n)
L称为循环卷积区间长度,L≥max[N,M]。
用矩阵计算循环卷积的公式
L 1 yc (n) h(m) x((n m)) L RL (n) m0

离散傅里叶变换(DFT)(图)

离散傅里叶变换(DFT)(图)

离散傅里叶变换(DFT)(图)上一回说到,在离散傅里叶级数(DFS)中,离散时间周期序列在时域是离散的n ,其频谱是离散频率周期序列,在频域也是离散的k,理论上解决了时域离散和频域离散的对应关系问题。

但由于其在时域和频域都是周期序列,所以都是无限长序列。

无限长序列在计算机运算上仍然是无法实现的。

为此我们必须取有限长序列来建立其时域离散和频域离散的对应关系。

一、DFS的主值序列上一回讨论我们知道,离散时间周期序列是一个无限长序列,其傅立叶级数展开式为(1)可以看出时间点序号n 是以N为周期的,如果只取其一个周期,称之为的主值序列:(2)主值序列x(n)就是一个长度为N的有限长离散时间序列。

同理,的DFS也是一个无限长序列,即傅立叶系数:(3)也可以看出频率点序号k 也是以N为周期的,如果只取其一个周期,称之为的主值序列:(4)主值序列X(k)是一个长度为N的有限长离散频率序列。

可见,离散时间周期序列在时域和频域的主值序列,均为有限长离散序列。

且主值序列的长度均为N(即n,k=0,1,2,…,N-1)。

二、离散傅里叶变换(DFT)的定义在离散傅立叶级数(DFS)中,取其时域和频域的主值序列,变换仍然成立。

这就是离散傅里叶变换(DFT),即:(5)和其逆变换(IDFT):(6)可见离散傅里叶变换(DFT)只不过是特殊的离散傅立叶级数(DFS),如果其时域和频域都仅取主值序列。

离散傅立叶级数(DFS)中的无限长序列和都是以N为周期的周期序列,所以在计算离散时间周期序列及其频谱时,可以利用DFS的周期性,只需要在时域和频域各取一个主值序列,用计算机各计算一个周期中的N个样值,最后将所得的主值序列x(n)和X(k)进行周期延拓,即可得到原来的无限长序列和。

三、DFT的推广应用由DFT的导入过程可以发现,DFT不仅可以解决无限长周期序列的计算机运算问题,而且更可以解决有限长序列的计算机运算问题。

事实上,对于有限长离散序列,总可以把时域和频域的变换区间(序列长度)均取为N(包括适当数量的补0点),通常把N称之为等间隔采样点数,我们可以把这个N点的变换区间视为某个周期序列的一个主值序列,直接利用DFT的定义计算其N点变换。

dft与离散傅里叶变换

dft与离散傅里叶变换

dft与离散傅里叶变换DFT与离散傅里叶变换引言:数字信号处理中,频域分析是一项重要的技术。

DFT(离散傅里叶变换)和离散傅里叶变换(DFT)是两种常用的频域分析方法。

本文将介绍DFT和离散傅里叶变换的基本原理、应用领域以及它们之间的区别。

一、DFT的基本原理离散傅里叶变换(DFT)是一种将时域信号转换为频域信号的方法。

它的基本原理是将信号分解为不同频率的正弦和余弦波的叠加。

DFT 可以将信号从时域转换到频域,帮助我们分析信号的频谱特征。

DFT的计算公式是通过对信号的采样点进行离散计算得到的。

它将信号分解为一系列复数,表示不同频率的正弦和余弦波的振幅和相位信息。

通常情况下,DFT的输入信号是离散时间的有限长度序列,输出信号也是离散时间的有限长度序列。

二、DFT的应用领域DFT在信号处理领域有着广泛的应用。

以下是几个典型的应用领域:1. 音频信号处理:DFT可以用于音频信号的频谱分析,帮助我们了解音频信号的频率组成以及频谱特征。

它在音频编码、音频效果处理等方面有着重要作用。

2. 图像处理:DFT可以用于图像的频域分析,帮助我们了解图像的频率特征,如边缘、纹理等。

它在图像压缩、图像增强等方面有着广泛的应用。

3. 通信系统:DFT可以用于通信信号的频谱分析,帮助我们了解信号在频域上的特征,如信号的带宽、频率偏移等。

它在调制解调、信道估计等方面有着重要作用。

三、离散傅里叶变换(DFT)与傅里叶变换(FT)的区别离散傅里叶变换(DFT)是傅里叶变换(FT)在离散时间上的应用。

它们之间的区别主要体现在以下几个方面:1. 定义域:傅里叶变换是定义在连续时间上的,而离散傅里叶变换是定义在离散时间上的。

2. 输入信号类型:傅里叶变换可以处理连续时间的信号,而离散傅里叶变换可以处理离散时间的信号。

3. 计算方法:傅里叶变换通过积分计算得到频域信号,而离散傅里叶变换通过对输入信号的采样点进行离散计算得到频域信号。

4. 结果表示:傅里叶变换的结果是连续的频域信号,而离散傅里叶变换的结果是离散的频域信号。

离散傅里叶变换

离散傅里叶变换

c) 频域循环移位定理 若

21
3.2.3 循环卷积定理
长度分别为N1和N2的有限长序列x1(n)和x2(n)的N点DFT
分别为: ( N=max[ N1, N2 ])。
X1(k)=DFT[x1(n)]
X2(k)=DFT[x2(n)] 如果 则 X(k)=X1(k)· X2(k)
x n IDFT X k x1 m x2 n m N RN n
10
定义: 的主值区间:周期序列 中从n=0到N-1的范围 的主值序列:主值区间上的序列 为叙述方便,将式(3.1.5)该写成
x n N 表示x(n)以N为周期的周期延拓序列,符号((n))N表示n对模
N的余数,即
这里k是商。
11
例如,N=7,
=x((n))7,则有
x 7 x 7 7 x 0 x 8 x 8 7 x 1
类似
Note:对实序列有 X k X N k
DFT x N n X k , 0 k N 1
28
3.2.5 DFT的共轭对称性
1. 有限长共轭对称序列和共轭反对称序列
分别用xep(n)和xop(n) 表示有限长共轭对称序列和共轭反对称
由此对长度为N的序列x(n),且 x n x n N ,则
X k x n W
n 0 N 1 kn N
的DFS为
x n N W
n 0
N 1
kn N
kn x n WN n 0
N 1
1 N 1 1 N 1 kn kn x n X k WN X k WN N n 0 N n 0

离散傅里叶变换(DFT)

离散傅里叶变换(DFT)
倒相序列。注意,如果x(n)的长度M<L,则需要在x(n)末
尾补L-M
(2) 第1行以后的各行均是前一行向右循环移1位
(3) 矩阵的各主对角线上的序列值均相等。
y(0)c x(0) x(L1) x(L2)
y(1)c
x(1)
x(0) x(L1)
y(2)c
= x(2)
x(1)
x(0)
y(L1)c x(L1) x(L2) x(L3)
m0
n'm
精选课件
N1
N1
X(k) x1(m)WN km x2(n')WN kn '
m0
n'0
X1(k)X2(k), 0kN1
由于 X ( k ) D F T [ x ( n ) ] X 1 ( k ) X 2 ( k ) X 2 ( k ) X 1 ( k ), 因此
x (n ) ID F T [X (k)] x 1 (n ) x2(n)x2(n) x 1 ( n )
精选课件
若 则

D[F x(n)T ]X (k) D [ x ( F n (m T )N R )N ( n ) ] W N m X ( k k ) ID [X (k F ( l)T N ) R N ( k ) ] W N n x ( ln )
证明:
N 1
N 1
Y ( k ) D F T [ y ( n ) ] N x ( ( n m ) ) N R N ( n ) W N k n x ( ( n m ) ) N W N k n
m0
(3.2.5)
yc(n)=h(n) x(n)
L称为循环卷积区间长度,L≥max[N,M]。
精选课件

离散傅里叶变换(DFT)

离散傅里叶变换(DFT)

离散傅⾥叶变换(DFT) 对于第⼀幅图来说,它侧重展⽰傅⾥叶变换的本质之⼀:叠加性,每个圆代表⼀个谐波分量。

第⼆幅图直观的表⽰了⼀个周期信号在时域与频域的分解。

周期信号的三⾓函数表⽰ 周期信号是每隔⼀定时间间隔,按相同规律⽆始⽆终重复变化的信号。

任何周期函数在满⾜狄利克雷条件下(连续或只有有限个间断点,且都是第⼀类间断点;只有有限个极值点),都可以展开成⼀组正交函数的⽆穷级数之和。

使⽤三⾓函数集的周期函数展开就是傅⾥叶级数。

对于周期为T 的信号f(t),可以⽤三⾓函数集的线性组合来表⽰,即f(t)=a_0+\sum_{n=1}^{\infty }(a_n\cos n\omega t+b_n\sin n \omega t) 式中\omega=\frac{2\pi}{T}是周期信号的⾓频率,也成基波频率,n\omega称为n次谐波频率;a_0为信号的直流分量,a_n和b_n分别是余弦分量和正弦分量幅度。

根据级数理论,傅⾥叶系数a_0、a_n、b_n的计算公式为:\left\{\begin{matrix}a_0=\frac{1}{T}\int _{\frac{-T}{2}}^{\frac{T}{2}}f(t)dt \\ a_n=\frac{2}{T}\int _{\frac{-T}{2}}^{\frac{T}{2}}f(t)\cos{n\omegat}dt,n=1,2,3,... \\ b_n=\frac{2}{T}\int _{\frac{-T}{2}}^{\frac{T}{2}}f(t)\sin{n\omega t}dt,n=1,2,3,... \end{matrix}\right. 若将式⼦中同频率的正弦项和余弦项合并,得到另⼀种形式的周期信号的傅⾥叶级数,即f(t)=A_0+\sum_{n=1}^{\infty}A_n\cos(n\omega t+\varphi_n) 其中,A_0为信号的直流分量;A_1\cos(\omega t+\varphi_1)为信号的基频分量,简称基波;A_n\cos(n\omega t+\varphi_n)为信号的n次谐波,n ⽐较⼤的谐波,称为⾼次谐波。

离散傅里叶变换DFT的性质

离散傅里叶变换DFT的性质

讨论DFT的性质有何意义呢?
1.加深对离散傅里叶变换的理解,更好的掌握DFT 的特性,便于体会出时域和频谱表达存在的内在 联系。
2.这些重要的性质有助于简化变换与反变换的求取, 降低计算的复杂性。例如后面重点学习的FFT算法 就利用了DFT的周期性和对称性。
仔细看书中的性质列表,与DTFT性质表进行对比
N1
[XR(k)cos
k0
2kn
N
Xl
(k)sin
2kn]
N
(2)实偶序列
x(n)x(Nn) 0nN1XI(k)0
N1
2kn
X(k) x(n)cos
n0
N
0kN1
XI(k)0x(n)N 1N k01X(k)cos2Nkn
0nN1
DFT: XR(k)Nn01xR(n)cos2NknxI(n)sin2Nkn XI (k)Nn01xR(n)sin2NknxI(n)cos2Nkn
x'(n)=x(nk,对N求余) x((nk))N
当 k 2和 N 4 x (n ) x ((n 2 )) 4 x (0 ) x (( 2 )) 4 x (2 ) x (1 ) x (( 1 )) 4 x (3 ) x (2 ) x ((0 )) 4 x (0 ) x (3 ) x ((1 )) 4 x (1 )
加深对离散傅里叶变换的理解,更好的掌握DFT的特性,便于体会出时域和频谱表达存在的内在联系。
1 7、序列的圆周时域移位
j
x[n] X (e )e d 这些重要的性质有助于简化变换与反变换的求取,降低计算的复杂性。
jn
3 DFT的隐含周期性、线性、对称性
2
2 加深对离散傅里叶变换的理解,更好的掌握DFT的特性,便于体会出时域和频谱表达存在的内在联系。

DSP-离散傅里叶变换(DFT)

DSP-离散傅里叶变换(DFT)

由于:
N1
N 1 W k0
k(mn) N
{1 0
mnM N,MM为整数
mnM N,M
所以, 在变换区间上满足下式:
IDFT[X(k)]=x(n),
0≤n≤N-1
离散傅里叶逆变换是唯一的。
3.1 离散傅里叶变换的定义
[例]
解:
序(1)列设x变(n换)=区R4间(nN) ,=8求,x(则n):的X (8k点) 和n1760 点x(DnF)WT 8。kn
设序列x(n)的长度为N, 其Z变换和DFT分别为:
N1
X(z)ZT[x(n)] x(n)zn
n0
N1
X(k)DFT[x(n)] x(n)WNkn
n0
比较上面二式可得关系式
0kN-1
X(k) XXX(((kkkX )))(XXX(z(z(z)z)))zzezej2jN 2Njk2ke ,k,j,2N k00,0kkkNN--N 11-10((33k ..1(1.3.33. )1).3)N ze N
离散傅里叶变换(DFT)
本章主要内容
▪ 离散傅里叶变换的定义 ▪ 离散傅里叶变换的基本性质 ▪ 频率域采样 ▪ 离散傅里叶变换的应用举例
离散傅里叶变换(DFT)
DFT变换的实质:有限长序列的傅里叶变换的有限点离散采
样(时域和频域都是离散化的有限点长的序列)。
DFT变换的意义:
▪ 开辟了频域离散化的道路,使数字信号处理可以在频域中进 行处理,增加了数字信号处理的灵活性。 ▪ DFT具有多种快速算法(FFT),实现了信号的实时处理和设备 的简化。
3 N 0
j 2 kn
e8
XX(k(k)
77
)
n n0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
移位 设x(n)为有限长序列, 长度为N, 则x(n)的循环移 位定义为 y(n)=x((n+m))NRN(N) (3.2.2)
~
将 x(n)以N为周期进行周期延拓得到 x(n) = x(( n)) N 将
~
x(n) = x((n)) N 左移m位得到 x(n + m)
(3.2.4)
例: ( n) = 3e n , o ≤ n ≤ 15 ,求 f ( n) = x(( n + 5))15 R15 (n) x
的16点离散傅立叶变换DFT。
N=16; n=0:N-1; xn=3*exp(n); m=5; fn=xn(mod((n+m),N)+1); XK=fft(xn, N); subplot(2, 2, 1); stem(n,xn); subplot(2, 2, 2); stem(n,abs(XK)); FK=fft(fn,N); subplot(2, 2, 3); stem(n,fn); subplot(2, 2, 4); stem(n,abs(FK));
x(n)为长度为N的有限长序列
x(n) 是长度为N的有限长序列x(n)的周期延拓序列
x (n ) =
~
~
m =∞


x ( n + mN )
(3.1.5) (3.1.6)
x (n ) = x ( n ) RN (n )
~
~
主值区间:周期序列 x( n) 从n=0到N-1的第一个周期。
~
主值序列:而主值区间上的序列称为 x( n) 的主值序列。
m
~2 m )) N) R x 2 (( (( m )) N ( n ) x (m x
2
m
x(0) = ∑x1(m)x2 ((0 m))N
m=0 5
=1×0 +1×0 +1×0 +1×1+ 0× 2 + 0×1 =1
m 计算区
(3)将 x2 ((m)) N 右移一位、得到 x2 ((1 m)) N
n′= 0

N 1
x((n′)) N WNkn′ x(n′)WNkn′
=W
km N
n′ = 0

N 1
= WN km X (k )
3. 频域循环移位定理 如果 X(k)=DFT[x(n)], 0≤k≤N-1 Y(k)=X((k+l))NRN(k)
nl WN x(n) 则 y(n)=IDFT Y(k) = y(n)=IDFT[Y(k)]=
例 3.1.1 x(n)=R4(n) ,求x(n)的8点和16点DFT (1)设变换区间N=8, 则
X (k ) = ∑ x(n)W8kn =
n=0
3 j kπ 8
7
3

n =0
e
j
2π kn 8
=e
sin( k ) 2 , k = 0,1, , 7 π sin( k ) 8
π
(2)设变换区间N=16, 则
其中X(k)=DFT[x(n)], 0≤k≤N-1。
(3.2.3)
证明:
Y ( k ) = DFT [ y (n )]
kn = ∑ x (( n + m )) N RN (n )WN n =0 N 1 n =0 N 1
kn = ∑ x (( n + m )) N WN
令n+m=n′, 则有
Y (k ) =
m=0 N 1
循环卷积
=∑ x2 (m) x1 ((n m)) N RN (n)
m=0
N 1
(3.2.5)
x1 (n) x2 (n)
下面先证明(3.2.5)式, 再说明其计算方法。 证明: 直接对(3.2.5)式两边进行DFT
X (k ) = DFT [ x(n)] = ∑ [ ∑ x1 (m) x2 ((n m)) N RN (n)]WNkn
N 1 n =0
0 ≤ k ≤ N-1
X (e jω ) = FT [ x(n)] = ∑ x(n)e jω n
n =0
N 1
比较上面三式可得
X (k ) = X ( z )
z =e
j
2π k N
, ,
0 ≤ k ≤ N-1 0 ≤ k ≤ N-1
(3.1.3) (3.1.4)
X ( k ) = X (e jω )
DFT(FFT)
3.1 离散傅里叶变换的定义
3.1.1 DFT的定义 设x(n)是一个长度为M的有限长序列, 则定义x(n) 的N点离散傅里叶变换(DFT)为
X (k ) = DFT [ x(n)] = ∑ x(n)WNkn , k=0, 1, L , N-1 (3.1.1)
n =0 N 1
式中 WN = e
图3.2.2 循环卷积过程示意图
例 :两个序列的循环卷积过程; N=6; (1)画出 x1(m) 和 x2 (m)的图形; (2)将 x2 (m) 循环反转,得到 x2 (( m)) N 即
x2 ((0 m)) N
~ (m) x11(m) x
0 1 2 3 x2 ( )) N x2~ mm) ((
j
2π N
,N称为DFT变换区间长度N≥M。

X (e ) =
n =∞


x ( n )e jω n
X(k)的离散傅里叶逆变换(IDFT)为
1 X (n) = IDFT [ X (k )] = N
N 1 n =0

n =0
N 1
X (k )WN kn , k=0, 1, L , N-1 (3.1.2)
m=0
N 1
因为
X (k ) = DFT [ x(n)] = X 1 (k ) X 2 (k ) = X 2 (k ) X 1 (k )
所以
x(n) = x1 (n) x2 (n) = x2 (n) x1 (n) 交换律
= ∑ x1 (m) x2 ((n m)) N RN (n)
m=0 N 1
kn N
= ∑ x(n)WNkn (3.1.8)
n =0
N 1
X (k ) = DFT [ x(n)] = ∑ x(n)WNkn , k=0, 1, L , N-1 (3.1.1)
~
和 DFT的定义(3.1.1)相比,可知X(k)是X ( k ) 主值序列。
所以
X (k ) = X (k ) RN (k )
交换求和次序

k =0
N 1
km [ ∑ x(m)WN ]WN kn m =0
N 1 k =0
N 1
=∑
N 1
1 N

k =0
N 1
m=0
1 x ( m) N

WNk ( m n )
m = n + MN , m ≠ n + MN ,
W
k ( mn ) N
= {0
1
M为整数
所以, 在变换区间上满足下式: IDFT[X(k)]=x(n), 0≤n≤N-1
~
~
取 x( n + m) 的主值序列则得到x(n)的循环移位序列
图 3.2.1
循环移位过程示意图
2. 时域循环移位定理 设x(n) 是长度为N的有限长序列, y(n)为x(n)的循 环移位, 即 y(n)=x((n+m))NRN(n) 则
Y (k ) = DFT [ y (n)] = WNkn X (k )
x(n)
f(n)
3.2.3 循环卷积定理 有限长序列x1(n)和x2(n), 长度分别为N1 和N2 , N=max[ N1, N2 ]。 x1(n)和x2(n)的N点DFT分别为: X1(k)=DFT[x1(n)] X2(k)=DFT[x2(b)] 如果 x(X(k)=X1(k)X2)] = 则 (m) x ((n m)) R ( n) n) = IDFT [ X (k (k), ∑ x1 2 N N
1
0 1 2 3 4 5 6 7 x 2((1- m))NRN(m) 1
m
循环移位1
0 1 2 3 4 5 6 7 x 2((2- m))NRN(m) m
x2 ((n m)) N RN (n)
1
循环移位2
0 1 2 3 4 5 6 7 x(n) m
…… 循环移位N-1
4 3 2 1 0 1 2 3 4 5 6 7 n
~ (m) x11(m) x
0~1 2 3 x22(m)) N x (( m)
sin( k ) 4 , k = 0,1, ,15 π sin( k ) 16
π
FT
3.1.2 DFT和Z变换的关系 设序列x(n)的长度为N, 其Z变换和DFT分别为:
X ( z ) = ZT [ x(n)] = ∑ x( n) z n
n =0 N 1
X (k ) = DFT [ x( n)] = ∑ x(n)WNkn
~
例 3.1.1,将x(n)=R4(n) ,~ 以周期4进行延拓 X (k )
X (k )
例 3.1.1,将x(n)=R4(n) ,~ 以周期32进行延拓 X (k )
X (k )
3.2 离散傅里叶变换的基本性质
3.2.1 线性性质 如果x1(n)和x2(n)是两个有限长序列, 长度分别为 N1和N2。 y(n)=ax1(n)+bx2(n) 式中a、b为常数, 即y(n)的长度为N=max[N1, N2], 则y(n)的N点DFT为 Y(k)=DFT[y(n)]=aX1(k)+bX2[k], 0≤k≤N-1(3.2.1) 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N点DFT。
相关文档
最新文档