向量函数的微分与积分
5 多元向量值函数的导数与微分

9
向量值复合函数求导的链式法则
Df [g( x)] Df (u) Dg( x) ug( x)
例:试通过如下函数验证上述公式
w
f (u)
u12
,
u1u2
w
w1 w2
,
u
u1 u2
u
g(u)
x1
e x2
,
sin x1
x
x1 x2
2007年8月
南京航空航天大学 理学院 数学系
dx1
dx2
fm ( x0 )
x2
f1( x0 )
x1
于是,将矩阵
f2 ( x0 ) x1
fm ( x0 ) x1
f1( x0 )
x2
f2 ( x0 ) x2
Df
( x0 )
称为导数
fm ( x0 )
x2
Jacobi 矩阵
2007年8月
南京航空航天大学 理学院 数学系
多元向量值函数的导数与 微分
一元向量值函数的导数与微分 二元向量值函数的导数与微分 微分运算法则
2007年8月
南京航空航天大学 理学院 数学系
1
对于一般的n元向量值函数:
f :A n m
f1( x) f1( x1, x2 ,
f
(
x)
f
2
(
x
)
f2 ( x1 , x2 ,
fm ( x) fm ( x1, x2 ,
6
一般地,对于n元向量值函数:f : A n m
定义导数(Jacobi矩阵)为:
f1( x0 )
x1
Df
( x0
)
f2 ( x0 ) x1
向量值函数的导数与积分

v (t ) r (t ),
速度的方向或质点运动的方向是运动轨迹的切线方向,
v(t ) r (t ) 是质点在时刻 t 的瞬时加速度 a (t).
高等数学分级教学A2班教学课件
Dept. Math. & Sys. Sci. 应用数学教研室
向量值函数的导数可通过计算其分量函数的导数得到. 定理9.2.2 设三维向量值函数 r (t ) f (t )i g (t ) j h(t )k, 其中各分量函数在点 t 处可导, 则 r(t) 在点 t 处可导, 且
条曲线为分段光滑曲线.
高等数学分级教学A2班教学课件
Dept. Math. & Sys. Sci. 应用数学教研室
3 2 r ( t ) {1 t , t }是否为光滑曲线? 例2 判断曲线
解 因为 r (t ) (3t 2 , 2t ), r (0) (0,0), 所以,该曲线不是 光滑的.曲线在点(1, 0) (对应t = 0)突然改变了方向,
对于二维向量值函数与三维向量值函数,dr 是一个与
曲线的切向量 T (t ) r (t ) 平行的向量,当 dt >0 时, dr与 与切向量 r (t ) 同向; 当dt <0 时, dr与切向量 r (t ) 反向.
高等数学分级教学A2班教学课件
Dept. Math. & Sys. Sci.
r (t ) f (t )i g (t ) j h(t )k.
三维向量值函数 r (t ) f (t )i g (t ) j h(t )k 的二阶导数为
r (t ) f (t )i g (t ) j h(t )k.
同样,对于可导的二维向量值函数有类似的结论.
向量微积分,线性代数和微分形式pdf

向量微积分,线性代数和微分形式pdf向量微积分、线性代数和微分形式是现代数学基础领域的三个重要分支,在数学研究,物理学和工程学等领域有着广泛的应用。
下面将从这三个方面分步骤阐述其中的内容。
一、向量微积分向量微积分是一种以向量为基础的微积分方法,研究的对象是向量值函数和向量场。
它的基础是向量的运算和微积分基本定理的推广,如黎曼积分和斯托克斯定理等。
在物理学中,向量微积分应用非常广泛,例如力学中的牛顿定律和质点运动方程、电磁学中的电场和磁场、流体力学中的速度场等等。
在数学领域中,向量微积分是构建微分几何学和流形理论的基础。
二、线性代数线性代数是研究向量空间及其变换的代数学科,它的基础是向量空间、矩阵、线性变换和特征值等概念。
线性代数在物理学和工程学中应用广泛,例如矩阵论在机器学习和信号处理中的应用、特征值分解在量子力学中的应用、线性回归和协方差矩阵在统计学中的应用等等。
在数学领域中,线性代数是构建抽象代数学理论的基础。
三、微分形式微分形式是微积分的一种扩展理论,它利用外微分和外代数的概念构建了一种替代微分项的形式,从而避免了微分不可逆的问题。
微分形式的基础是张量代数和外代数的概念,它在物理学中应用广泛,例如爱因斯坦场方程的表述、经典力学中的哈密顿力学等等。
在数学领域中,微分形式是构建拓扑学和微分几何学的基础。
总之,向量微积分、线性代数和微分形式是现代数学发展的重要支柱,它们的应用深入到数学、物理、工程、计算机科学等多个领域。
对这三个方面的研究不仅可以加深我们对数学基础理论的认识,还可以让我们更好地理解复杂的实际问题。
数学分析23.2向量函数的微分(含习题及参考答案)

第二十三章 向量函数微分学2 向量函数的微分一、可微性与可微条件定义4:设D ⊂R n 为开集, x 0∈D, f: D →R m . 如果存在某个线性变换△(只依赖于x 0), 使得x ∈U(x 0)⊂D 时, 有f(x)-f(x 0)=△(x-x 0)+o (0x x -)或00)()()(limx x x x x f x f x x --∆--→=0, 则称向量函数f 在点x 0可微(或可导).若与上述线性变换△相联系的矩阵为A m ×n , 则称△(x-x 0)=A(x-x 0)为 f 在点x 0的微分,并称A 为f 在点x 0的导数, 记作Df(x 0)或f ’(x 0). ∴△(x-x 0)=A(x-x 0)=Df(x 0)(x-x 0)=f ’(x 0)(x-x 0)是f(x)-f(x 0)的一个线性逼近, 当m=1时,它是一个实数,而当m>1时,它是一个m 维向量. 若f 在D 上任何点可微,则称f 为D 上的可微函数.设f=⎪⎪⎪⎭⎫ ⎝⎛m f f 1, A=⎪⎪⎪⎭⎫ ⎝⎛⋯⋯mn m n a a a a 1111 =⎪⎪⎪⎭⎫⎝⎛T m TA A 1, 其中A i =(a i1,…,a in )T, i=1,2,…m.则可微条件等价于f i (x)-f i (x 0)= A i T (x-x 0)+o (0x x -), i=1,2,…m, 即f 的所有坐标函数f i , i=1,2,…m 在x 0可微. 由实值函数可微性知, a ij =x x jix f =∂∂,j=1,2,…,n;i=1,2,…m.当f 在x 0可微时, f 在x 0的导数矩阵为:A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂⋯∂∂∂∂⋯∂∂n m m n x f x f x f x f 1111=f ’(x 0)=Df(x 0).定理23.8:若向量函数f 在x 0可微, 则f 在x 0连续.定理23.9:若向量函数f 在x 0可微, 则f 的所有坐标函数f i (i=1,2,…m)在x 0关于每个自变量x j (j=1,2,…n)的一阶偏导数0x x ji x f =∂∂都存在. 由这些偏导数组成的矩阵(如上)便是f 在x 0的导数.定理23.10:若向量函数f 在点x 0的某邻域U(x 0)内处处存在一阶偏导数jix f ∂∂(i=1,2,…,m; j=1,2,…,n), 且所有这些偏导数在点x 0连续, 则f 在点x 0可微.例1:设X={(x 1,x 2)|-∞<x 1<+∞, x 2>0}⊂R 2, 向量函数f: X →R 4为 f(x)=f(x 1,x 2)=(x 12x 23,21x x e +,x 2,x 1lnx 2)T . 求f ’(x), x ∈X 和f ’(1,1).解:∵11x f ∂∂=2x 1x 23, 21x f ∂∂=3x 12x 22;12x f ∂∂=21x x e +, 22x f∂∂=21x x e +; 13x f ∂∂=0, 23x f ∂∂=1;14x f ∂∂=lnx 2, 22x f ∂∂=21x x; ∴f ’(x)=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛++2122221321ln 10322121x x x e e x x x x x x x x , f ’(1,1)=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10103222e e , 由定理23.10知f 在X 上可微.定理23.11:设D ⊂R n 为开集, x 0∈D ,f: D →R m . 则f 在x 0可微的充要条件是:存在一个(m 行n 列的)矩阵函数F: D →R mn , 它在x 0连续(相当于它的n 个列向量函数都在x 0连续), 并使得f(x)-f(x 0)=F(x)(x-x 0), x ∈D. 证:[必要性]根据可微的定义,当x ≠x 0时, 存在η: D →R m , 0lim xx →η(x)=0,使得f(x)-f(x 0)=f ’(x 0)(x-x 0)+η(x)0x x -=f ’(x 0)(x-x 0)+)(x x x -η(x-x 0)T (x-x 0)=[f ’(x 0)+0)(x x x -η(x-x 0)T ](x-x 0). 令F(x)=⎪⎩⎪⎨⎧='≠--+'00000),(,)()()(x x x f x x x x x x x x f T η, ∵)()(0x F x F -=00)()(x x x x x T--η≤)(x η→0(x →x 0), ∴F(x)在x 0连续.∴f(x)-f(x 0)=F(x)(x-x 0), x ∈D.[充分性]若存在F(x) 在x 0连续且f(x)-f(x 0)=F(x)(x-x 0), 则有 f(x)-f(x 0)=F(x 0)(x-x 0)+[F(x)-F(x 0)](x-x 0)=F(x 0)(x-x 0)+0)()(x x x F x F --(x-x 0)0x x -,令η(x)=⎪⎩⎪⎨⎧=≠---00000,0),()()(x x x x x x x x x F x F , 由F 在x 0连续知0lim x x →η(x)=0. 又f(x)-f(x 0)=F(x 0)(x-x 0)+η(x)0x x -, ∴f 在x 0可微且 A 由矩阵F(x 0)确定, 即f ’(x 0)=F(x 0).二、可微函数的性质 注:以下集合D ⊂R n 均为开集.定理23.12:设f,g: D →R m 是两个在x 0∈D 可微的函数, c 为任意实数,则cf 与f ±g 在x 0也可微,且有(cf)’(x 0)=cf ’(x 0), (f ±g)’(x 0)=f ’(x 0)±g ’(x 0). 证:由定理23.11关于可微的充要条件知, 存在矩阵函数F, G: D →R mn 在x 0连续, 且满足f(x)-f(x0)=F(x)(x-x0), g(x)-g(x0)=G(x)(x-x0), x∈D. 于是有(cf)(x)-(cf)(x0)=c[f(x)-f(x0)]=cF(x)(x-x0);(f±g)(x)-(f±g)(x0)=[f(x)-f(x0)]±[g(x)-g(x0)]=(F±G)(x)(x-x0).又由连续函数性质可知, 当F,G在x0连续时,cF, (F±G)(x)在x0连续. ∴cf与f±g满足定理23.11的条件, cf与f±g在x0可微.又f’(x0)=F(x0), g’(x0)=G(x0), ∴(cf)’(x0)=cf’(x0), (f±g)’(x0)=f’(x0)±g’(x0).定理23.13:设f: D→R m在x0∈D可微;D’⊂R m为开集, f(D)⊂D’;f: D’→R r在y0=f(x0)可微. 则复合函数h=g◦f: D→R r在x0可微, 且h’(x0)=(g◦f)’(x0)=g’(y0)f’(x0).证:由定理23.11关于可微的充要条件知,存在矩阵函数F: D→R mn在x0连续, G: D’→R rm在y0连续, 且满足f(x)-f(x0)=F(x)(x-x0), x∈D; g(y)-g(y0)=G(y)(y-y0), y∈D’. 于是有h(x)-h(x0)=g(f(x))-g(f(x0))=G(f(x))[f(x)-f(x0)]=G(f(x))F(x)(x-x0)=H(x)(x-x0),其中H(x)=G(f(x))F(x). 由连续函数性质可知, 当f, F在x0连续时,G在y0=f(x0)连续, 从而H在在x0连续. ∴h=g◦f满足定理23.11的条件, 即h在x0可微. 又f’(x0)=F(x0), g’(y0)=G(y0), 从而证得:h’(x0)=H(x0)=G(f(x0))F(x0)=G(y0)F(x0)=g’(y0)f’(x0). (链式法则)注:若令u=g(y), y=f(x), 用雅可比矩阵表示(g◦f)(x)的导数的链式法则:01111x x n r r n x u x u x u x u =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂⋯∂∂∂∂⋯∂∂ =01111y y m r r m y u y u y u y u =⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂⋯∂∂∂∂⋯∂∂1111x x n m m n x u x y x y x y =⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂⋯∂∂∂∂⋯∂∂ .例2:设D ⊂R 2, f: D →R 2, f(D)⊂D ’⊂R 2, g: D ’→R, 则当f,g 均可微时, 试用两种形式表示h ’(x).解:复合函数h=g ◦f : D →R 在D 上可微, 且h ’(x)=(g ◦f)’(x)=g ’(y)f ’(x), 或⎪⎪⎭⎫ ⎝⎛∂∂∂∂21x u x u =⎪⎪⎭⎫ ⎝⎛∂∂∂∂21y u y u ⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂22122111x y x y x y x y =⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂∂∂∂+∂∂∂∂222211122111x y y u x y y u x y y u x y y u .例3:设w=[f(x,u), g(y,v)]T , u=ψ(x,y,v), v=φ(x,y), 试计算w ’(x,y). 解:(x,y)T ↦(x,y,v)T ↦(x,y,u,v)T ↦(w 1,w 2)T , 即⎪⎪⎪⎭⎫ ⎝⎛v y x =⎪⎪⎪⎭⎫ ⎝⎛),(y x y x ϕ, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛v u y x =⎪⎪⎪⎪⎪⎭⎫⎝⎛v v y x y x ),,(ψ, ⎪⎪⎭⎫ ⎝⎛21w w =⎪⎪⎭⎫⎝⎛),(),(v y g u x f , 则 w ’(x,y)=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂y v x v y y xy y x x xv v y v xv v u y u xu v y y y xyv x y x x x v w uw y w x w v w u w y w xw 22221111=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛y xv y x v yu xg g f f ϕϕψψψ1001100010001000=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+y x v yv u yu xu x g g f f f f ϕϕψψψ10010=⎪⎪⎭⎫⎝⎛++++y v y x v v y u y u v x u x u x g g g f f f f f ϕϕψϕψψϕψ.定理23.14(微分中值不等式):设D ⊂R n 是凸开集, f: D →R m . 若f 在D 内可微,则对任何两点a,b ∈D, 必存在点ξ=a+θ(b-a), 0<θ<1, 使得)()(a f b f -≤a b f -')(ξ.证:令φ(x)=[f(b)-f(a)]T f(x), 则φ是D 上的一个实值函数, 且 满足中值定理的条件. ∴存在ξ=a+θ(b-a), 0<θ<1, 使得φ(b)-φ(a)=φ’(ξ)T (b-a), 其中φ’(ξ)T =[φx1(ξ),…,φxn (ξ)]=[f(b)-f(a)]T f ’(ξ). 又φ(b)-φ(a)=[f(b)-f(a)]T [f(b)-f(a)]=)()(a f b f -2,∴)()(a f b f -2=[f(b)-f(a)]T f ’(ξ)(b-a)≤a b f a f b f -'-)()()(ξ, 即)()(a f b f -≤a b f -')(ξ.三、黑赛矩阵与极值概念:对一元向量子数x: I →R n , I ⊂R, 即x 1=x 1(t),…,x n =x n (t),t ∈I, 只要x i (k)(t), i=1,2,…,n 存在, 按向量函数的导数定义, x 的k 阶导数 x (k)t=[x 1(k)(t), x n (k)(t)]T 也存在.对n 元实值函数f: D →R, D ⊂R n 为开集, 若f 在D 可微, 则由 f ’(x)=⎪⎪⎭⎫⎝⎛∂∂⋯∂∂n x f x f ,,1确定f 的导函数f ’: D →R n是一个向量函数(f 的梯度). 如果f ’在D(或D 内某点)上可微,则称f 在D(或D 内某点)上二阶可微, 并定义(f ’)T 的导数为f 的二阶导数, 记作f ”(x)或D 2f(x), 且f ”=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂⋯∂∂∂∂∂∂⋯∂∂22112212nn rnx f x x ux x f x f. (黑赛矩阵) 当f 的二阶混合偏导数连续时, 该矩阵对称. 这时f 在x 0的二阶泰勒公式可简单写成 f(x)=f(x 0)+f ’(x 0)(x-x 0)+21(x-x 0)T f ”(x 0)(x-x 0)+o(20x x -).定理23.15:(极值必要条件)设D ⊂R n 为开集, 实值函数f: D →R 在x 0∈D 可微, 且取极值,则 (1) x 0必为f 的稳定点,即f ’(x 0)=0;(2)又若f 在x 0的某邻域U(x 0)⊂D 存在连续二阶偏导数, 则 当f(x 0)为极小值时, f 在x 0的黑赛矩阵f ”(x 0)为正定或正半定; 当f(x 0)为极大值时, f 在x 0的黑赛矩阵f ”(x 0)为负定或负半定. 推论:若f 在x 0的黑赛矩阵f ”(x 0)为不定时,则f 在x 0不取极值.定理23.16:(极值充分条件)上述函数f 若在U(x 0)⊂D 存在连续二阶偏导数,且f ’(x 0)=0,则当f ”(x 0)为正定(负定)时, f 在x 0取严格极小(极大)值.例4:试讨论二次函数f(x)=21x T Ax+b T x+c 的极值. 其中x ∈R n 为变量, A 为n ×n 对称矩阵, b 为n ×1向量, c 为实数.解:由f ’(x)=x T A+b T =0求得f 的稳定点x 0=-A -1b(A 可逆).又f ”(x)=A, 即当A 正定时f(x 0)为极小值;当A 负定时f(x 0)为极大值. f(x 0)=21(A -1b)T A(A -1b)-b T (A -1b)+c=21b T A -1b-b T A -1b+c=-21b T A -1b+c.当A 为不定阵时, 稳定点x 0相当于一个鞍点,这时x 0不是f 的极值点.习题1、证明定理23.12. 证:见定理23.12.2、求下列函数的导数:(1)f(x 1,x 2)=(x 1sinx 2,(x 1-x 2)2,2x 22)T , 求f ’(x 1,x 2)和f ’(0,2π); (2)f(x 1,x 2,x 3)=(x 12+x 2,x 2e x1+x3)T , 求f ’(x 1,x 2,x 3)和f ’(1,0,1).解:(1)f ’(x 1,x 2)=⎪⎪⎪⎭⎫ ⎝⎛---2212121240)(2)(2cos sin x x x x x x x x . f ’(0,2π)=⎪⎪⎪⎭⎫⎝⎛-πππ2001. (2)f ’(x 1,x 2,x 3)=⎪⎪⎭⎫ ⎝⎛+++31313122112x x x x x x e x e e x x . f ’(1,0,1)=⎪⎪⎭⎫⎝⎛000122e .3、设D ⊂R n 为开集, f,g: D →R m 均为可微函数. 证明:f T g 也是可微函数,且(f T g)’=f T g ’+g T f ’.证:对任x 0∈D, 由定理23.11关于可微的充要条件知, 存在矩阵函数F, G: D →R mn 在x 0连续, 且满足 f(x)-f(x 0)=F(x)(x-x 0), g(x)-g(x 0)=G(x)(x-x 0), x ∈D. 且有f ’(x 0)=F(x 0), g ’(x 0)=G(x 0), 于是有(f T g)(x)-(f T g)(x 0)=[(f T g)(x)-f T (x)g(x 0)]+[f T (x)g(x 0)-(f T g)(x 0)]=f T (x)[g(x)-g(x 0)]+[f(x)-f(x 0)]T g(x 0)=f T (x)[g(x)-g(x 0)]+g T (x 0)[f(x)-f(x 0)] =f T (x)G(x)(x-x 0)+g T (x 0)F(x)(x-x 0)=H(x)(x-x 0),x ∈D. H=f T (x)G(x)+g T (x 0)F(x).由f T (x),G(x),F(x)在x 0连续知,H(x)在x 0连续,由定理23.11, f T g 在x 0可微. 且有(f T g)’=f T g ’+g T f ’.4、定义函数f, g,h,z,t :f(x 1,x 2)=x 1-x 2, g(x)=(sinx,cosx)T , h(x 1,x 2)=(x 1x 2,x 2-x 1)T , s(x 1,x 2)=(x 12,2x 2,x 2+4)T , t(x 1,x 2,x 3)=(x 1x 2x 3,x 1+x 2+x 3)T . 试依链式法则求: (1)(f ◦g)’;(2)(g ◦f)’;(3)(h ◦h)’;(4)(s ◦h)’;(5)(t ◦s)’;(6)(s ◦t)’.解:(1)(f ◦g)’=(1,-1)⎪⎪⎭⎫ ⎝⎛-x x sin cos =cosx+sinx.(2)(g ◦f)’=21sin cos x x y y y -=⎪⎪⎭⎫⎝⎛-(1,-1)=⎪⎪⎭⎫ ⎝⎛------)sin()sin()cos()cos(21212121x x x x x x x x .(3)(h ◦h)’=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--==11111212122211x x y y x x y x x y =⎪⎪⎭⎫⎝⎛----12212121221122x xx x x x x x . (4)(s ◦h)’=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛=11102002121211x x y xx y =⎪⎪⎪⎭⎫⎝⎛--112222221221x x x x . (5)(t ◦s)’=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+===1020021111422131322322211x y y y y y y x y x y x y =⎪⎪⎭⎫⎝⎛++328416412122121221x x x x x x x x . (6)(s ◦t)’=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=1111020022*******211x x x x x x y xx x y =⎪⎪⎪⎭⎫⎝⎛111222222322212322123221x x x x x x x x x .5、设u=f(x,y), v=g(x,y,u),w=h(x,u,v), 应用链式法则计算w ’(x,y). 解:(x,y)T ↦(x,y,u)T ↦(x,u,v)T ↦w, 即⎪⎪⎪⎭⎫ ⎝⎛u y x =⎪⎪⎪⎭⎫ ⎝⎛),(y x f y x , ⎪⎪⎪⎭⎫ ⎝⎛v u x =⎪⎪⎪⎭⎫⎝⎛),,(u y x g u x , w=h(x,u,v), 则w ’(x,y)=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎪⎭⎫⎝⎛∂∂∂∂∂∂y f x fy y x yy x x x u g yg x g u u y u xu u x y x x x v h uh xh=()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛y xu yx v ux f f g g g h h h 1001100001=[])()(y u y v y u x u x v x u x f g g h f h f g g h f h h +++++.6、设D ⊂R n 为开集, f: D →R m 为可微函数, 证明: (1)若在D 上f ’(x)≡0(零矩阵),则f(x)为常向量函数; (2)若在D 上f ’(x)=c (常数矩阵),则f(x)=cx+b, x ∈D, b ∈R m .证法一:(1)设p 和p ’为开域内任两点,可用一条完全在D 内的折线 px 1…,x n-1p ’连接pp ’, 在直线段px 1上的每一点p 0存在邻域U(p 0)⊂D, U(p 0)是凸开域, f(x)在其上可微, 依定理23.14, 对任一x ∈U(p 0), 有)()(0p f x f -2=[f(x)-f(p 0)]Tf ’(ξ)(x-p 0), ξ=p 0+θ(x-p 0)∈U(p 0)⊂D, (0<θ<1),又矩阵f ’(ξ)≡0, ∴)()(0p f x f -2≡0. 即f(x)=f(p 0), 即 在U(p 0)内f(x)是常向量函数. 由p 0的任意性知f(p)=f(x 1). 同理可证f(p)=f(x 1)=…=f(p ’), ∴f(x)为D 上的常向量函数.(2)令g(x)=f(x)-cx, (x ∈D), 则g 在D 上可微且g ’(x)=f ’(x)-c=0, (x ∈D). 从而由(1)知:在R m 中存在向量b ,使g(x)=b, 即f(x)=cx+b, (x ∈D). 证法二:∵f: D →R m 为可微函数, ∴f(x)-f(x 0)=f ’(x)(x-x 0).(1)当f ’(x)≡0时, f(x)-f(x 0)=0, 即f(x)=f(x 0), ∴f(x)为D 上的常向量函数. (2)当f ’(x)=c 时, f(x)-f(x 0)=c(x-x 0)=cx-cx 0=cx+b, x ∈D, b=cx 0∈R m .7、设f: R n →R m 为可微函数,试求分别满足以下条件的函数f(x): (1)f ’(x)=I(单位矩阵);(2)f ’(x)=diag(φi (x i )), 即以φ1(x 1), φ2(x 2),…, φn (x n )为主对角线元的对角矩阵, x=(x 1,…,x n )T .解:(1)由第6题(2)得 f(x)=Ix+b=x+b, 其中b 为n ×1常数阵. (2)设f(x)=(f 1(x),…,f n (x))T , (x ∈R n ), 则f i 在R n 上可微(i=1,2,…,n)且f ’(x)=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂⋯∂∂∂∂⋯∂∂n nn n x f x f x f x f 1111(x ∈R n ). 由于f ’(x)=diag(φ1(x 1),…, φn (x n )) (x ∈R n ), ∴iix f ∂∂=φi (x i ), (i=1,2,…,n), 积分得f i (x)=⎰i i i dx x )(ϕ(i=1,2,…,n). ∴f(x)=(⎰111)(dx x ϕ,…,⎰n n n dx x )(ϕ) (x ∈R n ).8、求下列函数的黑赛矩阵,并判断该函数的极值点: (1)f(x)=x 12-2x 1x 2+2x 22+x 32-x 2x 3+x 1+3x 2-x 3; (2)f(x)=-x 12+4x 1x 2-2x 22+4x 32-6x 2x 3+6x 1x 3. 解:(1)f ’(x)=(2x 1-2x 2+1,-2x 1+4x 2-x 3+3,2x 3-x 2-1), 令f ’(x)=(0,0,0), 得f 的稳定点x 0=(617-,37-,32-)T. 又f ”(x)=⎪⎪⎪⎭⎫ ⎝⎛----210142022正定, ∴x 0是f 的极小值点.(2)f ’(x)=(-2x 1+4x 2+6x 3,4x 1-4x 2-6x 3,8x 3-6x 2+6x 1),∵f ”(x)=⎪⎪⎪⎭⎫ ⎝⎛----866644642既不正定也不负定, ∴f 无极值.9、设f,g,h,s,t 为第4题中的五个函数:(1)试问:除第4题第6小题中的两个函数复合外, 还有哪些两个函数可以进行复合, 并求这些复合函数的导数; (2)求下列复合函数的导数:①(g ◦f ◦h)’;②(s ◦t ◦s)’. 解:(1)①(f ◦h)’(x)=f ’(y)h ’(x)=(1,-1)⎪⎪⎭⎫⎝⎛-1112x x =(x 2+1,x 1-1). ②(f ◦t)’(x)=f ’(y)t ’(x)=(1,-1)⎪⎪⎭⎫⎝⎛111213132x x x x x x =(x 2x 3-1,x 1x 3-1,x 1x 2-1). ③(h ◦g)’(x)=h ’(y)g ’(x)=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-==x x y y x y x y sin cos 11cos sin 1221=⎪⎪⎭⎫⎝⎛---x x x x sin cos sin cos 22. ④(s ◦g)’(x)=s ’(y)g ’(x)=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛=x x y x y sin cos 102002sin 11=⎪⎪⎪⎭⎫⎝⎛--x x x sin sin 22sin . ⑤(h ◦t)’(x)=h ’(y)t ’(x)=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-++==111112131321232123211x x x x x x y y x x x y x x x y=⎪⎪⎭⎫ ⎝⎛+-+-+-++++++111222213132221221321231321321322322321x x x x x x x x x x x x x x x x x x x x x x x x x x x . (2)①(g ◦f ◦h)’(x)=g ’(u)f ’(y)h’(x)=122121sin cos x x x x yy u u u +-=-=⎪⎪⎭⎫⎝⎛-(1,-1)⎪⎪⎭⎫⎝⎛-1112x x =⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛+-+--+--+-11)sin()sin()cos()cos(121221122112211221x x x x x x x x x x x x x x x x x x =⎪⎪⎭⎫⎝⎛+---+-+-+--+-+)sin()1()sin()1()cos()1()cos() 1(12211122121221112212x x x x x x x x x x x x x x x x x x x x .②(s ◦t ◦s)’(x)=s ’(u)t ’(y)s ’(x)=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛+====1020021111020021*******2123222113211x y y y y y y u x y x y x y y yy u =⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛+===1020021112222221423222123221232212322211x y y y y y y y y y x y x y x y =⎪⎪⎪⎭⎫⎝⎛+++3264)42()4(8)4(811222241222231x x x x x x x x x .10、设D ⊂R n 为开集, f: D →R m 在x 0∈D 可微. 试证明: (1)任给ε>0, 存在δ>0, 当x ∈U(x 0;δ)时, 有)()(0x f x f -≤()(0x f '+ε)0x x -;(2)存在δ>0, K>0, 当x ∈U(x 0;δ)时, 有)()(0x f x f -≤K 0x x -. (这称为在可微点邻域内满足局部利普希茨条件) 证:(1)由f 在x 0可微的定义知:0000))(()()(lim 0x x x x x f x f x f xx --'--→=0.从而任给ε>0, 存在δ>0, 当x ∈U(x 0;δ)时,000)])(([)]()([x x x x x f x f x f --'--<ε.又)()()()(000x x x f x f x f -'--≤)])(([)]()([000x x x f x f x f -'--, ∴000)()()()(x x x x x f x f x f --'--≤000)])(([)]()([x x x x x f x f x f --'--<ε.即有, 当x ∈U(x 0;δ)时, )()(0x f x f -≤()(0x f '+ε)0x x -.(2)取ε=1, 令K=)(0x f '+1>0, 由(1)知:存在δ>0, 当x ∈U(x 0;δ)时, 有)()(0x f x f -≤K 0x x -.11、设D ⊂R n 为凸开集, g: D →R m 是可微函数, 且满足:对任何x ∈D 和任何非零的h ∈R n , 恒有h T g ’(x)>0. 试证明:g 在D 上是一一映射. 证:反证法,若g 在D 上非一一映射,则存在x 1,x 2∈D, 且x 1≠x 2,使 g(x 1)=g(x 2), 令h=x 2-x 1≠0, 记f(x)=[g(x)-g(x 1)]T h, 则f 是D 上的实值函数. 由g 在凸开集D 上可微知f 在D 上可微, 对f 用中值定理, 有 f(x 2)-f(x 1)=f ’(ξ)h, ξ=x 1+θ(x 2-x 1), θ∈(0,1). 又f(x 2)-f(x 1)=0, 且由第3题知 f ’(ξ)=h T g ’(ξ)=0与题设h T g ’(x)>0矛盾, ∴g 在D 上非一一映射.12、设φ: R →R 二阶可导, 且有稳定点;f: R n →R,且 f(x)=φ(a·x), a,x ∈R n , a ≠0. (1)试求f 的所有稳定点;(2)证明f 的所有稳定点都是退化的,即在这些稳定点处, f ”(x)是退化矩阵(即在稳定点处det f ”(x)=0). 若A 为方阵,则detA 表示A 的行列式. (1)解:令t=a T x=a 1x 1+a 2x 2+…+a n x n , 则有(x 1,x 2,…,x n )↦t ↦y=f(x),则有 f ’(x)=φ’(t)t ’(x)=φ’(t)[a 1,a 2,…,a n ]=φ’(t)a T . 由a ≠0知, φ的任意稳定点t 0=a T x 的解x 0均为f 的稳定点.(2)证:由(1)知(f ’(x))T =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛''')()()(21t a t a t a n ϕϕϕ , t=a T x=∑=n i i i x a 1, f ”(x)=⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯''⋯''⋯''],,,)[(],,,)[(],,,)[(21212211n nn n a a a t a a a a t a a a a t a ϕϕϕ . 又由(1)知,当x 0是f 的稳定点时, t 0=a T x 0为φ的稳定点,从而det f ”(x)=a 1,a 2,…,a n (φ”(t 0))nnnnna a a a a a a a a ⋯⋯⋯22221=0.∴f 所有稳定点都是退化的.。
向量微分方程x′=ax的一种求解方法

向量微分方程x′=ax的一种求解方法,在数学中,向量微分方程是一种表示变量及其变化随时间的场合的常用方法。
例如,x′=ax,表示变量a随时间x的变化,即x(t+delta t)=a*x(t)。
解决向量微分方程,可以使用变换方法,解析解,积分法等多种求解方法。
变换法求解向量微分方程x′=ax,其基本思想是把原方程变换成能够解决的更容易的方程,也就是通过变换,将偏微分方程变换成通常的积分形式。
变换法主要依靠选择恰当的变换函数,从而使得变换前后的微分方程之间存在简单的映射,本质上在解微分方程等号前和等号后分别进行积分操作,计算各个积分量的乘积,其结果就是需要求解的微分方程的解析形式。
同样,解析解法也可以求解向量微分方程x′=ax。
解析解法的思想与变换法相似,也是在条件的情况下,可以将微分方程变换成积分形式,这时就可以用积分来求得方程解析解。
可以各元素分别求解,将求得的结果相加,就可以给出方程x′=ax的解析解。
积分法也可以用来求解向量微分方程x′=ax。
它将通常微分方程转为积分形式,通过一定的技巧,把积分中的区间拆分为许多小区间,然后用泰勒展开,将非定积分拆分成定积分,计算各定积分的和,就可以给出方程x′=ax的解。
通过以上三种求解方法,我们可以容易地求解向量微分方程x′=ax。
只要选定合适的变换函数,或者把原微分方程求解成积分形式,分解小区间,就可以求得方程的解析形式。
这些求解方法也广泛用于数值计算,因为无论什么情况下都可以利用它们计算出准确的解。
此外,这些求解方法也可以被应用到其他的微分方程中,如热力学,磁现象等,使研究者及工程师们更好地了解问题的物理规律,也能更容易地提出合适的解决方案。
向量函数的微分

§2 向量函数的微分1. 证明定理23.12,设n R D ⊂为开集,若m R D g f →:,是两个在D x ∈0可微的函数,c是任意实数,则cf 与g f±0x 也可微,且有).()()()(),()()(00000x g x f x g f x f c x cf '±'='±'='证 由m R D g f →:,是两个在D x ∈0可微的函数,依定义知:存在两个线性变换21A A ,(只依赖于0x )使当D x U x ⊂∈)0(时有(记)(),(0201x g A x f A '='=)),()()()(0010x x o x x A x f x f -+-=- ).()()()(0010x x o x x A x g x g -+-=-(1)[])()()()(00x f x f c x cf x cf -=- =)())((001x x x x cA -+-σ由于1cA 也是n R 到m R 的线性变换,从而cf 在0x 可微,且).()()(010x f c cA x cf '=='(2)[][][][][])()()()()()()()()()())(())((0021002001000x x o x x A A x x o x x A x x o x x A x g x g x f x f x g f x g f -+-+=-+-±-+-=-±-=±-±由于21A A ±也是n R 到m R 的线性变换,从而g f±在0x 可微,且).()()()(00210x g x f A A x g f '±'=±='±2.求下列函数的导数:(1)T x x x x x x x f )2,)(,sin (),(222212121-=,求),(21x x f '和)2,0(πf ';(2)T x x e x x x x x x f ),(),,(312221321++=,求),,(321x x x f '和)1,0,1(f '.解 (1)这里,sin ),(21211x x x x f =,)(),(221212x x x x f -=222132),(x x x f =,因此⎥⎥⎥⎦⎤--⎢⎢⎢⎣⎡-='22121212214)(2cos 0)(2sin ),(x x x x x x x x x x f ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-='ππππ001)20(,f ; (2)这里221321),,(x x x x x f +=,3122321,),,(x x e x x x x x f +=, 因此⎥⎦⎤⎢⎢⎣⎡=+++313113121321012),,(x x x x x x e x e ex x x x x f ⎥⎦⎤⎢⎣⎡='00102)1,0,1(2e f 3.设n R D ⊂为开集,m R D g f →:,均为可微函数,证明:g f T可微函数,而且f g g f g f T T T '+'=')(.证 对任一D x ∈0,由定理23.11关于可微的充要条件,分别存在矩阵函数mn R D G F →:,在0x 连续,且满足D x x x x F x f x f ∈-=-),)(()()(00 D x x x x G x g x g ∈-=-),)(()()(00.且有)()(00x f x F '=,)()(00x g x G '=,于是就有[][][][][][]))()(())(()())(()()()()()()()()()()()()()()()()()()()()))(()()(())()())((())(())((00000000000000000D x x x x H x x x F x g x x x G x f x f x f x g x g x g x f x g x f x f x g x g x f x g x f x f x g x g x f x g f x g x f x g x f x g f x g f x g f T T TTTT T T T T T T T T T ∈-=-+-=-+-=-+-=-+-=-+-=-其中).()()()()(0x F x g x G x f x H T T +=由)(),(),(x F x G x f T 在0x 连续知)(x H 在0x 连续,根据定理23.11,g f T 在0x 可微,且有).)(()()()()()()()()()(00000000x f g x g f x F x g x G x f x H x g f T T T T T '+'=+=='由0x 在D 的任意性知g f T 是D 上的可微函数,而且.)(f g g f g f T T T '+'='4.设函数t s h g f ,,,,的定义如下:,)cos ,(sin )(,),(2121T x x x g x x x x f =-= ,),(),(122121T x x x x x x h -= ,)4,2,(),(222121T x x x x x s +=.),(),,(321321321T x x x x x x x x x t ++=试依链式法则求下列复合函数的导数: (1))('g f ;(2))('f g ;(3))('h h ; (4))('h s ;(5))('s t ;(6))('t s . 解(1)[]x x x x x g f sin cos sin cos 1,1)()(+=⎥⎦⎤⎢⎣⎡--=' (2)[]⎥⎦⎤---⎢⎣⎡---=-⎥⎦⎤⎢⎣⎡-='-=)sin()cos()sin()cos(1,1sin cos )()(2121212121x x x x x x x x y y x f g x x y ; (3)⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-='-==1221212122121*********)()(1222111x x x x x x x x x x y y x h h x x y x x y; (4)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-⎥⎥⎦⎤⎢⎢⎣⎡='-==12212211120002)()(221221121122211x x x x x x y x h s x x y x x y ;(5)⎥⎦⎤⎢⎣⎡++=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡='+===3248164120002111)()(122121211422131322322211x x x x x x x x y y y y y y x s t x y x y x y ;(6)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡='++==1122131222111120002)()(322122321223221213132132123211x x x x x x x x x x x x x x x y x t s x x x y x x x y . 5.设),,(),,,(),,(v u x h w u y x g v y x f u ===应用链式法则计算).,(y x w '解 用链式法则。
微积分下册知识点

微积分(下)知识点微积分下册知识点第一章 空间解析几何与向量代数(一) 向量及其线性运算1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面;2、 线性运算:加减法、数乘;3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;4、 利用坐标做向量的运算:设),,(z y x a a a a = ,),,(z y x b b b b = ,则 ),,(z z y y x x b a b a b a b a ±±±=±, ),,(z y x a a a a λλλλ= ;5、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rz r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα 5) 投影:ϕcos Pr a a j u=,其中ϕ为向量a 与u 的夹角。
(二) 数量积,向量积1、 数量积:θcos b a b a=⋅ 1)2a a a =⋅2)⇔⊥b a 0=⋅b a微积分(下)知识点 z z y y x x b a b a b a b a ++=⋅2、 向量积:b a c⨯= 大小:θsin b a ,方向:c b a ,,符合右手规则1)0=⨯a a 2)b a //⇔0=⨯b a zy x z y x b b b a a a k j i b a =⨯ 运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面: yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:0),(=y x F 表示母线平行于z 轴,准线为⎪⎩⎪⎨⎧==00),(z y x F 的柱面 4、 二次曲面(不考)1) 椭圆锥面:22222z b y a x =+ 2) 椭球面:1222222=++cz b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:1222222=-+cz b y a x 4) 双叶双曲面:1222222=--cz b y a x 5) 椭圆抛物面:z b y a x =+2222 6) 双曲抛物面(马鞍面):z by a x =-2222 7) 椭圆柱面:12222=+by a x 8) 双曲柱面:12222=-by a x 9) 抛物柱面:ay x =2(四) 空间曲线及其方程 1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===btz t a y t a x sin cos 3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H(五) 平面及其方程1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n = ,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax截距式方程:1=++cz b y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n = ,222222212121212121cos C B A C B A C C B B A A ++⋅++++=θ⇔∏⊥∏21 0212121=++C C B B A A⇔∏∏21// 212121C C B B A A ==4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:222000C B A DCz By Ax d +++++=(六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s = ,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=ptz z nt y y mt x x 000 4、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s = ,222222212121212121cos p n m p n m p p n n m m ++⋅++++=ϕ⇔⊥21L L 0212121=++p p n n m m⇔21//L L 212121p p n n m m ==5、 直线与平面的夹角:直线与它在平面上的投影的夹角,222222sin p n m C B A CpBn Am ++⋅++++=ϕ⇔∏//L 0=++Cp Bn Am⇔∏⊥L pC n B m A ==第二章 多元函数微分法及其应用(一) 基本概念1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集.2、 多元函数:),(y x f z =,图形:3、 极限:A y x f y xy x =→),(lim ),(),(00 4、 连续:),(),(lim 00),(),(00y x f y x f y xy x =→5、 偏导数: xy x f y x x f y x f x x ∆-∆+=→∆), (), (lim ),(0000000 yy x f y y x f y x f y y ∆-∆+=→∆),(),(lim ),(0000000 6、 方向导数:βαcos cos y f x f l f ∂∂+∂∂=∂∂其中βα,为l 的方向角.7、 梯度:),(y x f z =,则j y x f i y x f y x gradf y x ),(),(),(000000+=。
《微分几何》教学大纲09

《微分几何》课程教学大纲一、教学大纲说明(一)课程的地位、作用和任务《微分几何》是本科数学与应用数学(教师教育)专业的专业选修课程之一。
通过本课程的学习,要求掌握三维空间的曲线和曲面的局部理论以及向量分析研究曲线与曲面的基本方法,培养学生的几何素养,为今后探索现代微分几何打下基础。
本课程要求掌握微分几何的基本内容和研究方法。
(二)课程教学的目的和要求:《微分几何》是本科数学与应用数学专业的专业必修课程之一。
学习及考试重点是空间曲线的基本三菱形、曲率、挠率和伏雷内(Frenet)公式;曲面的第一、第二基本形式及由他们所表示的曲面的内蕴性质、外蕴性质以及可展曲面和测地线。
本课程的主要目的是培养学生的几何素养,为今后探索现代微分几何打好基础,使之具备一定的科学研究能力,并独立攥写小论文。
要求学生掌握:曲线的概念,空间曲线,一般螺线,曲面的概念,曲面的第一基本形式,曲面的第二基本形式,直纹曲面和可展曲面,曲面论的基本定理。
理解:贝特朗曲线,曲面上的测地线了解:常高斯曲率的曲面。
(三)课程教学方法与手段采用理论与习题相结合的教学方法。
(四)课程与其它课程的联系本课程是后续专业课,它需要具备解析几何、数学分析、微分方程等课程的基本知识、基本理论,和与本课程平行开设拓扑学有一定联系。
本课程是学生将来进行专业学习时学习整体微分几何、微分流形等课程的基础;又是现代实、复分析的重要基础。
(五)教材与教学参考书教材:梅向明、黄敬之,《微分几何 (第三版)》,高等教育出版社,2003年12月参考书: 1、梅向明、黄敬之,《微分几何》,人民教育出版社2、吴大任,《微分几何讲义》3、陈维桓等,《微分几何讲义》2006年6月二、课程教学内容、重点和难点本课程主要讲授三维空间中经典的曲线和曲面的局部理论。
教学重点与难点:本课程的重点是空间曲线和曲面论的基本概念、技巧、方法和理论。
难点是抽象性及用微分方程解决几何问题。
第一章曲线论第一节向量函数1、教学内容向量函数的极限、连续、微分、Taylor展式及积分、向量函数具有固定长的充要条件等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎤ ⎤ ⎤ ∂2 ∂ ⎡∂ ∂ ⎡∂ ∂ ⎡∂ v ( x , y , z ) = ⎢ f ( x , y , z ) ⎥ i + ⎢ g ( x, y , z ) ⎥ j + ⎢ h ( x, y , z ) ⎥ k ∂x∂y ∂x ⎣ ∂y ⎦ ∂x ⎣ ∂y ⎦ ∂x ⎣ ∂y ⎦
∂ ∂ ∂ ∂ ∂ ∂ v ( x, y ) = f ( x, y )i + g ( x, y ) j , v( x, y ) = f ( x, y )i + g ( x, y ) j ∂x ∂x ∂x ∂y ∂y ∂y
2.三度空間中的向量函數
v (t ) = f (t )i + g (t ) j + h(t )k ,則
§6 向量函數的微分與積分
向量函數的導函數即針對其各分量進行微分(單變數)或偏微分(多變數)後的向量,定 義分述如下。
1.平面上的向量函數
v(t ) = f (t )i + g (t ) j ,則
d v(t ) = f ′(t )i + g ′(t ) j dt
v( x, y ) = f ( x, y )i + g ( x, y ) j ,則
∫
2
0
v(t )dt =
( ∫ 2tdt ) i + ( ∫ 3t dt ) j − ( ∫ 4t dt ) k = 4i + 8 j − 16k
1 3 dv d2v 【例 1】設 v(t ) = t i + 2t j − t k ,求 、 2 。 dt dt 3 d2v d dv ⎛ d 2 ⎞ ⎛ d ⎞ ⎛ d 1 3 ⎞ = 2t i + 2 j − t 2 k = 2i − 2t k = ⎜ t ⎟ i + ⎜ 2t ⎟ j − ⎜ t ⎟ k = 2t i + 2 j − t 2 k , 解: 2 dt dt dt ⎝ dt ⎠ ⎝ dt ⎠ ⎝ dt 3 ⎠
v( x, y , z ) = f ( x, y, z )i + g ( x, y, z ) j + h( x, y, z )k ,則
∂ ∂ ∂ ∂ v ( x, y , z ) = f ( x, y, z )i + g ( x, y, z ) j + h( x, y, z )k ∂x ∂x ∂x ∂x ∂ ∂ ∂ ∂ v ( x, y , z ) = f ( x, y, z )i + g ( x, y, z ) j + h( x, y, z )k ∂y ∂y ∂y ∂y ∂ ∂ ∂ ∂ v ( x, y , z ) = f ( x, y, z )i + g ( x, y, z ) j + h( x, y, z )k ∂z ∂z ∂z ∂z 除此之外,與純量函數一樣,也可以求向量函數的高階導函數或高階偏導函數,例如:
d v(t ) = f ′(t )i + g ′(t ) j + h′(t )k dt
v( x, y ) = f ( x, y )i + g ( x, y ) j + h( x, y )k ,則
∂ ∂ ∂ ∂ v ( x, y ) = f ( x, y )i + g ( x, y ) j + h( x, y)k ∂x ∂x ∂x ∂x ∂ ∂ ∂ ∂ v ( x, y ) = f ( x, y )i + g ( x, y ) j + h( x, y )k ∂y ∂y ∂y ∂y
b b a a
【例 2】設 v (t ) = 2t i + 3t 2 j − 4t 3 k ,求 ∫ v(t )dt 、 ∫ v(t )dt 。
0
2
解: ∫ v(t )dt =
( ∫ 2tdt ) i + ( ∫ 3t dt ) j − ( ∫ 4t dt ) k
2 3
= ( t 2 + c1 ) i + ( t 3 + c2 ) j − ( t 4 + c3 ) k = t 2 i + t 3 j − t 4 k + c ( c = c1 i + c2 j − c3 k )
2
(
)
- 20 -
向量函數的微分也有一些類似純量函數的微分的性質,以下幾個單變數的向量函數的微分 性質。 若 v1 , v2 , v3 為可微分的向量函數, R 為可微分的純量函數,則
1. 2. 3. 4. 5.
d d d ⎡v1 (t ) + v2 (t ) ⎤ = v1 (t ) + v2 (t ) ⎣ ⎦ dt dt dt d d d ⎡ R(t )v1 (t ) ⎤ = R(t ) v1 (t ) + v1 (t ) R(t ) ⎣ ⎦ dt dt dt d d d ⎡v1 (t )iv2 (t ) ⎤ = v1 (t )i v2 (t ) + v1 (t )iv2 (t ) ⎣ ⎦ dt dt dt d d d ⎡ v1 (t ) × v2 (t ) ⎤ = v1 (t ) × v2 (t ) + v1 (t ) × v2 (t ) ⎣ ⎦ dt dt dt d d d d ⎡v1 (t )iv2 (t ) × v3 (t ) ⎤ = v1 (t )iv2 (t ) × v3 (t ) + v1 (t )i v2 (t ) × v3 (t ) + v1 (t )iv2 (t ) × v3 (t ) ⎣ ⎦ dt dt dt dt
向量函數 v (t ) = f (t )i + g (t ) j + h(t )k 的積分定義如下:
∫ v(t )dt = ( ∫ f (t )dt ) i + ( ∫ g (t )dt ) j + ( ∫ h(t )dt ) k
∫
bபைடு நூலகம்
a
v(t )dt =
(∫
b
a
f (t )dt i +
) ( ∫ g (t )dt ) j + ( ∫ h(t)dt ) k
dt ⎣ dt ⎦ ⎣ dt ⎦ dt
d ⎡ ⎤ ⎡d ⎤ d 6. d ⎡v1 (t ) × ( v2 (t ) × v3 (t ) ) ⎤ = v1 (t ) × ⎢ v2 (t ) × v3 (t ) ⎥ + v1 (t ) × ⎢ v2 (t ) × v3 (t ) ⎥ + v1 (t ) × ⎡ ⎣ v2 (t ) × v3 (t ) ⎤ ⎦ ⎣ ⎦