盘车原理
汽机盘车原理

上图中,
油缸里的活塞4在油压P1和P2的作用下上下运动带动机构实现盘车。
P2是盘车油压,正常P2>1,泄压时当然<1了,P2的原理下面说。
当P2>1时,活塞在压力下上移,带动拉杆6和框架7上移,插销9同样上
移,卡入荆轮中,荆轮带动转子转动,盘车一次,盘了一定的角度。
这样周而复始,实现盘车。
活塞指示杆2同时上移,到达上止点后,触动位置开关1到100,OK了,此时给下图的电磁阀11信号,进行P2的泄压。
位置开关1的0和100是负责控制电磁阀的,给它开或关的信号。
再来下图:
下图中各机构名称和作用不解释,一看就知。
继续说油压和电磁阀。
当位置开关100时,电磁阀逻辑判断为关,溢流阀18泄油压,此时,P1>2,活塞下移,插销脱开荆轮,一直到位置开关为0。
当位置开关为0时,电磁阀判断为开,P2升油压,P2>1,顶活塞上移,插销
进荆轮,盘车。
当位置在0~100之间时,电磁阀不改变状态。
汽轮机结构:第七节盘车装置

5、对盘车装置的要求
• 既能盘动转子,又能在汽轮机转子冲转 后转速高于盘车转速时自动脱开,并使 盘车装置停止转动。
二、盘车装置的组成及工作原 理
(一)国产引进型300MW汽轮机的盘车装置
1、盘车装置传动齿轮系统展开图
• 1-盘车大齿轮;2-主齿轮轴;3-减速齿轮;4-惰轮;5-第一级小齿轮;6-蜗轮; 7-蜗杆;8-链轮;9-链条;10-主动链轮;11-电动机机通过链轮链条、蜗轮涡杆及几级齿轮传动减 速后带动转子旋转。
3、摆动齿轮的控制
侧板
• 摆动齿轮12支撑在两块侧板上,侧板可以围绕轴2摆动。侧 板的摆动通过连杆和操纵杆相连,操纵杆动作可以控制侧板 的摆动,使摆动齿轮处于不同的位置。当操纵杆移到投入位 置时,摆动轮与盘车齿轮啮合;当操纵杆移到退出位置时, 摆动轮与盘车齿轮退出啮合状态。
• (2)按结构特点分:具有螺旋轴的电动盘车、具有 摆动齿轮的电动盘车和具有链条-蜗轮蜗杆的电动盘 车。
4、盘车投入时间要求
• (1)汽轮机冲转前,要投入盘车装置(因 为有轴封供汽);
• (2)再热机组旁路系统投入前,应投入盘 车装置(因为低压缸的受热);
• (3)停机后,要投入盘车装置; • (4)盘车投入时,油系统必须先投入。
• (2)启动前盘动转子,可以检查动静部件是 否摩擦、润滑油系统工作是否正常及主轴弯曲 是否过大等,用来检查汽轮机是否具备正常启 动条件。
3、分类
• (1)按盘车转速高低分:低速盘车(3~5r/min) 和高速盘车(40~70r/min)。高速盘车时,转子 转速高,可以加快汽缸内的热交换,减小上、下缸 之间及转子内部温差,缩短机组启停时间,并可以 在轴承内较好的建立起油膜,保护轴瓦和轴径。低 速盘车启动力矩小,冲击载荷小,有利于延长部件 的使用寿命。
汽机盘车装置工作原理及故障分析

汽机盘车装置工作原理及故障分析摘要:盘车是汽轮机组非常重要的一个装置,它用于汽轮机启动和停止时汽机转子低速盘动,检查和消除转子弯曲。
本文介绍了盘车装置的工作原理,对盘车运行过程中出现的一些故障进行了分析及处理。
关键词:盘车;手动;自动;跳闸;故障分析;处理一、前言盘车装置是汽轮发电机组正常启动和停机的重要设备,盘车装置由减速机、箱体、齿轮传动系统、液压装置、电气控制等部分组成。
具有能耗低、运行平稳、操作简便省力、安全可靠、可实现远距离控制等优点。
特别在自动过程中齿轮啮合具有瞬动功能,避免顶齿时强行启动引起的振动。
其主要作用有:1.启动前盘车,减小转子热偏差防止产生热弯曲。
启动过程中,为了在凝汽器内建立一定的真空,需要向轴封供汽,轴封供汽会使轴瓦处转子受热,盘车可以带动转子低速旋转以便使转子均匀加热。
还可以用来检查汽轮机是否具备启动条件,盘车装置投运正常后,可通过听针倾听汽机各轴封处及汽缸内部有无异常声响判断动静部分是否存在摩擦。
通过偏心检查可以判断主轴弯曲度,如果不具备启动条件禁止冲转。
2.停机后盘车,使转子均匀冷却,减小转子热变形和重力变形。
汽轮机停机后,汽缸和转子等部件由热态逐渐冷却,其下部冷却快,上部冷却慢,转子因上下温差而产生弯曲,弯曲程度会随着停机后的时间而增加。
因此,停机后投入盘车装置,盘车可搅和汽缸内的汽流,以利于消除汽缸上、下温差,防止转子变形,消除温度较高的轴颈对轴瓦的损伤。
我公司汽轮机组采用的是常州思源电力设备有限公司生产的138B.118Z型低速自动机械盘车,主要参数为:电机功率:7.5kW;电机转速:1440rpm;轴系盘转转速: 4rpm;进油压力:0.08~0.12MPa:油缸推力:700N。
二、盘车工作原理1、传动系统:摆动齿轮副在曲柄连杆机构的推动下实现与大齿轮切向啮合,减速机与电动机直接联接,其输出扭矩通过齿轮副和摆动齿轮副盘动汽轮机大齿轮及其轴系转动。
减速机的安装型式为立式和卧式两种,我厂选用卧式结构。
《盘车计算方法》

盘车计算方法重点:计算方法目的要求:掌握盘车计算的方法和轴线处理的方法一、计算原理1 .计算全摆度、净摆度全摆度:同一直径方向相对两点的千分表读数之差称为全摆度。
全摆度实际反映了盘车时轴平移距离和摆度值的总和。
净摆度:同一测点各部位的全摆度与导轴承处全摆度的差(即扣除轴线径向位移)称为净摆度。
盘车:通过人为的一些办法,能够使水轮发电机组的转动部分慢慢的旋转,并且能够按人们预定的要求准确的暂停和再启动的过程目的:通过盘车,可以了解机组轴线各部位的现实摆度状况,掌握机组轴线具体的倾斜和曲折数据,从而判定轴线质量是否合格,并为机组大修中的轴线处理和调整提供了可靠的依据。
并可以与上次机组大修后盘车结果相比较,发现轴线变化情况,给机组检修提供依据机组盘车的方法:主要有三种:人工盘车、机械盘车、电动盘车2 .由净摆度中的发电机轴净摆度φ ba 和整机轴线最大净摆度φ ca 来确定,由绝对最大净摆度计算出最大相对净摆度,如果合格,就不必再盘车,如果不合格,就需再盘车。
3 .判定轴线的倾斜与弯折情况,并图标之。
根据计算出的最大净摆度来判定轴线的倾斜与弯折,如书上的例题,其轴线的实际情况如下图所示。
4 .选择轴线处理的方法① 、对发电机轴线的处理,磨削绝缘垫。
② 、对整机轴线的处理,也是磨削绝缘垫。
③ 、对于水轮机轴线与发电机轴线弯折不合格的,可磨削水轮机的上法兰面。
5 .轴线处理时的最大磨削量的计算(大小)① 、发电机轴线纠正时,绝缘垫的最大磨削量计算δ—绝缘垫上的轴线倾斜方向上的最大磨削量D —推力头的直径φ ba —轴线倾斜方向上的最大净摆度L 1 —上导处百分表与法兰处百分表的轴长② 、整机轴线的处理,绝缘垫的最大磨削量计算δ1—绝缘垫上轴线倾方向上的最大磨削量D —推力头的直径L 1 —同上L 2 —法兰处和水导处百分表之间的轴长③ 、水轮机轴与发电机轴弯折较大的,磨削水轮机法兰面的最大磨削量计算δ—法兰面上的最大磨削量d —法兰面的直径φ cb —水导处的最大净利摆事实度L 2 —法兰处和水导处百分表之间的轴长6 .轴线处理时磨削的最大方位① 、对于绝缘垫的处理A .由计算出的净摆度确定( 1 )、当计算出的四个净摆度中,只有一个的绝对值最大,其它各值与它比较,相差大于 3 丝以上。
汽轮机盘车装置

汽轮机盘车装置汽轮机盘车装置简介汽轮机盘车装置是一种用于启动和停止汽轮机的装置。
它通过控制汽轮机的转速和负载来实现对汽轮机的快速启动和停止。
本文将介绍汽轮机盘车装置的原理、组成部分以及使用方法。
原理汽轮机盘车装置的原理是通过控制汽轮机的进气和排气阀门来实现对汽轮机的启动和停止。
当需要启动汽轮机时,盘车装置会逐渐打开汽轮机的进气阀门,使蒸汽进入汽轮机。
随着进气阀门的进一步打开,汽轮机的转速逐渐增加,直至达到设定的启动转速。
,盘车装置会打开汽轮机的排气阀门,将冷却水注入汽轮机以保持温度稳定。
当需要停止汽轮机时,盘车装置会逐渐关闭汽轮机的进气阀门,停止蒸汽的进入。
,盘车装置会逐渐关闭汽轮机的排气阀门,停止冷却水的注入。
随着进气阀门和排气阀门的关闭,汽轮机的转速逐渐降低,最终停止转动。
组成部分汽轮机盘车装置主要由以下五个组成部分构成:1. 进气阀门进气阀门用于控制蒸汽进入汽轮机的量。
它由气动执行机构、阀门和控制系统组成。
通过控制进气阀门的开度,可以控制汽轮机的转速。
2. 排气阀门排气阀门用于控制冷却水进入汽轮机的量。
它由气动执行机构、阀门和控制系统组成。
通过控制排气阀门的开度,可以控制汽轮机的冷却水流量。
3. 控制系统控制系统包括传感器、控制器和执行机构。
传感器用于监测汽轮机的转速和温度。
控制器根据传感器的反馈信号来控制进气阀门和排气阀门的开度。
执行机构负责执行控制器的指令,控制阀门的开合。
4. 冷却水系统冷却水系统包括冷却水箱、冷却水管道和冷却水泵。
冷却水通过冷却水泵被抽入汽轮机,在冷却汽轮机的也起到稳定温度的作用。
5. 惰性负载装置惰性负载装置用于在汽轮机启动时提供负载,以防止汽轮机过速。
它可以是一台发电机或其他负载装置。
使用方法使用汽轮机盘车装置需要按照以下步骤进行操作:1. 准备工作:检查进气阀门、排气阀门和冷却水系统的状态,确保其正常工作。
2. 设置启动参数:根据实际情况设置启动转速和冷却水流量的参数。
汽轮机盘车装置[1]本月修正2023简版
![汽轮机盘车装置[1]本月修正2023简版](https://img.taocdn.com/s3/m/18f6c6230a1c59eef8c75fbfc77da26924c5964a.png)
汽轮机盘车装置汽轮机盘车装置简介汽轮机是一种将燃料燃烧产生的热能转化为机械能的设备。
汽轮机盘车是指通过对汽轮机进行一系列操作,使其快速启动并达到运行状态。
为了有效地盘车和维护汽轮机的正常运行,盘车装置被广泛应用于汽轮机厂房中。
本文将介绍汽轮机盘车装置的工作原理、主要组成部分和操作流程。
工作原理汽轮机盘车装置的工作原理主要涉及到控制汽轮机的停车、启动和运行过程。
其基本原理包括以下几点:1. 启停控制系统:通过控制汽轮机的供气、供热、供水和电力等参数,实现汽轮机的启动和停车过程。
启停控制系统通常由自动控制系统和人工操作控制系统组成。
2. 汽轮机盘车装置:盘车装置主要由控制台、保护装置和仪表设备组成。
控制台提供操作人员进行启停控制和监测汽轮机运行状态的界面;保护装置用于监测和保护汽轮机在运行过程中的安全性;仪表设备用于显示和记录汽轮机各项运行参数。
3. 启动过程:启动过程包括预热、通气、点火和加荷等阶段。
具体操作包括逐渐加热汽轮机至高温状态,通过引入空气将燃料点火以产生燃烧,加速汽轮机转速并逐步加荷,使汽轮机进入工作状态。
4. 停车过程:停车过程包括减载、冷却和切断供气等阶段。
具体操作包括逐渐减少荷载,冷却汽轮机至安全温度,切断燃料供给和外部能源供应,并最终使汽轮机停止运转。
主要组成部分汽轮机盘车装置一般包括以下主要组成部分:1. 控制台:控制台是盘车装置的操作中心,通常包括操作按钮、显示屏、指示灯和报警器等设备。
通过操作控制台,操作人员可以对汽轮机进行启停控制,监测汽轮机的运行参数。
2. 保护装置:保护装置用于监测汽轮机运行过程中的各项参数,并对异常情况进行检测和保护。
一旦发现异常情况,保护装置将自动采取相应措施,如停止供气、切断电源等,以保证汽轮机的安全运行。
3. 仪表设备:仪表设备用于显示和记录汽轮机的运行参数,包括转速、温度、压力等方面的参数。
通过仪表设备,操作人员可以实时了解汽轮机的运行状态,及时做出相应的调整和处理。
盘车计算方法

盘车计算方法重点:计算方法目的要求:掌握盘车计算的方法和轴线处理的方法一、计算原理1 .计算全摆度、净摆度(用表格, P109 )2 .判断轴线的垂直度是否合格。
由净摆度中的发电机轴净摆度φ ba 和整机轴线最大净摆度φ ca 来确定,由绝对最大净摆度计算出最大相对净摆度,与 P103 表 3 — 9 给出的值对比,如果合格,就不必再盘车,如果不合格,就需再盘车。
3 .判定轴线的倾斜与弯折情况,并图标之。
根据计算出的最大净摆度来判定轴线的倾斜与弯折,如书上的例题,其轴线的实际情况如下图所示。
4 .选择轴线处理的方法① 、对发电机轴线的处理,磨削绝缘垫。
② 、对整机轴线的处理,也是磨削绝缘垫。
③ 、对于水轮机轴线与发电机轴线弯折不合格的,可磨削水轮机的上法兰面。
5 .轴线处理时的最大磨削量的计算(大小)① 、发电机轴线纠正时,绝缘垫的最大磨削量计算δ—绝缘垫上的轴线倾斜方向上的最大磨削量D —推力头的直径φ ba —轴线倾斜方向上的最大净摆度L 1 —上导处百分表与法兰处百分表的轴长② 、整机轴线的处理,绝缘垫的最大磨削量计算δ1—绝缘垫上轴线倾方向上的最大磨削量D —推力头的直径L 1 —同上L 2 —法兰处和水导处百分表之间的轴长③ 、水轮机轴与发电机轴弯折较大的,磨削水轮机法兰面的最大磨削量计算δ—法兰面上的最大磨削量d —法兰面的直径φ cb —水导处的最大净利摆事实度L 2 —法兰处和水导处百分表之间的轴长6 .轴线处理时磨削的最大方位① 、对于绝缘垫的处理A .由计算出的净摆度确定( 1 )、当计算出的四个净摆度中,只有一个的绝对值最大,其它各值与它比较,相差大于 3 丝以上。
轴线的倾斜方位就是该净摆度对应的倾斜点,磨削时就按该点进行,并分区按比例磨削。
( 2 )、当计算出的四个净摆度中,有一个的绝对值最大,但另有一个净摆度与之相差小于 2 丝。
则轴线的倾斜方位应介于该两个倾斜点之间,则其实际最大净摆度按下述方法计算β—实际最大倾斜方向与计算中的最大倾方向的夹角T 1 —计算出的最大净摆度T 2 —计算出的次最大净摆度T —实际最大净摆度问题:① 、如何图标轴线的倾斜情况?② 、对轴线的处理有哪两种方法?。
汽轮机盘车原理

汽轮机盘车装置的故障分析与处理1系统概况滦南热电厂一期工程采用了哈尔滨汽轮机厂生产的型汽轮机,机组均选用了哈尔滨汽轮机厂提供的配套低速盘车装置。
该盘车装置既能手动投入,又能自动投入;既能手动盘车,又能电动盘车。
盘车电动机为Y225S-8型封闭式三相异步电动机,功率18.5 kW,转速730 r/min,经过二级减速后,盘车减为额定转速4.7 r/min。
2盘车装置的工作原理及性能盘车装置工作时,电动机通过蜗杆、蜗杆轮缘、主动齿轮带动汽轮机转子上的齿轮环转动,从而带动汽轮发电机转子转动。
2.1盘车的投运盘车的投运方式又分为:手动投盘车和自动投盘车。
手动投盘车时,一面旋转蜗轮杆一端的手轮,一面推手杆,使主动齿轮进入啮合位置,然后启动盘车电机,盘车进入工作状态。
盘车装置的自动投入,依靠装置中的油动机、油动机滑阀和电磁铁。
油动机活塞直径170mm,活塞最大行程81mm。
采用“O”型密封圈橡胶活塞环。
使活塞杆向下运动的油压是由润滑油作用在活塞上部产生的,当压力油泄掉后,活塞下的弹簧使活塞拉动活塞杆复位。
油动机的进、排油是由油动机滑阀控制的。
滑阀套筒和滑阀套杆由不锈钢制成。
滑阀杆和电磁铁拉杆相接。
盘车装置自动投入时,按下“启动”按钮,顶轴油泵启动,转子被托起,电磁供油阀开启向滑阀供油,电磁铁线圈带电,拉杆拉起,滑阀杆上移15 mm,润滑油经过滑阀错油口流至油动机活塞上,活塞推活塞杆向下顶曲拐,使其绕拉杆轴转动,通过拉杆轴上的辊子使主动齿轮向啮合的方向移动,盘车电机按照自动操作程序连续点动,使其主动齿轮与转子上的大齿轮啮合,待完全啮合后,手杆接触行程开关,电机电路完全接通,盘车启动。
同时电磁阀断电,油动机滑阀下移,油动机活塞上压力油泄掉,油动机活塞下弹簧复位,使活塞拉动活塞杆复位。
2.2盘车的停运在机组盘车过程中,如停止盘车,只须按“停止”按钮,电动机停转,由于汽轮发电机转子转动惯性很大,仍在低速转动,此时主动齿轮变为被动,使其受一个和啮合方向相反的作用力,此力以及弹簧套内的弹簧力使主动齿轮退出啮合,此时拉杆轴随之转动,拉杆轴上的辊子复位,活塞杆下的曲拐也同时复位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滦南热电厂汽轮机盘车装置的故障分析与处理
1.系统概况
滦南热电厂一期工程采用了哈尔滨汽轮机厂生产的CC50-8.83/1.27/0.118型汽轮机,机组均选用了哈尔滨汽轮机厂提供的配套低速盘车装置。
该盘车装置既能手动投入,又能自动投入;既能手动盘车,又能电动盘车。
盘车电动机为Y225S-8型封闭式三相异步电动机,功率18.5 kW,转速730 r/min,经过二级减速后,盘车减为额定转速4.7 r/min。
2.盘车装置的工作原理及性能
盘车装置工作时,电动机通过蜗杆、蜗杆轮缘、主动齿轮带动汽轮机转子上的齿轮环转动,从而带动汽轮发电机转子转动。
2.1盘车的投运
盘车的投运方式又分为:手动投盘车和自动投盘车。
手动投盘车时,一面旋转蜗轮杆一端的手轮,一面推手杆,使主动齿轮进入啮合位置,然后启动盘车电机,盘车进入工作状态。
盘车装置的自动投入,依靠装置中的油动机、油动机滑阀和电磁铁。
油动机活塞直径170mm,活塞最大行程81 mm。
采用“O”型密封圈橡胶活塞环。
使活塞杆向下运动的油压是由润滑油作用在活塞上部产生的,当压力油泄掉后,活塞下的弹簧使活塞拉动活塞杆复位。
油动机的进、排油是由油动机滑阀控制的。
滑阀套筒和滑阀套杆由不锈钢制成。
滑阀杆和电磁铁拉杆相接。
盘车装置自动投入时,按下“启动”按钮,顶轴油泵启动,转子被托起,电磁供油阀开启向滑阀供油,电磁铁线圈带电,拉杆拉起,滑阀杆上移15 mm,润滑油经过滑阀错油口流至油动机活塞上,活塞推活塞杆向下顶曲拐,使其绕拉杆轴转动,通过拉杆轴上的辊子使主动齿轮向啮合的方向移动,盘车电机按照自动操作程序连续点动,使其主动齿轮与转子上的大齿轮啮合,待完全啮合后,手杆接触行程开关,电机电路完全接通,盘车启动。
同时电磁阀断电,油动机滑阀下移,油动机活塞上压力油泄掉,油动机活塞下弹簧复位,使活塞拉动活塞杆复位。
2.2盘车的停运
在机组盘车过程中,如停止盘车,只须按“停止”按钮,电动机停转,由于汽轮发电机转子转动惯性很大,仍在低速转动,此时主动齿轮变为被动,使其受一个和啮合方向相反的作用力,此力以及弹簧套内的弹簧力使主动齿轮退出
啮合,此时拉杆轴随之转动,拉杆轴上的辊子复位,活塞杆下的曲拐也同时复位。
与此同时,与拉杆轴相连的手杆由工作位置倒回非工作位置,手杆脱离行程开关的滚轮,使电路断开,电磁供油阀关闭切断润滑油供油,盘车自动退出。
当盘车结束机组启动冲车时,汽轮发电机转子转速一旦超过盘车转速,主动齿轮同样由主动变为被动,使其受到和啮合方向相反的作用力,此力与弹簧套内的弹簧力使主动齿轮退出啮合,此时拉杆轴随之转动,拉杆轴上的辊子复位,活塞杆下的曲拐也同时复位。
与此同时,与拉杆轴相连的手杆由工作位置倒回非工作位置,手杆脱离行程开关的滚轮,使电路断开,盘车电动机停转,电磁供油阀关闭切断润滑油供油,盘车装置自动退出。
3.调试中的问题及解决办法
由于盘车装置控制屏配线问题,油动机电磁阀不能正常工作,为了缩短调试工期,通过仔细分析论证,经试运指挥部同意,决定首次冲车时采用手动盘车。
因为盘车装置的油动机电磁阀无法带电,引起油动机滑阀和油动机不工作,造成曲拐与拉杆轴上的辊子处于原始位置,所以汽轮发电机转子冲动时,汽轮发电机转子转速一旦超过盘车转速时,主动齿轮同样由主动变为被动,使其受到和啮合方向相反的作用力,此力与弹簧套内的弹簧力使主动齿轮退出啮合,此时拉杆轴也随之转动,与拉杆轴相连的手杆由工作位置倒回非工作位置,手杆脱离形成开关的滚轮,此时盘车装置可以自动退出。
但是当电磁阀带电问题解决后,在#1汽轮机第2次冲车时,盘车装置却无法顺利退出,被迫打闸停机。
检查发现油动机活塞杆未复位,油动机活塞没有上移,活塞上部压力油无法泄掉。
经分析研究得出结论,在转子冲动,主动齿轮退出啮合位置时,由于油动机活塞上部压力油无法泄掉,活塞杆仍然向下顶着曲拐,拉杆轴上的辊子无法复位,从而抵消了弹簧套内弹簧力,致使主动齿轮无法顺利退出啮合位置。
在停机后,对油动机活塞上压力油不能正常泄掉的原因又进行了查找和分析,并与#2机组盘车的安装情况比较发现:厂家所提供的油动机滑阀进、排油管配管错误(正好相反),造成油动机活塞上压力油无法泄掉。
改管处理后,再次试验,按“停止”按钮,盘车停止,但是手杆未完全退到非工作位置。
经过检查发现油动机活塞杆略向上移动,活塞上部的压力油仅泄掉一小部分,也就是说油动机活塞在电磁阀断电后无法回到上止点,造成主动齿轮退出啮合位置时,由于油动机活塞上部压力油无法全部泄掉,活塞杆仍然向下顶着曲拐,使拉杆轴上的辊子无法全部复位,从而大部分抵消了弹簧套内弹簧力,致使主动齿轮无法顺利退出啮合位置,于是手杆无法自动完全退到非工作位置。
初步怀疑为油动机滑阀错油口位置不对,解体油动机滑阀检查后,未发现异常。
于是又怀疑电磁阀拉杆行程不对,经检查后未发现异常。
这说明不是油动机滑阀和电磁阀的问题。
此时决定解体检查油动机,解体后确实发现油动机活塞未回到上止点。
初步诊断为活塞卡涩,通过对活塞的检查,发现活塞上的“O”型密封圈与油缸壁卡涩,造成活塞卡涩。
经厂家同意除去了密封圈,但是做此处理后活塞依然卡涩,于是怀疑活塞杆与油
缸内的铜套筒不同心,将活塞解体,发现确实存在此问题。
厂家重新加工活塞杆后,再次试验,盘车可以自动退出。
但是试验盘车的自动投入时,盘车无法自动投入。
经检查发现油动机活塞的最大行程不能使主动齿轮完全进入啮合位置,导致手杆无法压触行程开关,电机电路无法接通,盘车无法启动。
这属于厂家的设计问题,经仔细研究并经厂家同意,在连接活塞杆的螺母下加装了一个厚度为12 mm的铜垫。
再次试验,盘车可以自动退出。
至此,盘车的自动投入与自动退出问题得以彻底解决。
4.结束语
汽轮机盘车装置出现故障的根本原因为油动机活塞上部压力油无法泄掉,造成盘车装置无法自动退出。
而造成油动机活塞上部压力油无法泄掉的原因有:厂家提供的油动机滑阀进、出油管路配管错误;油动机活塞杆与油缸内套铜筒不同心造成活塞卡涩。
另外,无法自动投入盘车,属于制造上的失误,但是经现场改进得以解决。