编码器原理及常见知识问答
编码器工作原理

编码器工作原理
编码器是一种用于将机械运动转化为数字信号的装置。
它通常由一个旋转轴和一个光学或磁性传感器组成。
编码器的工作原理是通过测量旋转轴的位置和速度来生成相应的数字信号。
1. 光学编码器的工作原理:
光学编码器使用光学传感器来检测旋转轴的位置和速度。
它包含一个光源和一个光敏元件。
光源发出光束,经过旋转轴上的光栅或编码盘后被光敏元件接收。
光栅或编码盘上的刻线会使光束产生变化,光敏元件会将这些变化转化为电信号。
通过测量光敏元件接收到的电信号的变化,可以确定旋转轴的位置和速度。
2. 磁性编码器的工作原理:
磁性编码器使用磁性传感器来检测旋转轴的位置和速度。
它包含一个磁性编码盘和一个磁性传感器。
磁性编码盘上有一些磁性标记,当旋转轴旋转时,磁性传感器会感应到这些标记的磁场变化。
通过测量磁性传感器接收到的磁场变化,可以确定旋转轴的位置和速度。
编码器的输出通常是一个数字信号,可以是脉冲信号或者是数字序列。
脉冲信号的频率和方向表示旋转轴的速度和方向,而数字序列则可以被解码为旋转轴的绝对位置。
编码器在许多领域都有广泛的应用,例如机械工程、自动化控制和机器人技术等。
它们可以用于测量旋转轴的位置和速度,实现精确的位置控制和运动控制。
编码器的工作原理使其成为现代工业中不可或缺的设备之一。
编码器工作原理

编码器工作原理引言概述:编码器是一种用于将机械运动转换为数字信号的装置,广泛应用于各种自动化系统中。
它可以精确地测量物体的位置、速度和方向,从而实现精准控制和监测。
本文将介绍编码器的工作原理,以帮助读者更好地理解其在自动化系统中的作用。
一、光电编码器1.1 光电编码器的结构:光电编码器由光源、光栅、接收器和信号处理电路组成。
光源发出光束,经过光栅反射或透过后,被接收器接收并转换成电信号,信号处理电路将电信号转换成数字信号。
1.2 光电编码器的工作原理:当物体运动时,光栅会随之移动,使得光束的强度发生变化。
接收器接收到的光信号也会随之变化,通过信号处理电路将这些变化转换成数字信号,从而确定物体的位置和速度。
1.3 光电编码器的应用:光电编码器广泛应用于数控机床、机器人、印刷设备等自动化系统中,用于实现位置控制、速度控制和角度测量等功能。
二、磁编码器2.1 磁编码器的结构:磁编码器由磁性标记、磁传感器和信号处理电路组成。
磁性标记可以是永磁体或磁性条,磁传感器用于检测磁场的变化,信号处理电路将检测到的信号转换成数字信号。
2.2 磁编码器的工作原理:当物体运动时,磁性标记会随之移动,磁传感器检测到磁场的变化,并将其转换成电信号。
信号处理电路将电信号转换成数字信号,确定物体的位置和速度。
2.3 磁编码器的应用:磁编码器适用于高温、高速、腐蚀性环境下的自动化系统,如汽车发动机、风力发电机等,用于实现位置控制和速度控制。
三、绝对值编码器3.1 绝对值编码器的结构:绝对值编码器由多个独立的编码单元组成,每个编码单元对应一个位置码。
通过读取每个位置码的状态,可以确定物体的绝对位置。
3.2 绝对值编码器的工作原理:每个编码单元都有一个唯一的位置码,当物体运动时,读取每个位置码的状态,可以确定物体的绝对位置,无需重新归零。
3.3 绝对值编码器的应用:绝对值编码器广泛应用于需要高精度位置控制和无需重新归零的自动化系统中,如医疗设备、航空航天设备等。
编码器工作原理

编码器工作原理编码器是一种用于将输入信号转换为特定编码形式的设备。
它在许多领域中被广泛应用,如自动化控制系统、数码通信、机器人技术等。
本文将详细介绍编码器的工作原理和常见的编码器类型。
一、编码器的基本原理编码器的工作原理基于信号的编码和解码过程。
它将输入信号转换为特定的编码形式,以便在接收端进行解码和处理。
编码器通常由两个主要部分组成:输入部分和输出部分。
输入部分接收来自传感器或其他输入设备的信号,并将其转换为数字信号或模拟信号。
输出部分将编码后的信号传输给接收端进行解码。
编码器的工作原理可以简单描述为以下几个步骤:1. 信号输入:编码器接收来自传感器或其他输入设备的信号。
这些信号可以是模拟信号(如电压、电流)或数字信号(如脉冲信号)。
2. 信号编码:编码器将输入信号转换为特定的编码形式。
常见的编码方式包括二进制编码、格雷码、脉冲编码等。
编码的目的是将输入信号转换为一系列离散的编码值,以便在传输和解码过程中能够准确还原原始信号。
3. 编码传输:编码后的信号通过传输介质(如电缆、光纤)传输到接收端。
传输过程中可能会受到噪声和干扰的影响,因此编码器通常采用一定的纠错码或差错检测机制以提高传输可靠性。
4. 信号解码:接收端接收到编码后的信号后,进行解码处理。
解码器根据编码器的编码规则,将接收到的编码信号转换为原始信号。
5. 信号输出:解码后的信号输出给后续的处理设备或系统,以实现相应的功能。
二、常见的编码器类型1. 绝对值编码器:绝对值编码器将每个位置的编码值与特定的位置对应,能够准确表示位置信息。
常见的绝对值编码器包括光电编码器、磁性编码器等。
2. 增量式编码器:增量式编码器输出的编码值与位置信息相关,但无法准确表示位置。
它通常输出两个相位差异的信号,用于测量位置的变化和速度。
增量式编码器常用于测量旋转运动或线性位移。
3. 旋转编码器:旋转编码器用于测量旋转运动,通常采用光电传感器和光栅等技术。
它可以输出角度信息和方向信息,广泛应用于机械控制和位置测量领域。
编码器工作原理

编码器工作原理编码器是一种电子设备,用于将输入的模拟信号或数字信号转换为特定的编码形式,以便于传输、存储或处理。
它在许多领域中广泛应用,如通信、自动化控制、计算机科学等。
工作原理:编码器的工作原理基于信号的编码和解码过程。
它接收输入信号,并将其转换为特定的编码形式。
下面将介绍两种常见的编码器工作原理。
1. 模拟编码器工作原理:模拟编码器将连续变化的模拟信号转换为数字编码。
它通常由两个主要部分组成:采样和量化。
- 采样:编码器以一定的采样率对输入信号进行采样。
采样率决定了编码器对信号的精度和准确性。
较高的采样率可以提供更准确的编码结果。
- 量化:采样后的信号被量化为离散的数值。
量化过程将连续的模拟信号映射到有限数量的离散级别。
量化级别的数量决定了编码器的分辨率。
较高的分辨率可以提供更精确的编码结果。
2. 数字编码器工作原理:数字编码器将数字信号转换为另一种数字编码形式。
它通常由两个主要部分组成:编码和解码。
- 编码:编码器将输入的数字信号转换为特定的编码形式。
常见的编码方式包括二进制编码、格雷码等。
编码过程可以通过逻辑电路或算法实现。
- 解码:解码器将编码后的信号重新转换为原始的数字信号。
解码过程与编码过程相反,可以使用逻辑电路或算法实现。
应用:编码器在许多领域中都有广泛的应用。
- 通信:编码器用于数字通信系统中的信号传输和接收。
它可以将模拟信号转换为数字信号,以便于传输和处理。
常见的应用包括音频编码、视频编码等。
- 自动化控制:编码器用于自动化控制系统中的位置和速度测量。
它可以将物理量(如角度、位移)转换为数字信号,用于控制系统的反馈和监测。
- 计算机科学:编码器用于计算机科学中的数据压缩和加密。
它可以将大量的数据转换为较小的编码形式,以便于存储和传输。
同时,编码器也可以用于数据加密,保护数据的安全性。
总结:编码器是一种将输入信号转换为特定编码形式的电子设备。
它的工作原理基于信号的编码和解码过程。
编码器工作原理

编码器工作原理编码器是一种常见的电子设备,用于将物理量转换成数字信号或者编码形式,以便于处理和传输。
它在许多领域中都有广泛的应用,例如工业自动化、通信系统、机器人技术等。
本文将详细介绍编码器的工作原理。
一、编码器的基本原理编码器的基本原理是通过测量和转换输入物理量来生成相应的输出编码。
常见的编码器有旋转编码器和线性编码器两种。
1. 旋转编码器旋转编码器主要用于测量旋转角度或者位置。
它通常由一个旋转轴和一个带有刻度的圆盘组成。
当旋转轴转动时,圆盘上的刻度会与一个传感器进行接触或者挨近,从而生成相应的输出信号。
旋转编码器可以分为增量式编码器和绝对式编码器两种类型。
- 增量式编码器:增量式编码器通过测量旋转轴的角度变化来生成脉冲信号。
它通常由一个光电传感器和一个光栅刻度组成。
当旋转轴旋转时,光栅刻度会使光线在光电传感器上产生脉冲变化,从而生成输出信号。
增量式编码器可以提供角度变化的方向和速度信息。
- 绝对式编码器:绝对式编码器可以直接测量旋转轴的绝对位置。
它通常由一个光电传感器和一个二进制码盘组成。
二进制码盘上的光栅刻度会使光线在光电传感器上产生特定的脉冲组合,从而生成输出信号。
绝对式编码器可以提供旋转轴的精确位置信息。
2. 线性编码器线性编码器主要用于测量直线位移或者位置。
它通常由一个测量尺和一个传感器组成。
当测量尺挪移时,传感器会测量到相应的位移并生成输出信号。
线性编码器可以分为增量式编码器和绝对式编码器两种类型。
- 增量式编码器:增量式线性编码器通过测量测量尺的位移变化来生成脉冲信号。
它通常由一个光电传感器和一个光栅尺组成。
当测量尺挪移时,光栅尺上的光栅刻度会使光线在光电传感器上产生脉冲变化,从而生成输出信号。
增量式线性编码器可以提供位移变化的方向和速度信息。
- 绝对式编码器:绝对式线性编码器可以直接测量测量尺的绝对位置。
它通常由一个光电传感器和一个二进制码尺组成。
二进制码尺上的光栅刻度会使光线在光电传感器上产生特定的脉冲组合,从而生成输出信号。
编码器工作原理

编码器工作原理编码器是一种用于将输入信号转换成特定输出信号的设备。
它广泛应用于自动控制系统、通信系统、数码产品等领域。
本文将详细介绍编码器的工作原理和其常见的工作方式。
一、编码器的基本原理编码器的基本原理是将输入信号转换成特定的输出信号,以实现信息的编码和传输。
它通常由输入部份、编码部份和输出部份组成。
1. 输入部份:输入部份接收来自外部的输入信号,可以是电流、电压、光信号等。
输入信号的特点决定了编码器的适合范围和工作方式。
2. 编码部份:编码部份是编码器的核心部份,它将输入信号转换成特定的编码形式。
常见的编码方式有脉冲编码、格雷码、二进制编码等。
不同的编码方式适合于不同的应用场景。
3. 输出部份:输出部份将编码部份生成的编码信号转换成输出信号,可以是电流、电压、光信号等。
输出信号的特点决定了编码器的输出方式和使用方式。
二、编码器的工作方式编码器的工作方式主要分为绝对编码和增量编码两种。
1. 绝对编码:绝对编码器可以直接读取出物体的精确位置信息,不需要通过计数或者复位等操作。
它的工作原理是将每一个位置对应一个惟一的编码,通过读取编码信号来确定物体的位置。
绝对编码器通常具有高精度和高分辨率的特点,适合于对位置要求较高的应用。
2. 增量编码:增量编码器通过计数脉冲的方式来确定物体的位置。
它的工作原理是将物体的运动转换成脉冲信号,通过计数脉冲的数量和方向来确定物体的位置和运动状态。
增量编码器通常具有较低的成本和较简单的结构,适合于对位置要求不太严格的应用。
三、编码器的应用领域编码器广泛应用于各个领域,以下是一些常见的应用领域:1. 自动控制系统:编码器可以用于测量和控制机械设备的位置、速度和角度等参数,实现精确的运动控制。
2. 通信系统:编码器可以用于数字通信系统中的信号编码和解码,实现信息的传输和处理。
3. 数码产品:编码器可以用于数码相机、数码音乐播放器等产品中的位置和控制功能,提供更好的用户体验。
编码器工作原理

编码器工作原理编码器是一种用于将物理量转换为数字信号的设备或电路。
它在许多领域中都有广泛的应用,例如通信、自动控制、电子设备等。
编码器的工作原理基于将输入的模拟信号转换为数字信号,以便于处理和传输。
一种常见的编码器类型是旋转编码器,它用于测量旋转物体的位置和方向。
旋转编码器通常由一个旋转轴、一个固定轴和一个编码盘组成。
编码盘上有许多刻度线,当旋转轴旋转时,固定轴上的传感器会检测到刻度线的变化,并将其转换为数字信号。
编码器可以分为绝对编码器和增量编码器两种类型。
绝对编码器可以直接测量物体的位置,而增量编码器只能测量物体的运动。
下面将详细介绍这两种编码器的工作原理。
1. 绝对编码器的工作原理绝对编码器可以直接测量物体的位置,无需进行位置复位。
它通常由一个圆盘和一组传感器组成。
圆盘上的刻度线被编码为二进制码,每个刻度线对应一个唯一的二进制码。
传感器会读取刻度线上的二进制码,并将其转换为数字信号。
绝对编码器的工作原理是通过传感器读取刻度线上的二进制码。
传感器可以是光电传感器或磁性传感器。
当刻度线经过传感器时,传感器会检测到光电信号或磁信号的变化,并将其转换为数字信号。
这样就可以确定物体的位置。
2. 增量编码器的工作原理增量编码器只能测量物体的运动,无法直接测量物体的位置。
它通常由一个光电编码盘和一组传感器组成。
编码盘上的刻度线被编码为脉冲信号,每个刻度线对应一个脉冲。
传感器会检测到脉冲信号的变化,并将其转换为数字信号。
增量编码器的工作原理是通过传感器检测脉冲信号的变化来测量物体的运动。
当物体运动时,刻度线经过传感器,传感器会检测到脉冲信号的变化,并将其转换为数字信号。
通过计算脉冲信号的数量和方向,可以确定物体的运动。
总结:编码器是一种将物理量转换为数字信号的设备或电路。
它可以分为绝对编码器和增量编码器两种类型。
绝对编码器可以直接测量物体的位置,无需进行位置复位,而增量编码器只能测量物体的运动。
绝对编码器通过读取刻度线上的二进制码来确定物体的位置,而增量编码器通过检测脉冲信号的变化来确定物体的运动。
编码器工作原理

编码器工作原理编码器是一种用于将物理量转换为数字信号的设备。
它在许多领域中都有广泛的应用,如自动化控制系统、通信系统、机器人技术等。
编码器的工作原理是通过测量和转换物理量的变化来生成数字信号。
一、编码器的基本原理编码器可以测量和转换各种物理量,如位置、速度、角度等。
它通常由两部分组成:传感器和信号处理器。
1. 传感器:传感器是编码器的核心部件,用于测量物理量的变化。
常见的编码器传感器有光电传感器、磁传感器和电容传感器等。
传感器将物理量的变化转换为电信号,并将其传送给信号处理器。
2. 信号处理器:信号处理器接收传感器传来的电信号,并将其转换为数字信号。
它通常由模数转换器(ADC)和微处理器组成。
ADC将模拟信号转换为数字信号,微处理器对数字信号进行处理和分析。
二、编码器的工作过程编码器的工作过程可以分为以下几个步骤:1. 传感器测量:传感器测量物理量的变化,并将其转换为电信号。
例如,光电传感器可以通过测量光强的变化来测量位置的变化。
2. 信号转换:传感器将测量到的电信号传送给信号处理器。
信号处理器接收到电信号后,将其转换为数字信号。
这个过程通常通过模数转换器(ADC)来实现。
3. 数字信号处理:信号处理器对数字信号进行处理和分析。
它可以对信号进行滤波、放大、计数等操作,以获取更准确的测量结果。
4. 数据输出:信号处理器将处理后的数据输出给用户或其他设备。
数据可以以数字形式输出,也可以通过通信接口传输给其他设备。
三、编码器的应用编码器在许多领域中都有广泛的应用,以下是一些常见的应用领域:1. 自动化控制系统:编码器被广泛应用于自动化控制系统中,用于测量和控制物体的位置、速度、角度等。
例如,在机械臂控制系统中,编码器可以用于测量机械臂的关节角度,从而实现精确的位置控制。
2. 通信系统:编码器可以用于通信系统中的数据传输和接收。
例如,在数字通信系统中,编码器将模拟信号转换为数字信号,以便进行高效的数据传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编码器原理及常见知识问答编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。
编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是"1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是"1”还是"0”,通过"1”和“0”的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。
编码器工作原理:利用电磁感应原理将两个平面型绕组之间的相对位移转换成电信号的测量元件,用于长度测量工具。
感应同步器(俗称编码器、光栅尺)分为直线式和旋转式两类。
前者由定尺和滑尺组成,用于直线位移测量;后者由定子和转子组成,用于角位移测量。
1957年美国的R.W.特利普等在美国取得感应同步器的专利,原名是位置测量变压器,感应同步器是它的商品名称,初期用于雷达天线的定位和自动跟踪、导弹的导向等。
在机械制造中,感应同步器常用于数字控制机床、加工中心等的定位反馈系统中和坐标测量机、镗床等的测量数字显示系统中。
它对环境条件要求较低,能在有少量粉尘、油雾的环境下正常工作。
定尺上的连续绕组的周期为2毫米。
滑尺上有两个绕组,其周期与定尺上的相同,但相互错开1/4周期(电相位差90°)。
感应同步器的工作方式有鉴相型和鉴幅型的两种。
前者是把两个相位差90°、频率和幅值相同的交流电压U1和U2分别输入滑尺上的两个绕组,按照电磁感应原理,定尺上的绕组会产生感应电势U。
如滑尺相对定尺移动,则U的相位相应变化,经放大后与U1和U2比相、细分、计数,即可得出滑尺的位移量。
在鉴幅型中,输入滑尺绕组的是频率、相位相同而幅值不同的交流电压,根据输入和输出电压的幅值变化,也可得出滑尺的位移量。
由感应同步器和放大、整形、比相、细分、计数、显示等电子部分组成的系统称为感应同步器测量系统。
它的测长精确度可达3微米/1000毫米,测角精度可达1″/360°。
欧姆龙旋转编码器随着工业自动化的高速发展,编码器在工控领域的应用更加广泛。
一、问:增量旋转编码器选型有哪些留意事项?应留意三方面的参数:1.械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。
2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。
3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。
其输出方式应和其控制系统的接口电路相匹配。
二、问:请教如何使用增量编码器?1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。
2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL 电平,A脉冲在前,B脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。
一般利用A超前B或B超前A进行判向,我公司增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90°。
也有不相同的,要看产品说明。
3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输进端口。
4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。
5,在电子装置中设立计数栈。
三、关于户外使用或恶劣环境下使用设备在野外使用,现场环境脏,而且怕撞坏编码器。
有铝合金(特殊要求可做不锈钢材质)密封保护外壳,双重轴承重载型编码器,放在户外不怕脏,钢厂、重型设备里都可以用。
不过假如编码器安装部分有空间,建议在编码器外部再加装一防护壳,以加强对其进行保护,必竟编码器属精密元件,一台编码器和一个防护壳的价值比较还是有一定差距的。
四、从接近开关、光电开关到旋转编码器:产业控制中的定位,接近开关、光电开关的应用已经相当成熟了,而且很好用。
可是,随着工控的不断发展,又有了新的要求,这样,选用旋转编码器的应用优点就突出了:信息化:除了定位,控制室还可知道其具体位置;柔性化:定位可以在控制室柔性调整;现场安装的方便和安全、长寿:拳头大小的一个旋转编码器,可以丈量从几个μ到几十、几百米的间隔,n个工位,只要解决一个旋转编码器的安全安装题目,可以避免诸多接近开关、光电开关在现场机械安装麻烦,轻易被撞坏和遭高温、水气困扰等题目。
由于是光电码盘,无机械损耗,只要安装位置正确,其使用寿命往往很长。
多功能化:除了定位,还可以远传当前位置,换算运动速度,对于变频器,步进电机等的应用尤为重要。
经济化:对于多个控制工位,只需一个旋转编码器的本钱,以及更主要的安装、维护、损耗本钱降低,使用寿命增长,其经济化逐渐突显出来。
如上所述优点,旋转编码器已经越来越广泛地被应用于各种工控场合。
五、关于电源供给及编码器和PLC连接:一般编码器的工作电源有三种:5Vdc、5-13Vdc或11-26Vdc。
假如你买的编码器用的是11-26Vdc的,就可以用PLC的24V电源,需留意的是:1.编码器的耗电流,在PLC的电源功率范围内。
2.编码器如是并行输出,连接PLC的I/O点,需了解编码器的信号电平是推拉式(或称推挽式)输出还是集电极开路输出,如是集电极开路输出的,有N型和P型两种,需与PLC的I/O极性相同。
如是推拉式输出则连接没有什么题目。
3.编码器如是驱动器输出,一般信号电平是5V的,连接的时候要小心,不要让24V 的电源电平串进5V的信号接线中往而损坏编码器的信号端。
(我公司也可以做宽电压驱动器输出(5-30Vdc),有此要求定货时要注明)六、在很多的情况之下是编码器并没有坏,而只是干扰的原因,造成波型不好,导致计数不准。
请教如何进行判定?谢谢!编码器属精密元件,这主要由于编码器四周干扰比较严重,比如:是否有大型电动机、电焊机频繁起动造成干扰,是否和动力线同一管道传输等。
选择什么样的输出对抗干扰也很重要,一般输出带反向信号的抗干扰要好一些,即A+~A-,B+~B-,Z+~Z-,其特征是加上电源8根线,而不是5根线(共零)。
带反向信号的在电缆中的传输是对称的,受干扰小,在接受设备中也可以再增加判定(例如接受设备的信号利用A、B信号90°相位差,读到电平10、11、01、00四种状态时,计为一有效脉冲,此方案可有效进步系统抗干扰性能(计数正确))。
就是编码器也有好坏,其码盘\电子芯片\内部电路\信号输出的差别很大,要不然怎么一个1000线的增量型编码器会从300多元到3000多元差别那么大呢?①排除(搬离、封闭、隔离)干扰源,②判定是否为机械间隙累计误差,③判定是否为控制系统和编码器的电路接口不匹配(编码器选型错误);①②③方法偿试后故障现象排除,则可初步判定,若未排除须进一步分析。
判定是否为编码器自身故障的简单方法是排除法。
现在我公司编码器已大规模生产,技术生产已成熟运用,产品故障率控制在千分之几。
排除法的具体方法是:用一台相同型号的编码器替换上往,假如故障现象相同,可基本排除是编码器故障题目,由于两台编码器同时有故障的小概率事件发生可能很小,可以看作为0。
假如换一台相同型号编码器上往,故障现象立即排除,则可基本判定是编码器故障。
七、作甚长线驱动?普通型编码器能否远间隔传送?答:长线驱动也称差分长线驱动,5V,TTL的正负波形对称形式,由于其正负电流方向相反,对外电磁场抵消,故抗干扰能力较强。
普通型编码器一般传输间隔是100米,假如是24VHTL型且有对称负信号的,传输间隔300-400米。
八、问:能否简单先容旋转编码器检测直线位移的方法?答:1,使用“弹性连轴器”将旋转编码器与驱动直线位移的动力装置的主轴直接联轴。
2,使用小型齿轮(直齿,伞齿或蜗轮蜗杆)箱与动力装置联轴。
3,使用在直齿条上转动的齿轮来传递直线位移信息。
4,在传动链条的链轮上获得直线位移信息。
5,在同步带轮的同步带上获得直线位移信息。
6,使用安装有磁性滚轮的旋转编码器在直线位移的平整钢铁材料表面获得位移信息(避免滑差)。
7,使用类似“钢皮尺”的“可回缩钢丝总成”连接旋转编码器来探测直线位移信息(数据处理中须克服叠层卷绕误差)。
8,类似7,使用带小型力矩电机的“可回缩钢丝总成”连接旋转编码器来探测直线位移信息(目前德国有类似产品,结构复杂,几乎无叠层卷绕误差)。
九、增量光栅Z信号可否作零点?圆光栅编码器如何选用?无论直线光栅还是轴编码器其Z信号的均可达到同A\B信号相同的精确度,只不过轴编码器是一圈一个,而直线光栅是每隔一定间隔一个,用这个信号可达到很高的重复精度。
可先用普通的接近开关初定位,然后找最为接近的Z信号(每次同方向找),装的时候不要看忘了将其相位调的和光栅相位一致,否则不准。
根据你的细分精度要求和分辩率要求选用。
精度高自然要选用每周线纹高的,精度不高,就没必要选用高线纹数的圆光栅编码器了。
十、增量型编码器和尽对型编码器有何区别?做一个伺服系统时怎么选择呢?常用的为增量型编码器,假如对位置、零位有严格要求用尽对型编码器。
伺服系统要具体分析,看应用场合。
测速度用常用增量型编码器,可无穷累加丈量;测位置用尽对型编码器,位置唯一性(单圈或多圈),终极看应用场合,看要实现的目的和要求。
十一、尽对型旋转编码器选型留意事项,旋转编码器和接近开关、光电开关上风比较:尽对编码器单圈从经济型8位到高精度17位,价格可以从几百元到1万多不等;尽对编码器多圈大部分用25位,输出有SSI,总线Profibus-DP,CanL2,Interbus,DeviceNet,价格也可以从3千多到1万多不等。
旋转光电编码器丈量角度和长度,已是很成熟的技术了,现今再用上高精度大量程的尽对型编码器,大大进步了丈量精度和可靠性,而且经济实用。
就目前来看,其仍然是丈量长度的最多选择。
十二、从增量式编码器到尽对式编码器旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。
这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。
解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。