以SPSS软件包拟合条件logistic回归模型的探索
利用SPSS进行Logistic回归分析

图 8-1-10 因变量编码
3. Categorical Variables Codings(分类变量编码)。我们的自变量中涉及到代表不同地 域类型的名义变量(图 8-1-11)。在我们开始的分类中,属于中部用 1 表示,否则用 0 表示。 但是,SPSS 改变了这种编码,原来的 0 改用 1 表示,原来的 1 改用 0 表示。也就是说,在 这次 SPSS 分析过程中,0 代表属于中部的地区,1 代表不属于中部的地区。记住这个分类 对后面开展预测分析非常重要。
图 8-1-6 定义分类变量选项
⒉ 设置 Save(保存)选项:决定保存到 Data View 的计算结果(图 8-1-7) 。 选中 Leverage values、DfBeta(s)、Standardized 和 Deviance 四项。 完成后,点击 Continue 继续。
4
研究生地理数学方法(实习)
Categorical Variables Codings Paramete
中部
0 1
Frequency 22 9
(1) 1.000 .000
图 8-1-11 分类变量编码
4. Classification Table(初始分类表) 。Logistic 建模如同其他很多种建模方式一样,首先 对模型参数赋予初始值,然后借助迭代计算寻找最佳值。以误差最小为原则,或者以最大似 然为原则,促使迭代过程收敛。当参数收敛到稳定值之后,就给出了我们需要的比较理想的 参数值。下面是用初始值给出的预测和分类结果(图 8-1-12) 。这个结果主要用于对比,比 较模型参数收敛前后的效果。
SPSS做Logistic回归步骤

SPSS 二分类的Logistic 回归的操作和分析方法二分类指的是因变量的数据只有两个值,代表事物的两种类别, 典型的二分类变量如性别、是否患病等。
因变量为二分变量原则上是 无法做回归的,在回归方程中的因变量实质上是概率,而不是变量本 身。
在理解二分类变量以后,我们看看如何做二分类变量的logistic 回归。
1 .打开数据以后,菜单栏上依次点击: analyse --regression --binary logistic ,打开二分回归对话框2 .将因变量和自变量放入格子的列表里,如图所示,上面的是因变 量,下面的是自变量,我们看到这里有三个自变量pre 1courtpre卜 卜EJ Pa ri 即 u sei.P1自中叫5口同”“LvaisTic好 Io ■网 □N W□imsnstcri RfrdddiMNonparaTTietrtc Tests Foi ■白MuH0lalfflpul3&on Deiscriplrve SI 挑助聪LfiOli ncaf - Neuf-31 nuHlpEa ResponseMissing value AnaJisis. EH 必占律蛉的国q 商本 Ublik^s 时小如M Wflftdaw HOI LFl[« Edi! View工陷 nW"" ATiilyrtCam pl«i £aEpl 骷与Opsin al Scaling (CALREGJp..R 蜜GertEralized LinearMatfcIs 卜 Mbosti ModelsRlNafllin&af .曲:AT.r+ci HC] 2^^161;! Sfiiisrcs.tosnpareGeneral LinearMMml 48?B6Ci3强理 G"一四忙—一 3 La,43W8口 AutoioaticUn^r ModjeliFig..M 二1 Linear...国 guive EslirnatiCin...C>ep«n (lferit3 .设置回归方法,这里选择最简单的方法:enter ,它指的是将所有的 变量一次纳入到方程。
利用SPSS进行logistic回归分析(二元、多项)

线性回归是很重要的一种回归方法,但是线性回归只适用于因变量为连续型变量的情况,那如果因变量为分类变量呢比方说我们想预测某个病人会不会痊愈,顾客会不会购买产品,等等,这时候我们就要用到logistic回归分析了。
Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。
还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。
二值logistic回归:选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。
有没有很奇怪什么叫做协变量在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。
把你的自变量选到协变量的框框里边。
细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。
我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。
那么我们为了模型的准确,就把这个交互效应也选到模型里去。
我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。
然后在下边有一个方法的下拉菜单。
默认的是进入,就是强迫所有选择的变量都进入到模型里边。
除去进入法以外,还有三种向前法,三种向后法。
一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。
再下边的选择变量则是用来选择你的个案的。
spss的logistic分析教程

Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。
还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。
二值logistic回归:选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。
有没有很奇怪什么叫做协变量?在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。
把你的自变量选到协变量的框框里边。
细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。
我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。
那么我们为了模型的准确,就把这个交互效应也选到模型里去。
我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。
然后在下边有一个方法的下拉菜单。
默认的是进入,就是强迫所有选择的变量都进入到模型里边。
除去进入法以外,还有三种向前法,三种向后法。
一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。
再下边的选择变量则是用来选择你的个案的。
一般也不用管它。
选好主面板以后,单击分类(右上角),打开分类对话框。
在这个对话框里边,左边的协变量的框框里边有你选好的自变量,右边写着分类协变量的框框则是空白的。
你要把协变量里边的字符型变量和分类变量选到分类协变量里边去(系统会自动生成哑变量来方便分析,什么事哑变量具体参照前文)。
如何用SPSS做logistic回归分析解读

如何⽤SPSS做logistic回归分析解读如何⽤spss17.0进⾏⼆元和多元logistic回归分析⼀、⼆元logistic回归分析⼆元logistic回归分析的前提为因变量是可以转化为0、1的⼆分变量,如:死亡或者⽣存,男性或者⼥性,有或⽆,Yes或No,是或否的情况。
下⾯以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进⾏⼆元logistic回归分析。
(⼀)数据准备和SPSS选项设置第⼀步,原始数据的转化:如图1-1所⽰,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS 赋值为1,否赋值为0。
年龄为数值变量,可直接输⼊到spss中,⽽性别需要转化为(1、0)分类变量输⼊到spss当中,假设男性为1,⼥性为0,但在后续分析中系统会将1,0置换(下⾯还会介绍),因此为⽅便期间我们这⾥先将男⼥赋值置换,即男性为“0”,⼥性为“1”。
图1-1第⼆步:打开“⼆值Logistic回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regression)→⼆元logistic(Binary Logistic)”的路径(图1-2)打开⼆值Logistic 回归分析选项框(图1-3)。
如图1-3左侧对话框中有许多变量,但在单因素⽅差分析中与ICAS 显著相关的为性别、年龄、有⽆⾼⾎压,有⽆糖尿病等(P<0.05),因此我们这⾥选择以性别和年龄为例进⾏分析。
在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选⼊因变量(Dependent)中,⽽将性别和年龄选⼊协变量(Covariates)框中,在协变量下⽅的“⽅法(Method)”⼀栏中,共有七个选项。
采⽤第⼀种⽅法,即系统默认的强迫回归⽅法(进⼊“Enter”)。
接下来我们将对分类(Categorical),保存(Save),选项(Options)按照如图1-4、1-5、1-6中所⽰进⾏设置。
利用 SPSS 进行 Logistic 回归分析简要步骤

利用SPSS 进行Logistic 回归分析简要步骤
现实中的很多现象可以划分为两种可能,或者归结为两种状态,这两种状态分别用0
和1 表示。
如果我们采用多个因素对0-1 表示的某种现象进行因果关系解释,就可能应用到logistic 回归。
Logistic 回归分为二值logistic 回归和多值logistic 回归两类.
第一步:整理原始数据。
数据整理内容包括两个方面:一
是对各地区按照三大地带的分类结果赋值,用0、1 表示,二是将城镇人口比重转换逻辑值,变量名称为“城市化”。
第二步:打开“聚类分析”对话框。
沿着主菜单的“Analyze→Regression→Binary Logistic
K
”的路径(图8-1-3)打开二值
Logistic 回归分析选项框.
第三步:选项设置。
首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调
入Dependent(因变量)和Covariates(协变量)列表框中(图8-1-5)。
在本例中,将名义变
量“城市化”调入Dependent(因变量)列表框,将“人均GDP”和“中部”调入Covariates (协变量)列表框中。
在Method(方法)一栏有七个选项。
采用第一种方法,即系统默认的强迫回归方法(Enter)。
接下来进行如下4 项设置:
⒈设置Categorical(分类)选项:定义分类变量.
⒉设置Save(保存)选项,
⒊设置Options
第四步,结果解读.。
详解利用SPSS进行Logistic_回归分析
第8 章利用SPSS 进行Logistic 回归分析现实中的很多现象可以划分为两种可能,或者归结为两种状态,这两种状态分别用0和1 表示。
如果我们采用多个因素对0-1 表示的某种现象进行因果关系解释,就可能应用到logistic 回归。
Logistic 回归分为二值logistic 回归和多值logistic 回归两类。
首先用实例讲述二值logistic 回归,然后进一步说明多值logistic 回归。
在阅读这部分内容之前,最好先看看有关SPSS 软件操作技术的教科书。
§8.1 二值logistic 回归8.1.1 数据准备和选项设置我们研究2005 年影响中国各地区城市化水平的经济地理因素。
城市化水平用城镇人口比重表征,影响因素包括人均GDP、第二产业产值比重、第三产业产值比重以及地理位置。
地理位置为名义变量,中国各地区被分别划分到三大地带:东部地带、中部地带和西部地带。
我们用各地区的地带分类代表地理位置。
第一步:整理原始数据。
这些数据不妨录入Excel 中。
数据整理内容包括两个方面:一是对各地区按照三大地带的分类结果赋值,用0、1 表示,二是将城镇人口比重转换逻辑值,变量名称为“城市化”。
以各地区2005 年城镇人口比重的平均值45.41%为临界值,凡是城镇人口比重大于等于45.41%的地区,逻辑值用Yes 表示,否则用No 表示(图8-1-1)图8-1-1 原始数据(Excel 中,局部)将数据拷贝或者导入SPSS 的数据窗口(Data View)中(图8-1-2)。
图8-1-2 中国31 个地区的数据(SPSS 中,局部)第二步:打开“聚类分析”对话框。
沿着主菜单的“Analyze→Regression→Binary Logistic K”的路径(图8-1-3)打开二值Logistic 回归分析选项框(图8-1-4)。
图8-1-3 打开二值Logistic 回归分析对话框的路径对数据进行多次拟合试验,结果表明,像二产比重、三产比重等对城市化水平影响不显著。
logistic回归模型 SPSS例析
Logistic 回归Logistic 回归是多元回归分析的拓展,其因变量不是连续的变量;在logistic 分析中,因变量是分类的变量;logistic 和probit 回归皆为定性回归方程的一种;他们的特点就在于回归因变量的离散型而非连续型。
Logistic 回归又分为binary 和multinominal 两类;1、Logistic 回归原理Logistic 回归Logistic 回归模型描述的是概率P 与协变量12,.......k x x x 之间的关系,考虑到P 的取值在0----1之间,为此要首先把Plogistic 变换为()ln()1pf p p=-,使得它的取值在+∞-∞到之间,然后建立logistic 回归模型P=p(Y=1)()ln()1pf p p=-=011+......k k x x βββ++011011+......+......1k kk kx x x x e p eββββββ++++⇒=+Logistic 回归模型的数据结构观察值个数 取1的观察值个数 取0的观察值个数 协变量12,.......k x x x 的值 N1 r1 n1-ri ……………………… N2 r2 n2-r2 ………………………. . . . . . . . .Nt rt nt-rt ………………………. 根据数据,得到参数0 1....k βββ的似然函数011011011+ (1)+......+......1()()11k ki i ik k k kx x r n r t i x x x x e e eβββββββββ++-=++++∏++使用迭代算法可以求得0 1....k βββ的极大似然估计。
2、含名义数据的logistic 模型婚姻状况是名义数据,分为四种情形:未婚、有配偶、丧偶、离婚;在建立logistic 模型时,定义变量M1、M2、M3,使得(M1=1,M2=0,M3=0)表示未婚; (M1=0,M2=1,M3=0)表示有配偶 (M1=0,M2=0,M3=1)表示丧偶 (M1=-1,M2=-1,M3=-1)表示离婚 也可以将三变量定义为(M1=1,M2=0,M3=0)表示未婚; (M1=0,M2=1,M3=0)表示有配偶 (M1=0,M2=0,M3=1)表示丧偶 (M1=0,M2=0,M3=0)表示离婚 一般来说,只要矩阵[]1111122213331444a b c a b c a b c a b c非奇异,可以定义(M1=a1,M2=b1,M3=c1)表示未婚; (M1=a2,M2=b2,M3=c2)表示有配偶 (M1=a3,M2=b3,M3=c3)表示丧偶 (M1=a4,M2=b4,M3=c4)表示离婚3、含有有序数据的logistic 回归文化程度是有序的定性变量,他有一个顺序,由低到高为文盲、小学、中学、高中、中专;大学。
SPSS-配对条件 Logistic 回归分析
SPSS配对调查资料的条件 Logistic 回归分析(1:1或1:n)1. 1:1 病例对照研究的基本概念在管理工作中,我们也经常要开展对照调查。
例如为什么有的人患了胃癌,有的人却不会患胃癌?如果在同一居住地选取同性别、年龄相差仅±2 岁的健康人作对照调查,调查他们与患胃癌有关的各种影响因素,这就是医学上很常用的所谓“1:1 病例对照研究”。
病例对照研究资料常用条件Logistic 回归分析。
条件Logistic 回归模型(conditional logistic regression model,CLRM),下称CLRM 模型。
2. 条件Logistic 回归模型的一个实例某地在肿瘤防治健康教育、社区干预工作中做了一项调查,内容是三种生活因素与胃癌发病的关系。
调查的三种生活因素取值见表 11-6。
请拟合条件Logistic 回归模型,说明胃癌发病的主要危险因素。
表 11-6 三种生活因素与胃癌发病关系的取值------------------------------------------------------------------------------------------ 变量名取值范围------------------------------------------------------------------------------------------ X1 (不良生活习惯) 0,1,2,3,4 表示程度(0 表示无,4 表示很多)X2 (喜吃卤食和盐腌食物) 0,1,2,3,4 表示程度(0 表示不吃,4 表示喜欢吃、吃很多) X3 (精神状况) 0 表示差,1 表示好------------------------------------------------------------------------------------------表 11-7 50 对胃癌病例(S=1)与对照(S=0)三种生活习惯调查结果------------------------------------------------------------------------------------------ 病例对照病例对照-----------------------------------------------------------------------------No S X1 X2 X3 No S X1 X2 X3 No S X1 X2 X3 No S X1 X2 X3------------------------------------------------------------------------------------------1 12 4 0 1 03 1 0 26 1 2 2 0 26 0 1 1 02 13 2 1 2 0 0 1 0 27 1 2 0 1 27 0 0 2 13 1 3 0 0 3 0 2 0 1 28 1 1 1 1 28 0 3 0 14 1 3 0 0 4 0 2 0 1 29 1 2 0 1 29 0 4 0 05 1 3 0 1 5 0 0 0 0 30 1 3 1 0 30 0 0 2 16 1 2 2 0 6 0 0 1 0 31 1 1 0 1 31 0 0 0 07 1 3 1 0 7 0 2 1 0 32 1 4 2 1 32 0 1 0 18 1 3 0 0 8 0 2 0 0 33 1 4 0 1 33 0 2 0 19 1 2 2 0 9 0 1 0 1 34 1 2 0 1 34 0 0 0 110 1 1 0 0 10 0 2 0 0 35 1 1 2 0 35 0 2 0 111 1 3 0 0 11 0 0 1 1 36 1 2 0 0 36 0 2 0 112 1 3 4 0 12 0 3 2 0 37 1 0 1 1 37 0 1 1 013 1 1 1 1 13 0 2 0 0 38 1 0 0 1 38 0 4 0 014 1 2 2 1 14 0 0 2 1 39 1 3 0 1 39 0 0 1 015 1 2 3 0 15 0 2 0 0 40 1 2 0 1 40 0 3 0 116 1 2 4 1 16 0 0 0 1 41 1 2 0 0 41 0 1 0 117 1 1 1 0 17 0 0 1 1 42 1 3 0 1 42 0 0 0 118 1 1 3 1 18 0 0 0 1 43 1 2 1 1 43 0 0 0 019 1 3 4 1 19 0 2 0 0 44 1 2 0 1 44 0 1 0 020 1 0 2 0 20 0 0 0 0 45 1 1 1 1 45 0 0 0 121 1 3 2 1 21 0 3 1 0 46 1 0 1 1 46 0 0 0 022 1 1 0 0 22 0 2 0 1 47 1 2 1 0 47 0 0 0 023 1 3 0 0 23 0 2 2 0 48 1 2 0 1 48 0 1 1 024 1 1 1 1 24 0 0 1 1 49 1 1 2 1 49 0 0 0 125 1 1 2 0 25 0 2 0 0 50 1 2 0 1 50 0 0 3 1------------------------------------------------------------------------------------------- 3. 条件Logistic 回归模型的拟合原理与方法本例以 SPSS 软件包来拟合 CLRM 模型。
Spss软件之logistic回归分析
Logistic regression analysis
(二) 模型参数的意义 如果把logistic模型中的 P看作是在某一暴露状态下发
病的概率,则 β0:表示所有暴露剂量为0时发病与不发病概率之比的 自然对数,反映了疾病的基准状态。 βj :表示当因素 Xj 改变一个单位时logit(P)的改变量。
G 2(ln L1 ln L0)
当样本含量较大时,在零假设下得到的G统计量
近似服从自由度为d(d=p-l)的
2
分布。
由例13-1可以算得
lnL(X1 ) 585.326
•对于 H0:β1=0和 H0:β2=0
lnL(X1 , X2 ) 579.711
Hypothesis test
lnL(X2 ) 597.436
G1 2[lnL(X1 , X2 ) lnL(X2 )]=35.45>3.84 G2 2[lnL(X1 , X2 ) lnL(X1 )]=11.23>3.84
Hypothesis test
上面计算结果说明:在α=0.05检验水准上拒绝H0, 接受H1,说明平衡了饮酒因素的影响后,食管癌 与吸烟有显著性关系;同理,平衡了吸烟因素的 影响后,食管癌与饮酒有显著性关系。
Hypothesis test
2.Wald检验
z bj , Sbj
2
bj Sbj
2
对于大样本资料,在零假设下z 近似
服从标准正态分布,而 则近似服从
自由度=1的 分布。
2
2
Abraham Wald
Hypothesis test
似然比检验可以对自变量增减时所得到的不同回 归模型进行比较,既适合单个自变量的假设检验, 又适合多个自变量的同时检验。Wald检验比较适 合单个自变量的检验,但结果略为保守。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
法7 ( ) 7 = 1 C模型在拟 合时并 不估 计基线 风险函 数 9 5 年第 g卷第 h期
R R 2o$ a g‘$ a h : ( D > & ( n; D A EUA M2 #
只估计各协变量的系数值 ! 回归模 "这与条件 # $ % & ’ ( & ) 型不关心 * 只解出系数值 ! 的思路一致 " 且两 &的大小 + 来拟合 " 把配对因素作为分层 者都以最大似然法 , / . 因素 + 即可消除配对因素的作用 + 因此可用分层变量控 来拟合条件 # 回归模型 制法的原理 + $ % & ’ ( & )
海峡预防医学杂志 & # # &年第 K卷第 *期
9 # # &M1 K?1 9 * . 5 K L 3 5 L/ K J B@J 7& 0
"
文章编号 ! " # # $ % & $ # ’ ( & # # & ) # * % # # # " % # +
论著 ,
以 . / . .软件包拟合条件 0 1 2 3 4 5 3 6回归模型的探索
0 1 + 2 3
] NW , /F 1F 2F S U8 I c6P : I 8 ; . ] , d G / ; . \ ‘INP 8 W <bI5 \ , 2 R / a 运算结果见表 G " , 2 /调 查 S种 生 活 因 素 , 1 +F 2 +F S /与 胃 癌 发 F 0 T 3 病的关系 + 共查 G R对数据 " 程序如下 H 1F 2F S a P <I <\ : IW . 8 8] : ( D > ( >I & JA= $F _ 8 9 \ ‘P <I <a 11R2TR 121S1R 21RS21 221R1R a a a G R1R2R1 G R21RS1 8 ‘P P <I <a 由于原著的K 病例L 为K 对照L 为K 故加一句H R L e K 1 L + R N1 /, 1 NR /\ a . 8 5 6P 8= $, ‘I 6: ( > ( C ’ 所用 5 例, 因自变量恰是 1 / L + 67 . 8 9 命令同K 故 命 令 只 须 将 子 命 令 改 为H 1 +F 2 +F S + ] F 5 . \ I 8 . \ < N; R ^ R G /; R ^ 1 /\ 2 R / ^运 算 结 \ ‘, 6bI, I 8 . <I 8,
] a 2 G /\ 5 . \ I 8 . \ <N ; \ ‘, I 8 . <I 8
"
4 用5 67 . 8 9 命令拟合条件 # $ % & ’ ( & )模型的方法 在使用 : ; : :的 5 67 . 8 9 命 令拟 合 条 件 # $ % & ’ ( & ) 模型时, 要回 B: B5 / + <= > # ? @ A C D E & E > # $ F. A % D A ’ ’ & $ = 答下列 G个对话框 H 给每一行记录一个虚拟的生存时间 , 1 /I H & JA 一般默认 K 病例 L 生存时间短 , 例 如为 K , K L / + 1 L / + I & JA 对照 生存时间长 例如为 只要 对照 的生存时 K L , K 2 L / " K L 间 长于 K 病例 L 即可 " 因为 : ; : :会把在最短 的 完 全数 据 的生存时间之前的截尾数据, 全 部 去 掉+ / 5 A = ’ $ D A M 不 参 加 分 析"运 算 输 出 分 层 状 态 时+ K L NK 1 L O 8 E A = ( K L NK 2 L " 5 A = ’ $ D A M 与 选入虚拟生存状态 , 2 /: H ( > ( C ’ P A Q & = A8 E A = ( 变量 "定义事件时 K 病例 L 全为 K 为完 1 L , / + : & = % # AE > # C A 全数据 O 对照 L 全为 K 为截尾数据 " 此值 K 表示事 K R L + 1 L 件已发生 + 本例即 K 病例 L " 选入要进行分析的协变量, 自变量/ , S /5 H " $ E > D & > ( A ’ 即似然比, , T / H用 W , + UA ( V $ M : I 8 ; ./ & X A # & Y 法" / V $ $ MD > ( & $ 指 第 1个 对 , G /: H录 入 配 对 的 对 子 号 + K 1 L ( D > ( > 子, 含K 病例 L 为K 一行与 对照 者为 一行 指 1 L K L K R L / O K 2 L 第 2个对子 " Z [个实例运算及其与 : <:结果的对照 , 1 /研 究 胃 癌 危 险 因 素 的 病 例 对 照 资 料 中 的 1 R S 3 对 数 据 详 下0 为 蛋 白 质 摄 入 量 为 H 1 K R + 1 + 2 + S L + 2 F F 不良饮食习惯 R 精神因素 R K + 1 + 2 + S L + S为 K + 1 + 2 L "所 F 编程序如下 H 1F 2F S ^ P <I <\ : IW . 8 8] : ( D > ( >I & JA: ( > ( C ’F _ 8 9 \ ‘P <I <a 1111SR 12R1R1 211RS1 22R1SR a a a 1 R11222 1 R2RRRR 8 ‘P P <I <a N: , 1 / 5 67 . 8 9I & JA] : I <I b: ( > ( C ’ ] : I . <I <N: ( D > ( >
中图分类号 ! " " ?8 文献标识码 ! M
P Q R S TU VW X Q Q X V YZ U V S X Q X U V [ \] U Y X ^ Q X _‘ a Y b a ^ ^ X U V cU S a \d Te ^ X V YP f P P f [ _ g [ Y a
7 % 7q % 7q % 7u ( h ij k l m n o p rijs tu p v m p w rijs xy z y p vl { | } ~ ! " #$ % # & % ’ () * ’+ ! ( % " ( %$ * # & ’ * ," # -. ’ % / % # & ! * # ’ # # # " 7$ ) | } 0 1 * }8 1 ! # " !; <H 2 d ^ Q b [ _ Q 3 d 4 a _ Q X 5 a 14 5 6 7 85 9 J: 3 5 5 3 O 2IJ 5 9 1 71 := 1 O 7 3 5 3 1 O L 0 > 1 2 3 4 5 3 6? J 2 K J 4 4 3 1 O@1 7 J 0( = > ? @); 86 4 3 O 2 @; <M6 . / . .< L OO 1 5 ca Q L 6 = L 2 J; J 6 L 6 4 J5 9 J1 K 3 2 3 O L 0 6 1 IIL O 7 4( > DG > . H > =? F G ? F . . > D?)6 7 13 5 A U S ^ 6 1 K 7 3 O 25 15 9 J 7O )CJ 5 9 J 1 K J I1 O4 5 K L 5 LB L K 3 L ; 0 J6 1 O 5 K 1 0 C9 J O: 3 5 5 3 O 2= 1 C? J 2 K J 4 4 3 1 O@1 7 J 0 J C7 6 II8B L K 3 L ; 0 J 4( H 3 IJL O 7. 5 K L 5 L K J @*J @; <= 6 K J L 5 J 7: 1 K: 3 5 5 3 O 25 9 JI1 7 J 0 C L I< 0 J 4CJ K J4 J 0 J 6 5 J 7: 1 KK 6 O O 3 O 25 9 JI1 7 J 0 ‘ a ^ R \ Q ^ > ? @6 L O; J: 3 5 5 J 76 1 K K J 6 5 0 8 @; <M6 ; 8= 1 C? J 2 K J 4 4 3 1 O3 O. / . .L O 75 9 J4 L IJK J 4 6 0 5 4; 8. M.L O 7. H MH M6 L O; J1 ; 5 L 3 O J 7 Z U V _ \ R ^ X U V 6 1 K 7 3 O 25 15 9 J 7= 5 9 J 1 K J I1 O4 5 K L 5 LB L K 3 L ; 0 J6 1 O 5 K 1 0 C9 J O: 3 5 5 3 O 2= 1 C? J 2 K J 4 4 3 1 O@1 7 J 0 > ? @ 6 L O; J: 3 5 5 J 7; 8IJ L O 41 :5 9 J1 K 3 2 3 O L 0 @MO 7J N" 7" N& = DE ? F G6 1 IIL O 73 O. / . .< L 6 = L 2 J 75 9 J< K 1 2 K L II3 O 23 44 3 I< 0 J L 4 3 0 8L < < 0 8 3 O 2L O 76 L O; J6 4 J 7: 1 K" NI ( " N+ )IL 1 KO 5 6 9 3 O 26 1 I< L K 3 4 1 O3 O= > ? @@ H 9 J6 1 K K J 4 < 1 O 7 J O 6 J< L K L IJ 5 J K 41 : 5 9 JK J 4 6 0 5 4L K J5 9 J4 L IJL 45 9 1 4 J; 8 . M.L O 7. H MH M@ !IJ :. :. :6 :6 :O NI IL D a TEU b S ^ 7 3 6 L 0 4 5 L 5 3 4 5 3 6 4 / . . M. 1 O 7 3 5 3 1 O L 0 0 1 2 3 4 5 3 6K J 2 K J 4 4 3 1 O 1 CK J 2 K J 4 4 3 1 OI1 7 J 0 5 6 9 3 O 2